首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most persistent organic pollutants, due to their hydrophobic properties, accumulate in aquatic sediments and represent a high risk for sediment quality. To assess the toxicity of hydrophobic pollutants, a novel approach was recently proposed as an alternative to replace, refine and reduce animal experimentation: the medaka embryo–larval sediment contact assay (MELAc). This assay is performed with Japanese medaka embryos incubated on a natural sediment spiked with the compound being tested. With the aim of improving this assay, our study developed a reference exposure protocol with an artificial sediment specifically designed to limit natural sediment composition uncertainties and preparation variability. The optimum composition of the new artificial sediment was tested using a model polycyclic aromatic hydrocarbon (PAH), fluoranthene. The sediment was then validated with two other model PAHs, benz[a]anthracene and benzo[a]pyrene. Various developmental end points were recorded, including survival, embryonic heartbeat, hatching delay, hatching success, larval biometry and abnormalities. The final artificial sediment composition was set at 2.5 % dry weight (dw) Sphagnum peat, 5 % dw kaolin clay and 92.5 % dw silica of 0.2- to 0.5-mm grain size. In contrast with natural sediments, the chemical components of this artificial matrix are fully defined and readily identifiable. It is totally safe for fish embryos and presents relatively high sorption capacities for hydrophobic compounds. Studies with other hydrophobic and metallic contaminants and mixtures should be performed to further validate this artificial sediment.  相似文献   

2.
Due to hydrophobic and persistent properties, polycyclic aromatic hydrocarbons (PAHs) have a high capacity to accumulate in sediment. Sediment quality criteria, for the assessment of habitat quality and risk for aquatic life, include understanding the fate and effects of PAHs. In the context of European regulation (REACH and Water Framework Directive), the first objective was to assess the influence of sediment composition on the toxicity of two model PAHs, benzo[a]pyrene and fluoranthene using 10-day zebrafish embryo-larval assay. This procedure was undertaken with an artificial sediment in order to limit natural sediment variability. A suitable sediment composition might be then validated for zebrafish and proposed in a new OECD guideline for chemicals testing. Second, a comparative study of toxicity responses from this exposure protocol was then performed using another OECD species, the Japanese medaka. The potential toxicity of both PAHs was assessed through lethal (e.g., survival, hatching success) and sublethal endpoints (e.g., abnormalities, PMR, and EROD) measured at different developmental stages, adapted to the embryonic development time of both species. Regarding effects observed for both species, a suitable artificial sediment composition for PAH toxicity testing was set at 92.5 % dry weight (dw) silica of 0.2–0.5-mm grain size, 5 % dw kaolin clay without organic matter for zebrafish, and 2.5 % dw blond peat in more only for Japanese medaka. PAH bioavailability and toxicity were highly dependent on the fraction of organic matter in sediment and of the K ow coefficients of the tested compounds. The biological responses observed were also dependent of the species under consideration. Japanese medaka embryos appeared more robust than zebrafish embryos for understanding the toxicity of PAHs following a sediment contact test, due to the longer exposure duration and lower sensitivity of sediment physical properties.  相似文献   

3.
Pollution from urban highway runoff has been identified as one of the major causes of the deterioration of receiving water quality. The purpose of this study is to assess the toxicity of urban storm water samples in Shanghai using the zebrafish (Danio rerio) embryo test and the bacterial luminescence (Vibrio qinghaiensis) assay. The toxicity of highway runoff from seventeen storm events was investigated in both grab and composite samples. Zebrafish embryos were exposed to the runoff samples and development parameters including lethality, spontaneous movements in 20 s, heart beat rate, hatching rate, and abnormality of zebrafish embryos were observed after 24, 48, 72, and 96 h of exposure. Inhibition rates of luminescence intensity were also recorded. The results showed that in the zebrafish embryo toxicity tests, both grab and composite samples increased the lethality, reduced the percentage with spontaneous movements and heart beats, inhibited the hatching of embryos, and induced morphological abnormalities. In the Vibrio qinghaiensis toxicity test, all the grab samples inhibited the luminescence, while some of the composite samples promoted it, which indicated that different types of toxicants might have been affecting the species. The multivariate statistics analysis indicated that heavy metal (zinc, manganese, and copper) and PAHs might mainly contribute to the toxicity of runoff samples.  相似文献   

