首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The aim of this research was to study the on-site anaerobic treatment of a medium-strength residential wastewater in a pilot-scale up-flow septic tank (UST). The effects of three different hydraulic retention times (HRTs) of 24, 12 and 6 h on the UST performance were investigated. The UST removed 85, 77, and 86% of biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS), respectively, at steady state operation and with a 24 h HRT. Decreasing the HRT to 12 and then 6 h resulted in deteriorated effluent quality and significantly reduced reactor performance. The sludge showed a high specific methanogenic activity (SMA) of 15.2 mL CH4 g?1 VSS d?1 with raw wastewater substrate. The solids accumulated in the tank by the end of the experiment had a VSS/TSS of 0.57, demonstrating significant stabilization. Overall, the UST is concluded to be a technically and economically promising alternative to conventional septic tanks for the on-site decentralized treatment of residential wastewater, particularly in the rural communities of developing countries.  相似文献   

2.
Biodegradability enhancement of landfill leachate using air stripping followed by coagulation/ultrafiltration (UF) processes was introduced. The air stripping process obtained a removal efficiency of 88.6% for ammonia nitrogen (NH4–N) at air-to-liquid ratio of 3500 (pH 11) for stripping 18 h. The single coagulation process increased BOD/COD ratio by 0.089 with the FeCl3 dosage of 570 mg l?1 at pH 7.0, and the single UF process increased the BOD/COD ratio to 0.311 from 0.049. However, the combined process of coagulation/UF increased the BOD/COD ratio from 0.049 to 0.43, and the final biological oxygen demand (BOD), chemical oxygen demand (COD), NH4–N and colour of leachate were 1223.6 mg l?1, 2845.5 mg l?1, 145.1 mg l?1 and 2056.8, respectively, when 3 kDa molecular weight cut-off (MWCO) membrane was used at the operating pressure 0.7 MPa. In ultrafiltration process, the average solution flux (JV), concentration multiple (MC) and retention rate (R) for COD was 107.3 l m?2 h?1, 6.3% and 84.2%, respectively.  相似文献   

3.
In this research, treatability of high-load compost leachate in a hybrid expanded granular sludge bed (EGSB) and fixed-bed (FB) bioreactor followed by electrocoagulation–flotation (ECF) system was examined. The operational factors in EGSB–FB were influent chemical oxygen demand (COD), hydraulic retention time (HRT) and COD/nitrogen ratio (COD/N). And, their interactive effects on the efficiency of COD removal and biogas production rate (BPR) as responses were analyzed and correlated by response surface methodology (RSM). The optimum conditions of the hybrid EGSB–FB reactor were acquired at COD = 7800 mg/L, HRT = 35 h, COD/N = 70, in which COD removal efficiency was 83% and BPR 94 mL/h. The amount of confidence interval was 95%. COD (relevant coefficient = 9.8) and HRT (relevant coefficient = −24) were resulted respectively as the most effective parameters on COD removal and BPR. Yet, COD/N parameter imposed negative effect on COD removal and BPR in values less than about 100. The outcomes indicated that operated ECF as post-treatment in constant conditions (electrolysis time = 75 min, electrodes distance = 3 cm, voltage = 20 V) successfully satisfied discharge criteria in the most part of experimental domains.  相似文献   

4.
The start-up and operation of a partial nitritation sequencing batch reactor for the treatment of landfill leachate were carried out on intermittent aeration mode. Partial nitrite accumulation was established in 15 days after the mode was changed from continuous aeration to intermittent aeration. Despite the varying influent composition, partial nitritation could be maintained by adjusting the hydraulic retention time (HRT) and the air flow rate. An increase in the air flow rate together with a decrease in air off duration can improve the partial nitritation capacity and eventually result in the development of granular sludge with fine diameters. A nitrogen loading rate of 0.71 ± 0.14 kg/m3/d and a COD removal rate of 2.21 ± 0.13 kg/m3/d were achieved under the conditions of an air flow rate of 19.36 ± 1.71 m3 air/m3/h and an air on/off duration of 1.5 min/0.7 min. When the ratio of total air flux (TAF) to the influent loading rate (ILR) was controlled at the range of 163–256 m3 air/kg COD, a stable effluent NO3?–N/NOx?–N (NO2?–N plus NO3?–N) ratio below 13% was achieved. Interestingly, the effluent pH was found to be a good indicator of the effluent NO2?–N/NH4+–N ratio, which is an essential parameter for a subsequent anaerobic ammonium oxidation (Anammox) reactor.  相似文献   

