首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantitative methodology is described for the field-scale performance assessment of natural attenuation using plume-scale electron and carbon balances. This provides a practical framework for the calculation of global mass balances for contaminant plumes, using mass inputs from the plume source, background groundwater and plume residuals in a simplified box model. Biodegradation processes and reactions included in the analysis are identified from electron acceptors, electron donors and degradation products present in these inputs. Parameter values used in the model are obtained from data acquired during typical site investigation and groundwater monitoring studies for natural attenuation schemes. The approach is evaluated for a UK Permo-Triassic Sandstone aquifer contaminated with a plume of phenolic compounds. Uncertainty in the model predictions and sensitivity to parameter values was assessed by probabilistic modelling using Monte Carlo methods. Sensitivity analyses were compared for different input parameter probability distributions and a base case using fixed parameter values, using an identical conceptual model and data set. Results show that consumption of oxidants by biodegradation is approximately balanced by the production of CH4 and total dissolved inorganic carbon (TDIC) which is conserved in the plume. Under this condition, either the plume electron or carbon balance can be used to determine contaminant mass loss, which is equivalent to only 4% of the estimated source term. This corresponds to a first order, plume-averaged, half-life of > 800 years. The electron balance is particularly sensitive to uncertainty in the source term and dispersive inputs. Reliable historical information on contaminant spillages and detailed site investigation are necessary to accurately characterise the source term. The dispersive influx is sensitive to variability in the plume mixing zone width. Consumption of aqueous oxidants greatly exceeds that of mineral oxidants in the plume, but electron acceptor supply is insufficient to meet the electron donor demand and the plume will grow. The aquifer potential for degradation of these contaminants is limited by high contaminant concentrations and the supply of bioavailable electron acceptors. Natural attenuation will increase only after increased transport and dilution.  相似文献   

2.
The delineation of well capture zones is of utmost environmental and engineering relevance as pumping wells are commonly used both for drinking water supply needs, where protection zones have to be defined, and for investigation and remediation of contaminated aquifers. We analyze the probabilistic nature of well capture zones within the well field located at the "Lauswiesen" experimental site. The test site is part of an alluvial heterogeneous aquifer located in the Neckar river valley, close to the city of Tübingen in South-West Germany. We explore the effect of different conceptual models of the structure of aquifer heterogeneities on the delineation of three-dimensional probabilistic well catchment and time-related capture zones, in the presence of migration of conservative solutes. The aquifer is modeled as a three-dimensional, doubly stochastic composite medium, where distributions of geo-materials and hydraulic properties are uncertain. We study the relative importance of uncertain facies geometry and uncertain hydraulic conductivity and porosity on predictions of catchment and solute time of travel to the pumping well by focusing on cases in which (1) the facies distribution is random, but the hydraulic properties of each material are fixed, and (2) both facies geometry and material properties vary stochastically. The problem is tackled within a conditional numerical Monte Carlo framework. Results are provided in terms of probabilistic demarcations of the three-dimensional well catchment and time-related capture zones. Our findings suggest that the uncertainty associated with the prediction of the location of the outer boundary of well catchment at the "Lauswiesen" site is significantly affected by the conceptual model adopted to incorporate the heterogeneous nature of the aquifer domain in a predictive framework. Taking into account randomness of both lithofacies distribution and materials hydraulic conductivity allows recognizing the existence of preferential flow paths that influence the extent of the well catchment and the solute travel time distribution at the site.  相似文献   

3.
Vertical small-scale variation in phenoxy acid herbicide degradation across a landfill leachate plume fringe was studied using laboratory degradation experiments. Sediment cores (subdivided into 5 cm segments) were collected in the aquifer and the sediment and porewater were used for microcosm experiments (50 experiments) and for determination of solid organic carbon, solid-water partitioning coefficients, specific phenoxy acid degraders and porewater chemistry. Results from a multi-level sampler installed next to the cores provided information on the plume position and oxygen concentration in the groundwater. Oxygen concentration was controlled individually in each microcosm to mimic the conditions at their corresponding depths. A highly increased degradation potential existed at the narrow plume fringe (37.7 to 38.6 masl), governed by the presence of phenoxy acids and oxygen. This resulted in the proliferation of a microbial population of specific phenoxy acid degraders, which further enhanced the degradation potential for phenoxy acids at the fringe. The results illustrate the importance of fringe degradation processes in contaminant plumes. Furthermore, they highlight the relevance of using high-resolution sampling techniques as well as controlled microcosm experiments in the assessment of the natural attenuation capacity of contaminant plumes in groundwater.  相似文献   