4.
Organic extracts of marine sediments from the North Sea and the Baltic Sea were investigated with two toxicity assays. The comet assay based on the fish cell line Epithelioma papulosum cyprini (EPC) was applied to determine the genotoxic potential; zebrafish embryos (Danio rerio) were used to quantify the teratogenic potential of the samples. EC(50) values were calculated from dose-response curves for both test systems. Highest teratogenic and genotoxic effects normalised to total organic carbon (TOC) content were detected in sediment samples of different origins. Polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) are not likely to be the causes of the observed effects, as demonstrated by a two-step fractionation procedure of selected extracts. The toxic potential was more pronounced in fractions having polarity higher than those possessed by PAHs and PCBs. The suitability of the two in vitro test systems for assessing genotoxic and teratogenic effects of marine sediment extracts could be demonstrated.  相似文献   

5.
One of the most frequently detected pharmaceuticals in environmental water samples is the anti-rheumatic drug, diclofenac. Despite its increasing environmental significance, investigations concerning the effects of this drug on the early developmental stages of aquatic species are lacking up to now. To determine the developmental toxicity and proteotoxicity of this drug on the growing fish embryos, eggs of zebrafish were exposed to six concentrations of diclofenac (0, 1, 20, 100, 500, 1000, and 2000 microg l(-1)) using DMSO as solvent. Early life stage parameters such as egg and embryo mortality, gastrulation, somite formation, movement and tail detachment, pigmentation, heart beat, and hatching success were noted and described within 48- and 96-h of exposure. After the 96-h exposure, the levels of stress proteins (hsp 70) were determined in both the diclofenac-treated and respective DMSO controls. Results showed no significant inhibition in the normal development until the end of 96 h for all exposure groups. However, there was a delay in the hatching time among embryos exposed to 1000 and 2000 microg l(-1). Late-hatched embryos (108 h) did not differ morphologically from normally hatched embryos. The mortality and average heart rate data did not show significant differences for all embryos in both diclofenac-treated and DMSO control groups. No significant malformations were likewise noted among all developing embryos throughout the exposure period. The levels of heat shock proteins in diclofenac-treated and control embryos did not differ significantly. DMSO control embryos, on the other hand, showed a concentration-dependent increase in hsp 70 levels. We suggest possible modulating effect of diclofenac in DMSO-triggered expression of stress proteins and this might have a possible repercussion on the use of DMSO as solvent in any toxicity assay. Since the present data indicate no significant embryotoxicity and proteotoxicity induced by diclofenac and due to the fact that the concentrations of diclofenac used in the present study is up to 2000-fold higher than the concentrations detected in the environment, it is unlikely that this drug would pose a hazard to early-life stages of zebrafish.  相似文献   

6.
In aquatic environments, polycyclic aromatic hydrocarbons (PAHs) mostly occur as complex mixtures, for which risk assessment remains problematic. To better understand the effects of PAH mixture toxicity on fish early life stages, this study compared the developmental toxicity of three PAH complex mixtures. These mixtures were extracted from a PAH-contaminated sediment (Seine estuary, France) and two oils (Arabian Light and Erika). For each fraction, artificial sediment was spiked at three different environmental concentrations roughly equivalent to 0.5, 4, and 10 μg total PAH g?1 dw. Japanese medaka embryos were incubated on these PAH-spiked sediments throughout their development, right up until hatching. Several endpoints were recorded at different developmental stages, including acute endpoints, morphological abnormalities, larvae locomotion, and genotoxicity (comet and micronucleus assays). The three PAH fractions delayed hatching, induced developmental abnormalities, disrupted larvae swimming activity, and damaged DNA at environmental concentrations. Differences in toxicity levels, likely related to differences in PAH proportions, were highlighted between fractions. The Arabian Light and Erika petrogenic fractions, containing a high proportion of alkylated PAHs and low molecular weight PAHs, were more toxic to Japanese medaka early life stages than the pyrolytic fraction. This was not supported by the toxic equivalency approach, which appeared unsuitable for assessing the toxicity of the three PAH fractions to fish early life stages. This study highlights the potential risks posed by environmental mixtures of alkylated and low molecular weight PAHs to early stages of fish development.  相似文献   

