首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
Contamination of wood waste with chromated copper arsenate greatly limits recycling opportunities for the wood waste as a whole. Separation of CCA-treated wood from other wood types is one means by which such contamination can be removed. The purpose of the current study was to evaluate two detector technologies for sorting CCA-treated wood from other wood types. The detector technologies evaluated included X-ray fluorescence spectroscopy (XRF) and laser induced breakdown spectroscopy (LIBS). The XRF detector system utilized in this study was capable of rapidly detecting the presence of CCA in painted wood, wet wood, heartwood, sapwood, and at portions of the wood containing knots. Furthermore, the XRF system was capable of distinguishing between CCA-treated wood and wood treated with alternative wood treatment preservatives, but was limited by the fact that it was not designed for on-line operation so tests were conducted in a batch mode on a conveyor. The analysis time used in this study (3 s) can be decreased significantly for an XRF system designed specifically for on-line operation. The LIBS system developed for this study was found to effectively identify CCA-treated wood for pieces ranging in thickness from 1 to 8 cm. High sorting efficiencies were noted when 10 laser shots were taken on a piece of wood. Furthermore, the LIBS system was found to be effective for identifying wood that has been coated with stains and paints in addition to identifying wood that has been CCA treated. The major drawback with the LIBS system developed in this study was the limited laser pulse energy. With an increase in laser pulse energy it is anticipated that the working focal length of the LIBS system can be increased to enable the monitoring of wood samples of more variable thicknesses. Limitations associated with analysis of very rotted pieces of wood and wet wood can also be overcome by using a higher pulse energy laser. Overall, both technologies show incredible promise for sorting CCA-treated wood from other wood types. The next recommended step would be to run an improved full-scale operation at one facility to document sorting efficiencies and fine-tune the improvements proposed in the current study. Such a study could potentially open-the-door for more widespread sorting of wood waste.  相似文献   

2.
Construction and demolition (C&D) wood frequently contains treated wood including wood treated with chromated copper arsenate (CCA). Many recycling options for such wood require that the product be essentially free of preservative chemicals. The objectives of this study were to document the characteristics of the wood waste stream and to evaluate the effectiveness of sorting methods for identifying treated wood. Sorting methods evaluated included visual sorting and visual sorting augmented with the use of PAN indicator stain and/or hand-held X-ray fluorescence (XRF) units. Experiments were conducted on two types of construction and demolition (C&D) wood: source separated loads containing only C&D wood and wood hand-picked from commingled loads of general C&D waste. Results showed that 77% of the treated wood was CCA-treated. For uncontaminated piles (<1% treated wood) of source separated C&D wood, visual sorting was found to effectively remove the small amounts of treated wood present. For piles of source separated wood that were contaminated (approximately 50% treated wood), visual sorts were not accurate and benefited from augmented sorting using PAN indicator stain. The handheld XRF devices were found to be effective for sorting commingled C&D wood, as PAN indicator stain was not as effective due to the excessive amount of surface dirt associated with commingled wood waste. Visual sorting of source separated wood was estimated to cost between US$21 to US$96 per metric ton. These costs depended upon the amount of treated wood and whether or not augmentation with PAN indicator was necessary. Visual sorting augmented with hand-held XRF units was estimated at US$113 per metric ton. The bulk of these costs were associated with labor. Future efforts should focus on reducing labor costs by mounting automated XRF units on conveyor systems.  相似文献   

3.
Waste wood is frequently contaminated with wood treatment preservatives including chromated copper arsenate (CCA) and alkaline copper quat (ACQ), both of which contain metals which contaminate recycled wood products. The objective of this research was to propose a design for online automated identification of As-based and Cu-based treated wood within the recovered wood waste stream utilizing an X-ray fluorescence (XRF) system, and to evaluate the detection parameters of such system. A full-scale detection unit was used for experimentation. Two main parameters (operational threshold (OT) and measurement time) were evaluated to optimize detection efficiencies. OTs of targeted metals, As and Cu, in wood were reduced to 0.02 and 0.05, respectively. The optimum minimum measurement time of 500 ms resulted in 98%, 91%, and 97% diversion of the As, Cu and Cr mass originally contained in wood, respectively. Comparisons with other detection methods show that XRF technology can potentially fulfill the need for cost-effective processing at large facilities (>30 tons per day) which require the removal of As-based preservatives from their wood waste stream.  相似文献   