4.
5.
This study aimed to analyze the contamination potential associated with the reactive transport of nitrate-N and ammonium-N in the Choushui River alluvial fan, Taiwan and to evaluate a risk region in developing a groundwater protection policy in 2021. In this area, an aquifer redox sequence provided a good understanding of the spatial distributions of nitrate-N and ammonium-N and of aerobic and anaerobic environments. Equiprobable hydraulic conductivity (K) fields reproduced by geostatistical methods characterized the spatial uncertainty of contaminant transport in the heterogeneous aquifer. Nitrogen contamination potential fronts for high and low threshold concentrations based on a 95% risk probability were used to assess different levels of risk. The simulated result reveals that the spatial uncertainty of highly heterogeneous K fields governs the contamination potential assessment of the nitrogen compounds along the regional flow directions. The contamination potential of nitrate-N is more uncertain than that for ammonium-N. The high nitrate-N concentrations (> or =3 mg/L) are prevalent in the aerobic environment. The low concentration nitrate-N plumes (0.5-3 mg/L) gradually migrate to the mid-fan area and to a maximum distance of 15 km from the aerobic region. The nitrate-N plumes pose a potential human health risk in the aerobic and anaerobic environments. The ammonium-N plumes remain stably confined to the distal-fan and partial mid-fan areas.  相似文献   

6.
This work aims at evaluating spatial distribution patterns of concentration variations for chlorinated solvents in groundwater, based on principal component analysis and geographic information system (GIS) tools. The study investigates long-time series of chlorinated solvent concentrations in groundwater measured for 18 contaminated industrial sites. The characterization of contaminant plumes and delineation of pollutant sources are essential for choosing appropriate monitoring and remediation strategies, as contaminated groundwaters are characterized by complex patterns of spatial and temporal concentration variability, with wide unpredictable fluctuations over time. The present work describes the results of a new exploratory statistical method called the Variability Index Method (VIM) applied to environmental data to assess the performance of using concentration variations as molecular tracers to reveal aquifer dynamics, industrial impacts, and point sources for contamination plumes. The application of this method provides a useful assessment of controls over contaminant concentration variations as well as support for remediation techniques.  相似文献   

7.
An emplaced source of coal tar creosote within the sandy Borden research aquifer has documented the long-term (5140 days) natural attenuation for this complex mixture. Plumes of dissolved chemicals were produced by the essentially horizontal groundwater flowing at about 9 cm/day. Eleven chemicals have been extensively sampled seven times using a monitoring network of approximately 280, 14-point multilevel samplers. A model of source dissolution using Raoult's Law adequately predicted the dissolution of 9 of 11 compounds. Mass transformation has limited the extent of the plumes as groundwater has flowed more than 500 m, yet the plumes are no longer than 50 m. Phenol and xylenes have been removed and naphthalene has attenuated from its maximum extent on day 1357. Some compound plumes have reached an apparent steady state and the plumes of other compounds (dibenzofuran and phenanthrene) are expected to continue to expand due to an increasing mass flux and limited degradation potential. Biotransformation is the major process controlling natural attenuation at the site. The greatest organic mass lost is associated with the high solubility compounds. However, the majority of the mass loss for most compounds has occurred in the source zone. Oxygen is the main electron acceptor, yet the amount of organics lost cannot be accounted for by aerobic mineralization or partial mineralization alone. The complex evolution of these plumes has been well documented but understanding the controlling biotransformation processes is still elusive. This study has shown that anticipating bioattenuation patterns should only be considered at the broadest scale. Generally, the greatest mass loss is associated with those compounds that have a high solubility and low partitioning coefficients.  相似文献   