7.
Consequent to the growing demand for alternative sources of energy, the seeds from Jatropha curcas remain to be the favorite for biodiesel production. However, a significant volume of the residual organic mass (seed cake) is produced during the extraction process, which raises concerns on safe waste disposal. In the present study, we assessed the toxicity of J. curcas seed cake using the zebrafish (Danio rerio) embryotoxicity test. Within 1-h post-fertilization (hpf), the fertilized eggs were exposed to five mass concentrations of J. curcas seed cake and were followed through 24, 48, and 72 hpf. Toxicity was evaluated based on lethal endpoints induced on zebrafish embryos namely egg coagulation, non-formation of somites, and non-detachment of tail. The lowest concentration tested, 1 g/L, was not able to elicit toxicity on embryos whereas 100 % mortality (based also on lethal endpoints) was recorded at the highest concentration at 2.15 g/L. The computed LC50 for the J. curcas seed cake was 1.61 g/L. No further increase in mortality was observed in the succeeding time points (48 and 72 hpf) indicating that J. curcas seed cake exerted acute toxicity on zebrafish embryos. Sublethal endpoints (yolk sac and pericardial edema) were noted at 72 hpf in zebrafish embryos exposed to higher concentrations. The observed lethal endpoints induced on zebrafish embryos were discussed in relation to the active principles, notably, phorbol esters that have remained in the seed cake even after extraction.  相似文献   

8.
Diphenyl ether and its derivatives are widely used in the industry of spices, dyes, agrochemicals, and pharmaceuticals. Following the previous study, we selected 4,4′-dihydroxydiphenyl ether, 4,4′-difluorodiphenyl ether, 4,4′-dichlorodiphenyl ether, and 4,4′-dibromodiphenyl ether as research objects. The LC50 (96 h) values for these compounds in adult zebrafish were determined with the acute test. Also, developmental toxicities of the four substances to zebrafish embryos were observed at 24, 48, 72, and 96 hpf. All the LC50 (96 h) values of these compounds were between 1 and 10 mg/L, suggesting that they all had moderate toxicity to adult zebrafish. The embryonic test demonstrated that with increasing doses, 4,4′-dihydroxydiphenyl ether decreased the hatching rate, while 4,4′-difluorodiphenyl ether, 4,4′-dichlorodiphenyl ether, and 4,4′-dibromodiphenyl ether delayed the hatching time but had little effect on final hatchability at 96 hpf. All of these compounds inhibited larval growth, especially 4,4′-dihydroxydiphenyl ether. Exposure to these chemicals induced embryo yolk sac and pericardial edema. Spine deformation was visible in hatched larvae after 96 hpf 4,4′-dihydroxydiphenyl ether exposure, while tail curvature was observed for the halogenated compounds. The overall results indicated that 4,4′-dihydroxydiphenyl ether, 4,4′-difluorodiphenyl ether, 4,4′-dichlorodiphenyl ether, and 4,4′-dibromodiphenyl ether all had significant toxicity on adult and embryonic zebrafish.  相似文献   

9.
Effects of triclosan on zebrafish early-life stages and adults   总被引:1,自引:0,他引:1  

Background, aim and scope  

The biocide triclosan (TCS) is commonly used in personal care, acrylic, plastic, and textiles products. TCS has been detected in surface water in several countries, and its ecological impact is largely unknown. In this work, the toxicity of TCS in zebrafish (Danio rerio), embryos and adults was studied. Several lethal and sub-lethal endpoints were analysed in organisms exposed to TCS such as mortality, embryo development and behaviour, hatching, micronuclei and biochemical markers (cholinesterase (ChE), glutathione S-transferase (GST) and lactate dehydrogenase (LDH)).  相似文献   

