首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In this study, three possible improvements to a remediation process for chromated-copper-arsenate- (CCA) treated wood were evaluated. The process involves two steps: oxalic acid extraction of wood fiber followed by bacterial culture with Bacillus licheniformis CC01. The three potential improvements to the oxalic acid extraction step were (1) reusing oxalic acid for multiple extractions, (2) varying the ratio of oxalic acid to wood, and (3) using a noncommercial source of oxalic acid such as Aspergillus niger, which produces oxalic acid as a metabolic byproduct. Reusing oxalic acid for multiple extractions removed significant amounts of copper, chromium, and arsenic. Increasing the ratio of wood to acid caused a steady decline in metal removal. Aspergillus niger removed moderate amounts of copper, chromium, and arsenic from CCA-treated wood. Although A. niger was effective, culture medium costs are likely to offset any benefits. Repeated extraction with commercial oxalic acid appears to be the most cost-effective method tested for the two-step process.  相似文献   

2.
Chromated copper arsenate (CCA) wood preservative can form insoluble sludges when the hexavalent chromium component is reduced by wood extractives, wood particles and preservative additives in the solution. This sludge accumulates in treating solution work tanks, sumps and in-line filters and must be disposed of as hazardous wastes by waste disposal companies at high costs. A number of commercial sludges were investigated and found to contain 18-94% copper, chromium and arsenic as oxides combined with sand, oil, wood particles, additives and wood extractives. We have developed a multi-stage recycling process whereby approximately 97% of the CCA components are recovered from the sludge. It involves extraction with sodium hypochlorite to remove and oxidize chromium (more than 90%) and extract most of the arsenic (approx. 80%) followed by extraction of the copper and remaining arsenic and chromium with phosphoric acid. The phosphoric acid extract contains some trivalent chromium, which is subsequently oxidized by sodium hypochlorite. The combined oxidized extract containing CrVI, CuII and AsV was compatible with CCA treating solutions and could be re-used commercially for treating wood without having a significant effect on the preservative fixation rate or the leach resistance of the treated wood. A cost analysis showed that the economic savings from recovery of CCA chemicals and reduced landfill costs exceeded the variable costs for materials and energy for the process by as much as Can $966 per tonne of sludge if sodium sulfite can be acquired in bulk quantities for the process.  相似文献   

3.
Remediation processes for recovery and reuse of chromated-copper-arsenate- (CCA) treated wood are not gaining wide acceptance because they are more expensive than landfill disposal. One reason is the high cost of the nutrient medium used to culture the metal-tolerant bacterium, Bacillus licheniformis, which removes 70-100% of the copper, chromium, and arsenic from CCA-treated southern yellow pine (CCA-SYP) in a two-step process involving oxalic acid extraction and bacterial culture. To reduce this cost, the nutrient concentration in the culture medium and the ratio of wood to nutrient medium were optimized. Maximum metal removal occurred when B. licheniformis was cultured in 1.0% nutrient medium and at a wood to nutrient medium ratio of 1:10. Also, malted barley, an abundant by-product of brewing, was evaluated as an alternative nutrient medium. Tests were done to determine absorption of metals by barley, and the results indicate that the barley acted as a biosorbent, removing heavy metals from the liquid culture after their release from CCA to SYP. For comparison, tests were also performed with no nutrient medium. Following bacterial remediation, 17% copper and 15% arsenic were removed from an aqueous slurry of CCA-SYP (no medium). When oxalic acid extraction preceded the aqueous bacterial culture, 21% copper, 54% chromium, and 63% arsenic were removed. The two-step process (oxalic acid extraction and bacterial culture with nutrient medium) appears to be an effective, yet costly, way to remove metals.  相似文献   