8.
The sorption and degradation of dissolved organic matter (DOM) and 13 organic micropollutants (BTEX, aromatic hydrocarbons, chloro-aromatic and -aliphatic compounds, and pesticides) in acetogenic and methanogenic landfill leachate was studied in laboratory columns containing Triassic sandstone aquifer materials from the English Midlands. Solute sorption and degradation relationships were evaluated using a simple transport model. Relative to predictions, micropollutant sorption was decreased up to eightfold in acetogenic leachate, but increased up to sixfold in methanogenic leachate. This behaviour reflects a combination of interactions between the micropollutants, leachate DOM and aquifer mineral fraction. Sorption of DOM was not significant. Degradation of organic fractions occurred under Mn-reducing and SO4-reducing conditions. Degradation of some micropollutants occurred exclusively under Mn-reducing conditions. DOM and benzene were not significantly degraded under the conditions and time span (up to 280 days) of the experiments. Most micropollutants were degraded immediately or after a lag phase (32–115 days). Micropollutant degradation rates varied considerably (half-lives of 8 to >2000 days) for the same compounds (e.g., TeCE) in different experiments, and for compounds (e.g., naphthalene, DCB and TeCA) within the same experiment. Degradation of many micropollutants was both simultaneous and sequential, and inhibited by the utilisation of different substrates. This mechanism, in combination with lag phases, controls micropollutant degradation potential in these systems more than the degradation rate. These aquifer materials have a potentially large capacity for in situ bioremediation of organic pollutants in landfill leachate and significant degradation may occur in the Mn-reducing zones of leachate plumes. However, degradation of organic pollutants in acetogenic leachate may be limited in aquifers with low pH buffering capacity and reducible Mn oxides. Contaminants in this leachate present a greater risk to groundwater resources in these aquifers than methanogenic leachate.  相似文献   

9.
Natural attenuation of contaminants in groundwater depends on an adequate supply of electron acceptors to stimulate biodegradation. In an alluvial aquifer contaminated with leachate from an unlined municipal landfill, the mechanism of recharge infiltration was investigated as a source of electron acceptors. Water samples were collected monthly at closely spaced intervals in the top 2 m of the saturated zone from a leachate-contaminated well and an uncontaminated well, and analyzed for delta(18)O, delta(2)H, non-volatile dissolved organic carbon (NVDOC), SO(4)(2-), NO(3)(-) and Cl(-). Monthly recharge amounts were quantified using the offset of the delta(18)O or delta(2)H from the local meteoric water line as a parameter to distinguish water types, as evaporation and methanogenesis caused isotopic enrichment in waters from different sources. Presence of dissolved SO(4)(2-) in the top 1 to 2 m of the saturated zone was associated with recharge; SO(4)(2-) averaged 2.2 mM, with maximum concentrations of 15 mM. Nitrate was observed near the water table at the contaminated site at concentrations up to 4.6 mM. Temporal monitoring of delta(2)H and SO(4)(2-) showed that vertical transport of recharge carried SO(4)(2-) to depths up to 1.75 m below the water table, supplying an additional electron acceptor to the predominantly methanogenic leachate plume. Measurements of delta(34)S in SO(4)(2-) indicated both SO(4)(2-) reduction and sulfide oxidation were occurring in the aquifer. Depth-integrated net SO(4)(2-) reduction rates, calculated using the natural Cl(-) gradient as a conservative tracer, ranged from 7.5x10(-3) to 0.61 mM.d(-1) (over various depth intervals from 0.45 to 1.75 m). Sulfate reduction occurred at both the contaminated and uncontaminated sites; however, median SO(4)(2-) reduction rates were higher at the contaminated site. Although estimated SO(4)(2-) reduction rates are relatively high, significant decreases in NVDOC were not observed at the contaminated site. Organic compounds more labile than the leachate NVDOC may be present in the root zone, and SO(4)(2-) reduction may be coupled to methane oxidation. The results show that sulfur (and possibly nitrogen) redox processes within the top 2 m of the aquifer are directly related to recharge timing and seasonal water level changes in the aquifer. The results suggest that SO(4)(2-) reduction associated with the infiltration of recharge may be a significant factor affecting natural attenuation of contaminants in alluvial aquifers.  相似文献   

10.
通过对砒霜生产化工厂原场址废渣及污染场地调查的基础上,进行了处置方案比选及技术经济比较,确定了就地安全填埋的处置方案。根据区域性危险废物集中安全填埋场的设计经验,本工程采用先进的HDPE双层防渗的安全填埋方式,并设置了雨水分流系统、渗滤液收集系统、封场处理和填埋气体导排系统,整个场区布置合理,对周围环境的影响小,投资少,取得了良好的社会效益和环境效益,并对危险废物处理处置工程设计中应注意的问题提出了建议。  相似文献   

11.
Transport of soluble toxic substances through porous media lead to some significant geoenvironmental problems, for example, leachate migration from municipal and industrial solid waste resulting from unregulated disposal. Advection, dispersion, diffusion, and decay are reported to be the principal mechanisms in such phenomena. Geotechnical properties of the soil also play a significant role in this deterioration. In the present study, laboratory tests were conducted to formulate an appropriate method for assessment of migration of metal ions, such as nickel, through the soil. Relevant kinetic and process parameters, such as aquifer data, surface area, dielectric constant, pH of zero point charge (pHzpc), and permeability were also studied. One-dimensional mathematical modeling was used to describe the dynamics of the process. The present investigation was carried out at an ash pond site of a thermal power plant situated in West Bengal, India.  相似文献   