10.
The objective of laboratory sediment bioassays is to estimate in situ toxicity. This goal is difficult to achieve, as one of the main limitations of sediment toxicity tests is disruption of sediment geochemistry during sampling, handling and preservation. The effects of storage on the estimation of marine sediment toxicity to Crassostrea gigas embryos and larvae were investigated. Three storage methods and four storage periods were compared with three different sediment types contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and both contaminants. Freezing and freeze-drying considerably increased the toxicity of decanted sediments and their elutriates as compared to the toxicity obtained with fresh sediments. Concerning the elutriates, the toxicity found with frozen and freeze-dried sediments was correlated with DOC, ammonia and PAH contents. However, the toxicity of fresh sediments kept at 4 degrees C increased with increasing duration of storage and was also correlated with the amount of ammonia in the elutriates.  相似文献   

11.
A new gravel-contact assay using rainbow trout, Oncorhynchus mykiss, embryos was developed to assess the toxicity of polycyclic aromatic hydrocarbons (PAHs) and other hydrophobic compounds. Environmentally realistic exposure conditions were mimicked with a direct exposure of eyed rainbow trout embryos incubated onto chemical-spiked gravels until hatching at 10 °C. Several endpoints were recorded including survival, hatching delay, hatching success, biometry, developmental abnormalities, and DNA damage (comet and micronucleus assays). This bioassay was firstly tested with two model PAHs, fluoranthene and benzo[a]pyrene. Then, the method was applied to compare the toxicity of three PAH complex mixtures characterized by different PAH compositions: a pyrolytic extract from a PAH-contaminated sediment (Seine estuary, France) and two petrogenic extracts from Arabian Light and Erika oils, at two environmental concentrations, 3 and 10 μg g?1 sum of PAHs. The degree and spectrum of toxicity were different according to the extract considered. Acute effects including embryo mortality and decreased hatching success were observed only for Erika oil extract. Arabian Light and pyrolytic extracts induced mainly sublethal effects including reduced larvae size and hemorrhages. Arabian Light and Erika extracts both induced repairable DNA damage as revealed by the comet assay versus the micronucleus assay. The concentration and proportion of methylphenanthrenes and methylanthracenes appeared to drive the toxicity of the three PAH fractions tested, featuring a toxic gradient as follows: pyrolytic?Arabian Light?Erika. The minimal concentration causing developmental defects was as low as 0.7 μg g?1 sum of PAHs, indicating the high sensitivity of the assay and validating its use for toxicity assessment of particle-bound pollutants.  相似文献   

12.
We examined acute (2 h exposure of 5-day-old larvae) and subchronic (exposure from fertilization up to an age of 11 days) effects of NiCl(2).6H2O on embryos and larvae of zebrafish (Danio rerio), both alone and in combination with oxygen depletion. The following endpoints were recorded: acute exposure: locomotory activity and survival; subchronic exposure: hatching rate, deformations, locomotory activity (at 5, 8 and 11 days) and mortality. In acute exposures nickel chloride (7.5-15 mg Ni/L) caused decreasing locomotory activity. Oxygen depletion (or=10 mg Ni/L resulted in delayed hatching at an age of 96 h, in decreased locomotory activity at an age of 5 days, and increased mortality at an age of 11 days (LC20=9.5 mg Ni/L). The observed LOEC for locomotory activity (7.5 mg Ni/L) is in the range of environmentally relevant concentrations. Since locomotory activity was already affected by acute exposure, this parameter is recommended to supplement commonly recorded endpoints of toxicity.  相似文献   

13.
Due to uncertainties as to appropriate procedures and dilution materials, most sediment tests are conducted only with undiluted, whole samples. Hence, it is not possible to use conventional concentration-response approaches to quantify toxicity of samples that elicit a 100% effect (e.g., mortality) at a preset test interval (typically 10 d). An alternative approach to quantifying the relative toxicity of test sediments is to determine time-to-effects. The objective of this study was to assess the utility of a time-to-effects approach for quantifying toxicity of freshwater sediments to the invertebrates Hyalella azteca and Chironomus tentans. Survival of both species and growth of C. tentans was determined using five sediments (four test samples and a control sediment) by destructively sampling replicate test chambers over the course of a "standard" 10-d assay. Studies with the control sediment and a non-toxic test sample indicated excellent recovery of test animals, even early in the test (e.g., <24 h) when individuals of both species are relatively small. Reasonable, typically monotonic, time-to-death relationships were observed for both H. azteca and C. tentans exposed to three comparatively toxic test sediments, all of which caused significant mortality by 10 d. Use of the time-to-effects approach allowed expression of toxicity of the three samples relative to one another, as well as documentation of decreases in toxicity of one of the sediments with increased storage time. These studies demonstrate the feasibility of use of time-to-effects as a basis for quantifying the relative toxicity of contaminated sediments.  相似文献   