4.
Ethylenediaminetetracetic acid (EDTA) is one of the most common chelators used to bind the metal ions in extremely stable complexes in heavy metal contaminated soils and thus to remediate such substrates. EDTA forms water soluble complexes with many metal ions and it is used to release the various metals. In this study, EDTA extraction of copper, chromium, and arsenic from chromated copper arsenate (CCA-C) treated wood was evaluated using batch leaching experiments. CCA-treated wood samples were extracted with eight different concentrations of EDTA for 4, 8, 18, and 24 h at room temperature. Exposing CCA-treated chips and sawdust to EDTA extraction enhanced removal of CCA components compared with extraction by deionized water. Grinding CCA-treated wood chips into 40-mesh sawdust provided greater access to and removal of CCA components. Extraction with 1% EDTA solution for 24 h removed 60% copper, 13% chromium, and 25% arsenic from treated chips. EDTA extraction of treated sawdust samples resulted in 93% copper, 36% chromium, and 38% arsenic removal. CCA leaching from treated wood blocks was also evaluated according to modified AWPA E11-99 standard test method of determining the leachability of wood preservatives. Leaching of CCA components from treated wood blocks with 1% EDTA solution for 14 days caused more copper leaching compared to leaching with deionized water. Leaching with 1% EDTA for 14 days removed 53% copper from the blocks whereas 14% copper was leached from the blocks with deionized water. The results suggest that EDTA extraction removes significant quantities of copper from CCA-treated wood. Thus, EDTA could be important in the remediation of wood waste treated with the newest formulations of organometalic copper compounds and other water-borne wood preservatives containing copper.  相似文献   

5.
Wood treated by preservatives is commonly found in solid waste. Among the different types of preserved wood, chromated copper arsenate (CCA) treated wood recently has received much attention due to the scale of usage and its significant role in soil and water contamination. As the ash of CCA treated wood would be hazardous if the wood were to be incinerated, this is not a good alternative, and the best available disposal method is thus landfilling in the US, Canada and Australia. Leaching of the metals from preserved wood that is disposed in unlined landfills for construction debris pollutes the soil and water environments. Several factors affecting leaching of the metals from wood, including pH of the leachant, temperature, the duration of leaching and the type of leachant, were investigated. These factors affect each of the metals, chromium, copper and arsenic, differently. A comparison of these effects on each metal was performed. The results of the experiments showed that the pH of the leachants has a significant effect on the leaching process, and sulfuric acid (pH 3) is the most effective leachant compared to nitric and acetic acid (pH 3-4-5). The amounts of leached chromium, copper and arsenic by sulfuric acid (pH 3) during 15 days were, respectively, 0.2, 0.14 and 0.15 mg more than leachates by nitric acid (pH 5) on the basis of 1g of wood (initial contents of 1.03 mg, 0.42 g and 0.8 mg per g of wood). Most of the leaching occurs in the first 5 days, and the rate of leaching decreases significantly after 5 days. Increasing temperature increases the amount of leached metals, and arsenic is the least resistant metal to the leaching when the temperature increases. Increasing the temperature from 15 degrees C to 35 degrees C during 15 days increases the amount of leached chromium, copper and arsenic by acetic acid at pH 5 by about 0.1, 0.4 and 1.2mg per g of wood, respectively.  相似文献   

6.
Significant amounts of chromated copper arsenate (CCA) treated wood products, such as utility poles and residential construction wood, remain in service. There is increasing public concern about environmental contamination from CCA-treated wood when it is removed from service for reuse or recycling, placed in landfills or burned in commercial incinerators. In this paper, we investigated the effects of time, temperature and sodium hypochlorite concentration on chromium oxidation and extraction of chromated copper arsenate from CCA-treated wood (Type C) removed from service. Of the conditions evaluated, reaction of milled wood with sodium hypochlorite for one hour at room temperature followed by heating at 75 °C for two hours gave the highest extraction efficiency. An average of 95% Cr, 99% Cu and 96% As could be removed from CCA-treated, milled wood by this process. Most of the extracted chromium was oxidized to the hexavalent state and could therefore be recycled in a CCA treating solution. Sodium hypochlorite extracting solutions could be reused several times to extract CCA components from additional treated wood samples.  相似文献   

7.
The volume of chromated copper arsenate (CCA) treated wood products coming out of service is expected to increase dramatically during the next decade. There is a need for an alternative waste management approach to landfilling. This paper investigates the variables affecting extraction of CCA components from wood particles and the potential to oxidize and reuse the recovered chemicals. Most of the CCA components could be extracted by 10% H2O2 at 50 degrees C in 6 h with an average extraction efficiency of 95% for Cr, 94% for Cu and 98% for As. The extract containing Cr(III), Cu(II) and As(V) could be oxidized in several stages by aqueous 2.5% w/w H2O2 in less than 2 h to a condition where it was compatible with CCA treating solutions and could be reused for treating new wood. When the recovered extract was mixed with fresh CCA solution in different ratios, the mixed CCA-C solutions had similar solution stability as freshly prepared CCA-C solution and treated wood had similar leaching properties as wood treated with fresh solution.  相似文献   