12.
In this field study, two approaches to assess contaminant mass discharge were compared: the sampling of multilevel wells (MLS) and the integral groundwater investigation (or integral pumping test, IPT) that makes use of the concentration-time series obtained from pumping wells. The MLS approached used concentrations, hydraulic conductivity and gradient rather than direct chemical flux measurements, while the IPT made use of a simplified analytical inversion. The two approaches were applied at a control plane located approximately 40m downgradient of a gasoline source at Canadian Forces Base Borden, Ontario, Canada. The methods yielded similar estimates of the mass discharging across the control plane. The sources of uncertainties in the mass discharge in each approach were evaluated, including the uncertainties inherent in the underlying assumptions and procedures. The maximum uncertainty of the MLS method was about 67%, and about 28% for the IPT method in this specific field situation. For the MLS method, the largest relative uncertainty (62%) was attributed to the limited sampling density (0.63 points/m(2)), through a novel comparison with a denser sampling grid nearby. A five-fold increase of the sampling grid density would have been required to reduce the overall relative uncertainty for the MLS method to about the same level as that for the IPT method. Uncertainty in the complete coverage of the control plane provided the largest relative uncertainty (37%) in the IPT method. While MLS or IPT methods to assess contaminant mass discharge are attractive assessment tools, the large relative uncertainty in either method found for this reasonable well monitored and simple aquifer suggests that results in more complex plumes in more heterogeneous aquifers should be viewed with caution.  相似文献   

13.
This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes evaluated using numerical modeling. At this site, the TCE DNAPL zone formed decades ago, and was hydraulically isolated by means of an innovative system performing groundwater extraction, treatment and re-injection. Treated water is re-injected in a row of injection wells situated a short distance downgradient of the extraction wells, creating a clean-water displacement front to efficiently flush the downgradient plume. This scheme avoids the creation of stagnation zones typical of most groundwater pump-and-treat systems, thereby minimizing the time for aquifer flushing and therefore downgradient cleanup. The system began operation in August 2002 and although the performance monitoring shows substantial declines in concentrations, detectable levels of TCE and degradation products persist downgradient of the re-injection wells, long after the TCE should have disappeared based on calculations assuming a nearly homogenous sand aquifer. Three hypotheses were assessed for this plume persistence: 1) incomplete source-zone capture, 2) DNAPL occurrence downgradient of the re-injection wells, and 3) back diffusion from one or more thin clay beds in the aquifer. After careful consideration, the first two hypotheses were eliminated, leaving back diffusion as the only plausible hypothesis, supported by detailed measurements of VOC concentrations within and near the clay beds and also by numerical model simulations that closely represent the field site hydrogeologic conditions. The model was also used to simulate a more generalized, hypothetical situation where more thin clayey beds occur in a sand aquifer with an underlying aquitard. While there is no doubt that DNAPL source mass reduction can eventually improve downgradient groundwater quality, the magnitude and time scale over which the improvement occurs is the major uncertainty given current characterization approaches. This study shows that even one thin clay bed, less than 0.2 m thick, can cause plume persistence due to back diffusion for several years or even decades after the flux from the source is completely isolated. Thin clay beds, which have a large storage capacity for dissolved and sorbed contaminant mass, are common in many types of sandy aquifers. However, without careful inspection of continuous cores and sampling, such thin clay beds, and their potential for causing long-term back-diffusion effects, can easily go unnoticed during site characterization.  相似文献   