14.
The powder of henna is extensively used as decorative skin paint for nail coloring and as a popular hair dye in Asian countries. Its human health risk is extensive, and it is frequently released as waste into the aquatic environment raising the concerns. Zebrafish (Danio rerio) embryos were employed to study the developmental effects of henna. Normal fertilized zebrafish embryos under standard water were selected for the control and test chambers. Three predetermined sublethal concentrations (100, 200, and 275 μM) of henna in 24-well cell culture plates were tested on 1-h postfertilized embryo (pfe) for 96 h. Observation for rates of survival and mortality was recorded; digital camera was used to image morphological anomalies of embryos with a stereomicroscope; and functional abnormalities at 24, 48, 72, and 96 h were performed. The hatching rates of embryos were reduced significantly when treated with 200 and 275 μM or higher concentrations of henna. Slow blood circulation in the whole body was observed with a median effect on hatching exposed to 200 and 275 μM of henna at 48-h pfe. At 72- and 96-h pfe, blood circulation was ceased in the whole body but still had a heartbeat. At 96-h pfe, pericardial sac edema, yolk sac edema, head deformation, spine crooked malformation, and tail malformation (bent tails or hook-like tails) were observed in the surviving larvae at 100 μM. In summary, exposure to henna at 100, 200, and 275 μM causes some altered morphological and physiological abnormalities including increased mortality, hatching delay, slow blood circulation, pericardial sac edema, yolk sac edema, abnormal body axes, twisted notochord, tail deformation, weak heartbeat, and growth retardation and was also detected in some treated embryos and groups having adverse effects on embryonic development of zebrafish provoking potential human developmental risk studies.  相似文献   

15.
Perfluorinated compounds (PFCs) have been widely used in industrial and consumer products and frequently detected in many environmental media. Potential reproductive effects of perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) have been reported in mice, rats and water birds. PFOS and PFOA were also confirmed developing toxicants towards zebrafish embryos; however, the reported effect concentrations were contradictory. Polyfluorinated alkylated phosphate ester surfactants (including FC807) are precursor of PFOS and PFOA; however, there is no published information about the effects of FC807 and PFNA on zebrafish embryos. Therefore, this study was conducted to determine the effects of these four PFCs on zebrafish embryos. Normal fertilized zebrafish embryos were selected to be exposed to several concentrations of PFOA, PFNA, PFOS or FC807 in 24-well cell culture plates. A digital camera was used to image morphological anomalies of embryos with a stereomicroscope. Embryos were observed through matching up to 96-h post-fertilization (hpf) and rates of survival and abnormalities recorded. PFCs caused lethality in a concentration-dependent manner with potential toxicity in the order of PFOS > FC807 > PFNA > PFOA based on 72-h LC(50). Forty-eight-hour post-fertilization pericardial edema and 72- or 96-hpf spine crooked malformation were all observed. PFOA, PFNA, PFOS and FC807 all caused structural abnormalities using early stages of development of zebrafish. The PFCs all retarded the development of zebrafish embryos. The toxicity of the PFCs was related to the length of the PFC chain and functional groups.  相似文献   

16.
The sensitivity of the benthic amphipod species Ampelisca brevicornis and Corophium volutator to dredged sediments was compared through simultaneous testing on the standard 10 days sediment toxicity test. The results of mortality obtained for 22 harbor sediments sampled at several Spanish ports were studied together with the physico-chemical characteristics of the samples to obtain the incidence of toxicity in terms of dredged material categories and to identify possible differences in the amphipod mortality results when using one or another test species. The results showed a similar incidence of toxicity for medium-high and highly contaminated sediments for both amphipod species, similar to that obtained through the comparison of the chemical concentrations measured in sediments with the single limit values used in Spain for dredged material characterization and management. On the contrary, C. volutator presented a higher mortality and a higher incidence of toxicity when exposed to low and medium-low contaminated sediments, which may have been caused by the lower sensitivity of A. brevicornis when exposed to sediments from its natural environment. When compared to other amphipod species used for whole sediment toxicity assessment, both amphipod species used in this study reported slightly higher sensitivities although these differences could have been associated to the different set of chemical compounds considered when characterizing the sediment samples. In this sense, the amphipod mortality results were better predicted through the use of mean quotients than just by comparing the measured chemical concentrations with the single limit values used in Spain, which indicates that the toxic response of both species was caused by the cocktail of contaminants present in the sediments. Finally, the correlation analysis identified a higher association between A. brevicornis mortality and the metallic contaminants while C. volutator was more correlated with the organic micro-pollutants. Despite these differences, the results indicate that Ampelisca brevicornis can be used as test organism for dredged material characterization when enough individuals of other recommended species such as Corophium volutator are not available.  相似文献   