4.
Significant amounts of chromated copper arsenate (CCA) treated wood products, such as utility poles and residential construction wood, remain in service. There is increasing public concern about environmental contamination from CCA-treated wood when it is removed from service for reuse or recycling, placed in landfills or burned in commercial incinerators. In this paper, we investigated the effects of time, temperature and sodium hypochlorite concentration on chromium oxidation and extraction of chromated copper arsenate from CCA-treated wood (Type C) removed from service. Of the conditions evaluated, reaction of milled wood with sodium hypochlorite for one hour at room temperature followed by heating at 75 °C for two hours gave the highest extraction efficiency. An average of 95% Cr, 99% Cu and 96% As could be removed from CCA-treated, milled wood by this process. Most of the extracted chromium was oxidized to the hexavalent state and could therefore be recycled in a CCA treating solution. Sodium hypochlorite extracting solutions could be reused several times to extract CCA components from additional treated wood samples.  相似文献   

5.
The volume of chromated copper arsenate (CCA) treated wood products coming out of service is expected to increase dramatically during the next decade. There is a need for an alternative waste management approach to landfilling. This paper investigates the variables affecting extraction of CCA components from wood particles and the potential to oxidize and reuse the recovered chemicals. Most of the CCA components could be extracted by 10% H2O2 at 50 degrees C in 6 h with an average extraction efficiency of 95% for Cr, 94% for Cu and 98% for As. The extract containing Cr(III), Cu(II) and As(V) could be oxidized in several stages by aqueous 2.5% w/w H2O2 in less than 2 h to a condition where it was compatible with CCA treating solutions and could be reused for treating new wood. When the recovered extract was mixed with fresh CCA solution in different ratios, the mixed CCA-C solutions had similar solution stability as freshly prepared CCA-C solution and treated wood had similar leaching properties as wood treated with fresh solution.  相似文献   

6.
The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3MWh, or 46kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.  相似文献   

7.
The objective of this paper is to evaluate the feasibility of producing ethanol from CCA-treated wood that is highly leachable. Following the initial tests, CCA-treated wood was hydrolysed and fermented and the results showed not only that ethanol was produced during the fermentation process but that metals were taken up by the yeast. Toxicity characteristic leaching procedure tests of the hydrolysed wood leached less than 4 mg/L of As while minimal amounts of Cr and Cu remained in the hydrolysed wood which makes landfilling of hydrolysed wood acceptable and less hazardous. A slightly lower amount of ethanol from CCA-treated than untreated wood was produced (6 and 7 g/L, respectively). In general, it suggests that production of ethanol as a source of energy from a hazardous waste (CCA-treated wood) is feasible.  相似文献   

8.
Large volumes of preservative-treated wood containing toxic Cr, Cu and As salts are decommissioned worldwide. This study investigated the effectiveness of solid-state fermentation with copper-tolerant brown-rot fungi for the remediation of wood treated with chromated copper arsenate (CCA) and acid copper chromate (ACC) formulations. Treatment of CCA- and ACC-wood with the most effective strain, Antrodia vaillantii FRLP-14G, attained extensive leaching of As and/or Cr, but Cu elimination was poor (<18%). Additional research showed that a variety of organic acids, including citrate, are effective Cu extractants. Based on these findings, a process combining chemical extraction and subsequent fungal treatment was developed that proved highly effective in removing inorganic pollutants from CCA-wood. Extraction of CCA-wood with citric acid (30 mM, pH 3.10) followed by a 28-day solid-state fermentation period removed 87% Cu, 80% Cr, and 100% As. These results indicate the potential of the two-stage process for the remediation of preservative-treated wood.  相似文献   

9.
Wood treated with chromated copper arsenate (CCA) is found in construction and demolition (C&D) debris, and a common use for wood recycled from C&D debris is the production of mulch. Given the high metals concentrations in CCA-treated wood, a small fraction of CCA-treated wood can increase the metal concentrations in the mulch above regulatory thresholds. The objective of this study was to determine the extent of contamination of CCA-treated wood in consumer landscaping mulch and to determine whether visual methods or rapid X-ray fluorescence (XRF) technology can be used to identify suspect mulch. Samples were collected throughout the State of Florida (USA) and evaluated both visually and chemically. Visual analysis focused on documenting wood-chip size distribution, whether the samples were artificially colored, and whether they contained plywood chips which is an indication that the sample was, in part, made from recycled C&D wood. Chemical analysis included measurements of total recoverable metals, leachable metals as per the standardized synthetic precipitation leaching procedure (SPLP), and XRF analysis. Visual identification methods, such as colorant addition or presence of plywood, were found effective to preliminarily screen suspect mulch. XRF analysis was found to be effective for identifying mulch containing higher than 75 mg/kg arsenic. For mulch samples that were not colored and did not contain evidence of C&D wood, none exceeded leachable metal concentrations of 50 microg/L and only 3% exceeded 10 mg/kg for recoverable metals. The majority of the colored mulch made from recycled C&D wood contained from 1% to 5% CCA-treated wood (15% maximum fraction) resulting in leachable metals in excess of 50 microg/L and total recoverable metals in excess of 10 mg/kg. The maximum arsenic concentration measured in the mulch samples evaluated was 230 mg/kg, which was above the Florida residential direct exposure regulatory guideline of 2.1 mg/kg.  相似文献   