14.
A natural gradient emplaced-source (ES) controlled field experiment was conducted at the Borden aquifer research site, Ontario, to study the transport of dissolved plumes emanating from residual dense nonaqueous-phase liquid (DNAPL) source zones. The specific objective of the work presented here is to determine the effects of solute and co-solute concentrations on sorption and retardation of dissolved chlorinated solvent-contaminant plumes. The ES field experiment comprised a controlled emplacement of a residual multicomponent DNAPL below the groundwater table and intensive monitoring of dissolved-phase plumes of trichloromethane (TCM), trichloroethylene (TCE), and perchloroethylene (PCE) plumes continuously generated in the aquifer down gradient from gradual source dissolution. Estimates of plume retardation (and dispersion) were obtained from 3-D numerical simulations that incorporated transient source input and flow regimes monitored during the test. PCE, the most retarded solute, surprisingly exhibited a retardation factor approximately 3 times lower than observed in a previous Borden tracer test by Mackay et al. [Water Resour. Res. 22 (1986) 2017] conducted approximately 150 m away. Also, an absence of temporal trend in PCE retardation contrasted with the previous Borden test. Supporting laboratory studies on ES site core indicated that sorption was nonlinear and competitive, i.e. reduced sorption of PCE was observed in the presence of TCE. Consideration of the effects of relatively high co-solute (TCE) concentration (competitive sorption) in addition to PCE concentration effects (nonlinear sorption) was necessary to yield laboratory-based PCE retardation estimates consistent with the field plume values. Concentration- and co-solute-based sorption and retardation analysis was also applied to the previous low-concentration pulse injection test of Mackay et al. [Water Resour. Res. 22 (1986) 2017] and was able to successfully predict the temporal field retardation trends observed in that test. While it is acknowledged that other "nonideal transport" effects may contribute, our analysis predicts differences in the PCE retardation magnitude and trend between the two experiments that are consistent with field observations based on the marked solute concentration differences that resulted from contrasting source conditions. Solute and co-solute concentration effects have heretofore received little attention, but may have wide significance in aquifers contaminated by point-source pollutants because many plumes contain mixed solutes over wide concentration ranges in strata that are likely subject to nonlinear sorption.  相似文献   

15.
Metal concentrations were determined for groundwater suspended matter from a site in the coastal aquifer of Israel which has been irrigated with secondary sewage effluents since the 1960's. Suspended matter was collected from the aquifer saturated zone by pumping and by a multi-layer sampler. Fine sediments were collected from both the unsaturated and saturated zones of the contaminated aquifer, as well as from an adjacent uncontaminated environment. Ag, Cu, Fe, Mn and Zn were leached from the samples in three sequential chemical extractions which are taken to represent the carbonate, organic and oxide phases. Comparison of the aquifer samples to those of the adjacent environment showed that Fe and Mn are primarily enriched in non-mobile fine sediments and not in suspended matter, whereas the concentrations of Zu, Cu and Ag show up to an order of magnitude enrichment in the mobile suspended matter in groundwater. The enrichment of these metals in the suspended matter indicates that metals from sewage effluents and agricultural activities have reached the groundwater.  相似文献   

16.
A new integral groundwater investigation approach was used for the first time to quantify natural attenuation rates at field scale. In this approach, pumping wells positioned along two control planes were operated at distances of 140 and 280 m downstream of a contaminant source zone at a former gasworks site polluted with BTEX- (benzene, toluene, ethyl-benzene, o-, p-xylene) and PAH- (polycyclic aromatic hydrocarbons) compounds. Based on the quantified changes in total contaminant mass fluxes between the control planes, first-order natural attenuation rate constants could be estimated. For BTEX-compounds, these ranged from 1.4e-02 to 1.3e-01 day(-1) whereas for PAH-compounds natural attenuation rate constants of 3.7e-04 to 3.1e-02 day(-1) were observed. Microbial degradation activity at the site was indicated by an increase in dissolved iron mass flux and a reduction in sulphate mass flux between the two investigated control planes. In addition to information about total contaminant mass fluxes and average concentrations, an analysis of the concentration-time series measured at the control planes also allowed to semi-quantitatively delineate the aquifer regions most likely contaminated by the BTEX- and PAH-compounds.  相似文献   

17.
The compact design of mechanical cooling towers necessitates that the plumes are issued into the cross-wind in close proximity. An improved understanding of the interaction of adjacent plumes is therefore required for better design of such cooling towers, which may lead to a reduction in their environmental impact. This paper presents the results of a numerical investigation into the interaction of two adjacent plumes in a cross-flow. The numerical model simulates small-scale wind tunnel experiments of a cooling tower arrangement. The computations are performed for three-dimensional, turbulent, buoyant and interacting plumes, and for a single plume for comparison. Two double-source arrangements, namely, tandem and side-by-side, with respect to the oncoming atmospheric boundary layer are considered. A low Reynolds number kε turbulence model is used with two discretisation schemes, hybrid and QUICK, and the results are compared. Comparisons are also made with the experimental results. The results show that the interaction of side-by-side plumes is dominated by the interaction of the rotating vortex pairs within the plumes. A tandem source arrangement leads to early merging and efficient rise enhancement. Comparisons of the predicted results with experimental data show good agreement for the plume rise.  相似文献   