8.
Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated in the ash in the WTE scenario, the MSW landfill scenario releases a greater amount of arsenic from leachate in a more dilute form. The WTE scenario releases more chromium from the ash on an annual basis. The WTE facility and subsequent ash disposal greatly concentrates the chromium, often oxidizing it to the more toxic and mobile Cr(VI) form. Elevated arsenic and chromium concentrations in the ash leachate may increase leachate management costs.  相似文献   

9.
There are increasing problems with regard to the disposal of treated wood waste. Due to heavy metals or arsenic in impregnated wood waste, burning and landfill disposal options are not considered to be environmentally friendly solutions for dealing with this problem. Extraction of the heavy metals and recycling of the preservatives from the wood waste is a much more promising and environmentally friendly solution. In order to study the scale up of this process, copper/chromium/boron-treated wood specimens were exposed to copper tolerant (Antrodia vaillantii and Leucogyrophana pinastri) and copper sensitive wood decay fungi (Gloeophyllum trabeum and Poria monticola). Afterwards, the ability of fungal hyphae to penetrate and overgrow the wood specimens was investigated. The fungal growths were stimulated by immersing the specimens into aqueous solution of glucose or corn steep liquor prior to exposure to the fungi. The fastest colonization of the impregnated wood was by the copper tolerant A. vaillantii. Addition of glucose onto the surface of the wood specimens increased the fungi colonization of the specimens; however, immersion of the specimens into the solution of corn steep liquor did not have the same positive influence. These results are important in elucidating copper toxicity in wood decay fungi and for using these fungi for bioremediation of treated wood wastes.  相似文献   

10.
Large volumes of preservative-treated wood containing toxic Cr, Cu and As salts are decommissioned worldwide. This study investigated the effectiveness of solid-state fermentation with copper-tolerant brown-rot fungi for the remediation of wood treated with chromated copper arsenate (CCA) and acid copper chromate (ACC) formulations. Treatment of CCA- and ACC-wood with the most effective strain, Antrodia vaillantii FRLP-14G, attained extensive leaching of As and/or Cr, but Cu elimination was poor (<18%). Additional research showed that a variety of organic acids, including citrate, are effective Cu extractants. Based on these findings, a process combining chemical extraction and subsequent fungal treatment was developed that proved highly effective in removing inorganic pollutants from CCA-wood. Extraction of CCA-wood with citric acid (30 mM, pH 3.10) followed by a 28-day solid-state fermentation period removed 87% Cu, 80% Cr, and 100% As. These results indicate the potential of the two-stage process for the remediation of preservative-treated wood.  相似文献   

11.
余学  罗琳  李巧巧 《化工环保》2012,32(1):49-52
研究了采用焙烧—硫酸酸化法利用铬渣制备重铬酸钠的工艺.通过L16(44)正交实验得出铬渣焙烧—浸出的最佳工艺条件为:焙烧温度1 000℃,m(碳酸钠)∶m(铬渣)=0.18,液固比4,焙烧时间8h.在此条件下Cr(Ⅵ)回收率为99.3%.硫酸酸化制备重铬酸钠的最佳工艺条件为:浸出液pH为6.6,酸化液pH为3.5,浓缩液中重铬酸钠质量分数为83.1%.此条件下制备的产品重铬酸钠结晶率为44.5%,纯度为99.5%,符合GB1611-92《工业重铬酸钠》的一等品质量标准.处理1t铬渣可制备重铬酸钠约120 kg,增加收入660元.  相似文献   