10.
Garden waste generation and composition were studied in Aarhus, Denmark. The amount of garden waste generated varied seasonally, from 2.5 kg person?1 month?1 in winter to 19.4 kg person?1 month?1 in summer. Seasonal fractional composition and chemical characterization of garden waste were determined by sorting and sampling garden waste eight times during 1 year. On a yearly basis, the major fraction of garden waste was “small stuff” (flowers, grass clippings, hedge cuttings and soil) making up more than 90% (wet waste distribution) during the summer. The woody fractions (branches, wood) are more significant during the winter. Seasonal trends in waste chemical composition were recorded and an average annual composition of garden waste was calculated, considering the varying monthly generation and material fraction composition: the wet garden waste contained 40% water, 30% organic matter (VS) and 30% ash. The ash content suggests that the garden waste contains a significant amount of soil. This is in particular the case during summer. Of nutrients, the garden waste contained in average on a dry matter basis 0.6% N, 0.1% P, and 1.0% K. However, the contents varied significantly among the fractions and during the year. The content of trace elements (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) was low.  相似文献   

11.
Ethylenediaminetetracetic acid (EDTA) is one of the most common chelators used to bind the metal ions in extremely stable complexes in heavy metal contaminated soils and thus to remediate such substrates. EDTA forms water soluble complexes with many metal ions and it is used to release the various metals. In this study, EDTA extraction of copper, chromium, and arsenic from chromated copper arsenate (CCA-C) treated wood was evaluated using batch leaching experiments. CCA-treated wood samples were extracted with eight different concentrations of EDTA for 4, 8, 18, and 24 h at room temperature. Exposing CCA-treated chips and sawdust to EDTA extraction enhanced removal of CCA components compared with extraction by deionized water. Grinding CCA-treated wood chips into 40-mesh sawdust provided greater access to and removal of CCA components. Extraction with 1% EDTA solution for 24 h removed 60% copper, 13% chromium, and 25% arsenic from treated chips. EDTA extraction of treated sawdust samples resulted in 93% copper, 36% chromium, and 38% arsenic removal. CCA leaching from treated wood blocks was also evaluated according to modified AWPA E11-99 standard test method of determining the leachability of wood preservatives. Leaching of CCA components from treated wood blocks with 1% EDTA solution for 14 days caused more copper leaching compared to leaching with deionized water. Leaching with 1% EDTA for 14 days removed 53% copper from the blocks whereas 14% copper was leached from the blocks with deionized water. The results suggest that EDTA extraction removes significant quantities of copper from CCA-treated wood. Thus, EDTA could be important in the remediation of wood waste treated with the newest formulations of organometalic copper compounds and other water-borne wood preservatives containing copper.  相似文献   

12.
This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442, EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream.  相似文献   

13.
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material).  相似文献   

14.
Air-pollution-control (APC) residues from waste incinerators are hazardous waste according to European legislation and must be treated prior to landfilling. Batch and column leaching data determine which type of landfill can receive the treated APC-residues. CEN standards are prescribed for the batch and column leaching test; however, these standards do not specify whether or not the residue samples should be dried prior to the leaching testing. Laboratory tests were performed in parallel (dried/non-dried) on treated APC-residue samples and evaluated with respect to Cr, Cd, Cu, Pb and Zn leaching. The effect of drying of the wet APC-residue samples was particularly dramatic regarding the leaching of Cr. Drying resulted in 10-100 times more Cr leaching in both batch and columns test. Drying also affected the leaching of Cd, Cu and Pb. Initial Cd leaching was up to 100 times higher in column tests with dried APC-residue than in tests with wet residues. The effect of drying appeared to be a combination of decreasing the reduction capacity of the sample (Cr), decreasing pH (Cd, Cu) and in column tests also a wash-out of salts (probably affecting Cd and Pb). If the leaching tests are intended to mimic landfill conditions, the results of this paper suggest that the tests should be done on wet, non-dried residue samples, although this may be less practical than testing dried samples.  相似文献   