18.
A polyphasic approach based on cultivation and direct recovery of 16S rRNA gene sequences was utilized for microbial characterization of an aquifer contaminated with chlorinated ethenes. This work was conducted in order to support the evaluation of natural attenuation of chlorinated ethenes in groundwater at Area 6 at Dover Air Force Base (Dover, DE). Results from these studies demonstrated the aquifer contained relatively low biomass (e.g. direct microscopic counts of < 10(7) bacteria/g of sediment) comprised of a physiologically diverse group of microorganisms including iron reducers, acetogens, sulfate reducers, denitrifiers, aerobic and anaerobic heterotrophs. Laboratory microcosms prepared with authentic sediment and groundwater provided direct microbiological evidence that the mineralization of vinyl chloride and cis-dichloroethene as well as each step in the complete reductive dechlorination of tetracloroethene to ethene can occur in the Area 6 aquifer. Enrichment cultures capable of the oxidative degradation of cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) were obtained from groundwater across the aquifer demonstrating the possible importance of direct, non-cometabolic oxidation of cis-DCE and VC in natural attenuation. Culture-independent analyses based upon recovery of 16S rRNA gene sequences revealed the presence of anaerobic organisms distributed primarily between two major bacterial divisions: the delta subdivision of the Proteobacteria and low-G + C gram positive. Recovery of sequences affiliated with phylogenetic groups containing known anaerobic-halorespiring organisms such as Desulfitobacterium, Dehalobacter, and certain groups of iron reducers provided qualitative support for a role of reductive dechlorination processes in the aquifer. This molecular data is suggestive of a functional linkage between the microbiology of the site and the apparent natural attenuation process. The presence and distribution of microorganisms were found to be consistent with a microbially driven attenuation of chlorinated ethenes within the aquifer and in accord with a conceptual model of aquifer geochemistry which suggest that both reductive and oxidative mechanisms are involved in heterogeneous, spatially distributed processes across the aquifer.  相似文献   

19.
The Virtual Aquifer approach is used in this study to assess the uncertainty involved in the estimation of contaminant plume lengths in heterogeneous aquifers. Contaminant plumes in heterogeneous two-dimensional conductivity fields and subject to first order and Michaelis-Menten (MM) degradation kinetics are investigated by the center line method. First order degradation rates and plume lengths are estimated from point information obtained along the plume center line. Results from a Monte-Carlo investigation show that the estimated rate constant is highly uncertain and biased towards overly high values. Uncertainty and bias amplify with increasing heterogeneity up to maximum values of one order of magnitude. Calculated plume lengths reflect this uncertainty and bias. On average, plume lengths are estimated to about 50% of the true plume length. When plumes subject to MM degradation kinetics are investigated by using a first order rate law, an additional error is introduced and uncertainty as well as bias increase, causing plume length estimates to be less than 40% of the true length. For plumes with MM degradation kinetics, therefore, a regression approach is used which allows the determination of the MM parameters from center line data. Rate parameters are overestimated by a factor of two on average, while plume length estimates are about 80% of the true length. Plume lengths calculated using the MM parameters are thus closer to the correct length, as compared to the first order approximation. This approach is therefore recommended if field data collected along the center line of a plume give evidence of MM kinetics.  相似文献   

20.
We present a multidisciplinary approach for characterization of a crude oil-contaminated site (Trecate, Italy), integrating geophysical data, such as subsoil electrical potential (in millivolts) and electrical resistivity (in ohm meters) distribution, with hydrogeological and bio-chemical data. Self-potential measurements have been evaluated together with active geoelectrical measurements and hydrological information, to provide spatial and temporal information about the self-potential sources and their possible correlations with the contamination state of the subsoil. Three self-potential surveys (March 2010, October 2010, and March 2011) were conducted at the site, both in the contaminated and uncontaminated regions. The obtained self-potential maps show large time-lapse differences in correspondence of the contaminated area, with positive electrical potential values (up to 50 mV) in spring surveys and an electrical potential dipolar distribution in October (2010) survey (amplitude from ?15 to 25 mV). To understand the origin of the measured self-potential signals, a model using vertical dipolar electrical sources was built, taking into account the electrical resistivity distribution deduced from electrical resistivity tomography. The self-potential source identification allows the Trecate contamination state to be better delineated. In particular, two self-potential contributions are superimposed: the electrokinetic mechanism is predominant in spring, while the redox mechanism represents the most important contribution in autumn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号