12.
A synthetic, mixed-metal solution has been stabilised by treatment with sodium hydroxide, sodium sulphide, and sodium silicate, respectively. The three stabilised filter cakes have subsequently been solidified using additions of ordinary Portland cement and pulverised fuel ash (PFA) which are typically used in UK solidification operations. Both the stabilised filter cakes and the solidified wastes have been subjected to an equilibrium extraction test, a modified TCLP test, and a series of single-extraction, batch leach tests using an increasingly acidic leachant. Metal release was found to be primarily dependent on the pH of the leachate. Under mildly acidic conditions, the percentages leached from the stabilised and the stabilised/solidified wastes were comparable for most metals. A high-volume fraction of these solidified wastes is occupied by the stabilised filter cake. When they are broken up and tested in single-extraction leach tests, the primary effect of the cementitious additives is to increase the pH of the leachate so that most heavy metals remain insoluble. When tested under acidic leachate conditions, copper, lead, and mercury were found to be particularly well retained within sodium sulphide stabilised wastes. Under similar test conditions, cadmium was leached at very low levels from the sodium silicate stabilised waste.  相似文献   

13.
In order to reduce the environmental impact due to land disposal of oil fly ash from power plants and to valorize this waste material, the removal of vanadium was investigated using leaching processes (acidic and alkaline treatments), followed by a second step of metal recovery from leachates involving either solvent extraction or selective precipitation. Despite a lower leaching efficiency (compared to sulfuric acid), sodium hydroxide was selected for vanadium leaching since it is more selective for vanadium (versus other transition metals). Precipitation was preferred to solvent extraction for the second step in the treatment since: (a) it is more selective; enabling complete recovery of vanadate from the leachate in the form of pure ammonium vanadate; and (b) stripping of the loaded organic phase (in the solvent extraction process) was not efficient. Precipitation was performed in a two-step procedure: (a) aluminum was first precipitated at pH 8; (b) then ammonium chloride was added at pH 5 to bring about vanadium precipitation.  相似文献   

14.
In this work the development of a process for the recovery of copper from contaminated industrial soils is presented. Experimental tests on a standard soil contaminated with a solution of copper chloride were carried out. The metal was extracted from the contaminated soil by flushing with a 0.1 M aqueous solution of an ethylenediaminetetraacetic acid (EDTA) sodium salt. A maximum copper extraction efficiency of about 60% was observed. Copper was then separated from the extracted solution by precipitation with sodium hydroxide after addition of ferric sulfate.  相似文献   

15.
采用NaOH溶液一次性浸出废弃SCR催化剂中的钒和钨,并用硫酸对浸出液进行除杂,再利用NH4Cl和硫酸分步对浸出液中的钒和钨进行沉淀回收。在NaOH质量分数40%、液固比8、浸出时间4 h、浸出温度90℃的最佳碱浸条件下,钒和钨的浸出率分别达到90.44%和84.49%。除杂过程的铝去除率达到100%,硅去除率达到77.56%。在沉钒pH为8.0、n(NH_4~+)∶n(V)为4的最佳沉钒条件下,钒回收率达到82.79%。在n(SO_4~(2-))∶n(W)为2的最佳沉钨条件下,钨回收率达到76.41%。  相似文献   

16.
研究了采用不同pH的酸、碱清洗液及阻垢剂溶液静态浸泡对聚偏氟乙烯(PVDF)和聚四氟乙烯(PTFE)疏水平板膜接触角的影响.实验结果表明:随pH 2.5盐酸和pH2.0草酸浸泡PVDF膜和PTFE膜时间的延长,两种疏水膜的接触角均小幅度减小,说明酸性清洗液对两种疏水膜性能的影响较小;随pH11.5NaOH溶液浸泡膜时间...  相似文献   

17.
Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be a potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050 °C and in a muffle oven at temperatures from 500 to 1200 °C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel.  相似文献   