17.

The levels of metals in sediments of urban river ecosystems are crucial for aquatic environmental health and pollution assessment. Yet little is known about the interaction of nutrients with metals for environmental risks under contamination accumulation. Here, we combined hierarchical cluster, correlation, and principal component analysis with structural equation model (SEM) to investigate the pollution level, source, toxicity risk, and interaction associated with metals and nutrients in the sediments of a river network in a city area of East China. The results showed that the pollution associated with metals in sediments was rated as moderate degree of contamination load and medium-high toxicity risk in the middle and downstream of urban rivers based on contamination factor, pollution load index, and environmental toxicity quotient. The concentration of mercury (Hg) and zinc (Zn) showed a significant correlation with toxic risks, which had more contribution to toxicity than other metals in the study area. Organic nitrogen and organic pollution index showed heavily polluted sediments in south of the study area. Though correlation analysis indicated that nutrients and metals had different input zones from anthropogenic sources in the urban river network, SEM suggested that nutrient accumulation indirectly intensified toxicity risk of metals by 13.6% in sediments. Therefore, we suggested the combined consideration of metal toxicity risk with nutrient accumulation, which may provide a comprehensive understanding to identify sediment pollution.

Toxicity rate of metals in sediments from urban river network indirectly intensified by nutrients accumulation

  相似文献   

18.
This work investigates the ecotoxicological evaluation of contaminated dredged sediments from French Mediterranean navy harbour (A), commercial port (B) and two composite specimens (C) and (D) coming from the mixture of A and B with other port sediments. The toxicity of elutriates from these sediments is estimated using embryo-toxicity test, Microtox® solid phase test, LuminoTox, phytotoxicity tests and genotoxicity test. Bioassay responses are not clearly correlated with chemical contamination in the whole sediment and vary as a function of tested organisms. The highest contaminated samples (A and C) are almost always more toxic than the less contaminated samples (B and D). Among composite sediments, the mixture effect with other sediments is not efficient to decrease toxicity in sample C, suggesting that other parameters influence toxicity level such as particle size or organic matter content. These parameters should be taken into consideration in order to improve the efficiency of the mixture process and produce composite sediments with low toxicity.  相似文献   

19.
Elevated concentrations of arsenic, nickel, and molybdenum in aquatic systems around northern Saskatchewan uranium mines are an environmental concern. Early life stage fathead minnows were used to assess toxicity from several aquatic systems near the Key Lake and Rabbit Lake uranium operations. Hatching success of fish embryos exposed to waters receiving contaminants associated with uranium ore milling was reduced by 32-61% relative to controls. Mortality differed in two lakes receiving mill effluents because of opposing factors influencing metal toxicity (i.e. low pH and high hardness). In one mill receiving water (Fox Lake), larval mortality was 0%, whereas mortality was 85% in water collected from a downstream location (Unknown Lake). Fish embryos exposed to open-pit dewatering effluent receiving waters, or water from a flooded open pit (i.e. pit waters), hatched 26-39% earlier than those exposed to reference or control water. The combination of low water hardness and elevated nickel concentrations in pit waters contributed to the early hatching. Egg hatchability and hatching time were more sensitive indicators of toxicity than 'standard' endpoints, like larval mortality and growth. Current regulatory emphasis on single contaminants and standard toxicological endpoints should be re-evaluated in light of the complex interaction among confounding variables such as pH, hardness. conductivity, and multi-metal mixtures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号