15.
Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.  相似文献   

16.
Two bottom ashes, one air pollution control (APC) residue and one fly ash from three different Swedish municipal solid waste incineration (MSWI) plants were characterised regarding the leaching of environmentally relevant components. Characterisation was performed using a diffusion tank leaching test. The impact of carbonation on the release of eight critical components, i.e., Cl(-), Cr, Cu, Mo, Pb, Sb, Se, SO(4)(2-) and Zn, was assessed at a lab-scale and showed carbonation to have a more pronounced demobilising effect on critical components in bottom ashes than in APC residue and fly ash. From grate type incinerator bottom ash, the release of Cr decreased by 97%, by 63% for Cu and by 45% for Sb. In the investigated APC residue, the releases of Cr, Se and Pb were defined as critical, although they either remained unaffected or increased after carbonation. Cl(-) and SO(4)(2-) remained mobile after carbonation in all investigated residues.  相似文献   

17.
This paper provides the results of studies on the characteristics of novel material derived from pyrolysis/melting treatment of municipal solid waste in Japan. Slag products from pyrolysis/melting plants were sampled for the purpose of detailed phase analysis and characterization of heavy metal-containing phases using optical microscopy, electron probe microanalysis (EPMA), XRF and XRD. The study revealed that the slag material contains glass (over 95%), oxide and silicate minerals (spinel, melilite, pseudowollastonite), as well as individual metallic inclusions as the major constituents. A distinct chemical diversity was discovered in the interstitial glass in terms of silica content defined as low and high silica glass end members. Elevated concentrations of Zn, Cr, Cu, Pb and Ba were recorded in the bulk composition. Cu, Pb and Ba behave as incompatible elements since they have been markedly characterized as part of polymetallic alloys and insignificantly sulfides in the form of spherical metallic inclusions associated with tracer amounts of other elements such as Sb, Sn, Ni, Zn, Al, P and Si. In contrast, an appreciable amount of Zn is retained by zinc-rich end members of spinel and partially by melilite and silica glass. Chromium exhibits similar behavior, and is considerably held by Cr-rich spinel. The intense incorporation of Zn and Cr into spinel indicates the very effective enrichment of these two elements into phases more environmentally resistant than glass. There was no evidence, however, that Cu and Pb enter into the structure of the crystalline silicates or oxides that may lead to their easier leachability upon exposure to the environment.  相似文献   

18.
Pretreatment of municipal solid waste prior to landfilling   总被引:5,自引:1,他引:4  
An outdoor pilot-scale study was undertaken to pretreat municipal solid waste by windrow composting. The raw waste was introduced to active composting without any source separation or pulverization. Pretreatment indicators were developed and used as a tool to measure the optimum level of sorting and waste stabilization. The moisture content of the waste dropped from 68% to 61% and the pile attained a thermophilic temperature in one week. It was observed that the C/N ratio, pH profile and temperature gradients were comparable to that of traditional windrow composting. Within one week of active bulk composting, the easily degradable organic matter was consumed and there was a significant reduction in the bulk volume of the mixed waste. The pre-composted wastes were then sorted into four fractions. Compared to the initial untreated waste, the pretreated waste showed greater sorting efficiency and reduced volatile solids. A 1-m3 cage was used to study pile settlement and volume reduction. The results indicate that pretreatment by bulk composting could reduce by ≈40% the total mass of waste hauled to landfill sites in developing countries.  相似文献   

19.
Methane yield in source-sorted organic fraction of municipal solid waste   总被引:1,自引:0,他引:1  
Treating the source-separated organic fraction of municipal solid waste (SS-OFMSW) by anaerobic digestion is considered by many municipalities in Europe as an environmentally friendly means of treating organic waste and simultaneously producing methane gas. Methane yield can be used as a parameter for evaluation of the many different systems that exist for sorting and pre-treating waste. Methane yield from the thermophilic pilot scale digestion of 17 types of domestically SS-OFMSW originating from seven full-scale sorting systems was found. The samples were collected during 1 year using worked-out procedures tested statistically to ensure representative samples. Each waste type was identified by its origin and by pre-sorting, collection and pre-treatment methods. In addition to the pilot scale digestion, all samples were examined by chemical analyses and methane potential measurements. A VS-degradation rate of around 80% and a methane yield of 300-400Nm(3) CH(4)/ton VS(in) were achieved with a retention time of 15 days, corresponding to approximately 70% of the methane potential. The different waste samples gave minor variation in chemical composition and thus also in methane yield and methane potential. This indicates that sorting and collection systems in the present study do not significantly affect the amount of methane produced per VS treated.  相似文献   

20.
In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency.Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases.For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables.The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号