18.
Wood treated with chromated copper arsenate (CCA) is found in construction and demolition (C&D) debris, and a common use for wood recycled from C&D debris is the production of mulch. Given the high metals concentrations in CCA-treated wood, a small fraction of CCA-treated wood can increase the metal concentrations in the mulch above regulatory thresholds. The objective of this study was to determine the extent of contamination of CCA-treated wood in consumer landscaping mulch and to determine whether visual methods or rapid X-ray fluorescence (XRF) technology can be used to identify suspect mulch. Samples were collected throughout the State of Florida (USA) and evaluated both visually and chemically. Visual analysis focused on documenting wood-chip size distribution, whether the samples were artificially colored, and whether they contained plywood chips which is an indication that the sample was, in part, made from recycled C&D wood. Chemical analysis included measurements of total recoverable metals, leachable metals as per the standardized synthetic precipitation leaching procedure (SPLP), and XRF analysis. Visual identification methods, such as colorant addition or presence of plywood, were found effective to preliminarily screen suspect mulch. XRF analysis was found to be effective for identifying mulch containing higher than 75 mg/kg arsenic. For mulch samples that were not colored and did not contain evidence of C&D wood, none exceeded leachable metal concentrations of 50 microg/L and only 3% exceeded 10 mg/kg for recoverable metals. The majority of the colored mulch made from recycled C&D wood contained from 1% to 5% CCA-treated wood (15% maximum fraction) resulting in leachable metals in excess of 50 microg/L and total recoverable metals in excess of 10 mg/kg. The maximum arsenic concentration measured in the mulch samples evaluated was 230 mg/kg, which was above the Florida residential direct exposure regulatory guideline of 2.1 mg/kg.  相似文献   

19.
Contamination of wood waste with chromated copper arsenate greatly limits recycling opportunities for the wood waste as a whole. Separation of CCA-treated wood from other wood types is one means by which such contamination can be removed. The purpose of the current study was to evaluate two detector technologies for sorting CCA-treated wood from other wood types. The detector technologies evaluated included X-ray fluorescence spectroscopy (XRF) and laser induced breakdown spectroscopy (LIBS). The XRF detector system utilized in this study was capable of rapidly detecting the presence of CCA in painted wood, wet wood, heartwood, sapwood, and at portions of the wood containing knots. Furthermore, the XRF system was capable of distinguishing between CCA-treated wood and wood treated with alternative wood treatment preservatives, but was limited by the fact that it was not designed for on-line operation so tests were conducted in a batch mode on a conveyor. The analysis time used in this study (3 s) can be decreased significantly for an XRF system designed specifically for on-line operation. The LIBS system developed for this study was found to effectively identify CCA-treated wood for pieces ranging in thickness from 1 to 8 cm. High sorting efficiencies were noted when 10 laser shots were taken on a piece of wood. Furthermore, the LIBS system was found to be effective for identifying wood that has been coated with stains and paints in addition to identifying wood that has been CCA treated. The major drawback with the LIBS system developed in this study was the limited laser pulse energy. With an increase in laser pulse energy it is anticipated that the working focal length of the LIBS system can be increased to enable the monitoring of wood samples of more variable thicknesses. Limitations associated with analysis of very rotted pieces of wood and wet wood can also be overcome by using a higher pulse energy laser. Overall, both technologies show incredible promise for sorting CCA-treated wood from other wood types. The next recommended step would be to run an improved full-scale operation at one facility to document sorting efficiencies and fine-tune the improvements proposed in the current study. Such a study could potentially open-the-door for more widespread sorting of wood waste.  相似文献   

20.
Sorting of waste wood is an important process practiced at recycling facilities in order to detect and divert contaminants from recycled wood products. Contaminants of concern include arsenic, chromium and copper found in chemically preserved wood. The objective of this research was to evaluate the sorting efficiencies of both treated and untreated parts of the wood waste stream, and metal (As, Cr and Cu) mass recoveries by the use of automated X-ray fluorescence (XRF) systems. A full-scale system was used for experimentation. This unit consisted of an XRF-detection chamber mounted on the top of a conveyor and a pneumatic slide-way diverter which sorted wood into presumed treated and presumed untreated piles. A randomized block design was used to evaluate the operational conveyance parameters of the system, including wood feed rate and conveyor belt speed. Results indicated that online sorting efficiencies of waste wood by XRF technology were high based on number and weight of pieces (70-87% and 75-92% for treated wood and 66-97% and 68-96% for untreated wood, respectively). These sorting efficiencies achieved mass recovery for metals of 81-99% for As, 75-95% for Cu and 82-99% of Cr. The incorrect sorting of wood was attributed almost equally to deficiencies in the detection and conveyance/diversion systems. Even with its deficiencies, the system was capable of producing a recyclable portion that met residential soil quality levels established for Florida, for an infeed that contained 5% of treated wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号