5.
Produced water is a significant waste stream generated in association with oil and gas production. It contains high concentrations of hydrocarbon constituents and different salts. In this study, a membrane sequencing batch reactor (MSBR) was used to treat synthetic and real produced water. The MSBR was evaluated in terms of biodegradation of hydrocarbons in the synthetic produced water with various organic loading rates (OLR) (0.281, 0.563, 1.124, 2.248, and 3.372 kg COD/(m3 day)), cycle time (12, 24, and 48 h), and membrane performance. The effects of salt concentrations at different total dissolved solids (TDS) (35,000, 50,000, 100,000, 150,000, 200,000, and 250,000 mg/L) on biological treatment of the pollutants in the synthetic and real wastewater were studied. At an OLR of 1.124 kg COD/(m3 day), an HRT of 48 h and TDS of 35,000 mg/L, removal efficiencies of 97.5%, 97.2%, and 98.9% of COD, total organic carbon (TOC), and oil and grease (O&G), respectively were achieved. For the real produced water, removal rates of 86.2%, 90.8%, and 90% were obtained for the same conditions. However, with increasing salt content, the COD-removal efficiencies of the synthetic and real produced water were reduced to 90.4% and 17.7%, respectively at the highest TDS.  相似文献   

6.
A bio-contact oxidation reactor integrated with filter bed (COR-FB) was developed for decentralized treatment of sewage, which consisted of a biofilm reactor and a gravitational filter bed. It has been investigated to treat municipal wastewater for reuse. The evaluation of COR-FB performance demonstrates that it produced good quality effluent regarding carbonaceous compound, nitrogenous compound, suspended solid and fecal coliform. The efficiencies of COD, NH4+-N, TN, TP and turbidity removal were 90.7%, 81.4%, 64.6%, 60.1% and 96.7%, respectively. The residual geometric mean of fecal coliform counts in the final effluent of COR-FB was only 7.8 × 103 MPN/103 ml, corresponding to removal value of 3.8 log 10. However, TP removal indicates the necessity of an addition of a bagger and mud valve or an enhanced chemical phosphorus removal prior to treated water reuse. Microfauna communities were monitored in COR-FB, which was found to contain 5 genres and 19 species in the biofilm layer. Also, a simple kinetics model for COR-FB was developed based on the influent, effluent soluble COD concentration and the reaction time by regression simulation. In general, available data proved that COR-FB system can be recommended as a compact and cost-effective technology for decentralized treatment of sewage, especially for developing countries.  相似文献   

7.
A sequencing batch reactor was modeled using multi-layer perceptron and radial basis function artificial neural networks (MLPANN and RBFANN). Then, the effects of influent concentration (IC), filling time (FT), reaction time (RT), aeration intensity (AI), SRT and MLVSS concentration were examined on the effluent concentrations of TSS, TP, COD and NH4+-N. The results showed that the optimal removal efficiencies would be obtained at FT of 1 h, RT of 6 h, aeration intensity of 0.88 m3/min and SRT of 30 days. In addition, COD and TSS removal efficiencies decreased and TP and NH4+-N removal efficiencies did not change significantly with increases of influent concentration. The TSS, TP, COD and NH4+-N removal efficiencies were 86%, 79%, 94% and 93%, respectively. The training procedures of all contaminants were highly collaborated for both RBFANN and MLPANN models. The results of training and testing data sets showed an almost perfect match between the experimental and the simulated effluent of TSS, TP, COD and NH4+-N. The results indicated that with low experimental values of input data to train ANNs the MLPANN models compared to RBFANN models are more precise due to their higher coefficient of determination (R2) and lower root mean squared errors (RMSE) values.  相似文献   

8.
In this study, recalcitrant total phenol (TPh) and organic matter removal were investigated at olive mill wastewater (OMW) in sequential Coagulation and Fenton system. This study focused on different operational parameters such as pH, H2O2, and Fe2+ dosages, and [Fe2+]/[H2O2] ratios. The optimum conditions were determined as; pH = 3; [Fe2+] = 2.5 g/L; [Fe2+]/[H2O2] = 2.5. A higher treatment efficiency was achieved at sequential Coagulation and Fenton system (COD, 65.5%) and TPh, 87.2%), compared to coagulation process (COD, 51.4%; total organic carbon (TOC), 38.6% and total nitrogen (TN) 52.1%). This study demonstrated that the Coagulation and Fenton process has a potential for efficient removal of phenolic pollutants from wastewater.  相似文献   

9.
Treatment of Methyl Orange (MO), an azo dye, synthetic wastewater by electrocoagulation with periodic reversal of the electrodes (PREC) was examined. Response Surface Methodology (RSM) was used to optimize the influence of experimental conditions for color removal (CR), energy consumption (ENC), electrode consumption (ELC) and sludge production (SP) per kg MO removed (kg(MOr)) with optimal conditions being found to be pH 7.4, solution conductivity (к) 9.4 mS cm−1, cell voltage (U) 4.4 V, current density (j) 185 mA cm−2, electrocoagulation time (T) 14 min, cycle of periodic reversal of electrodes (t) 15 s, inter-electrode distance (d) 3.5 cm and initial MO concentration of 125 mg L−1. Under these conditions, 97 ± 2% color was removed and ENC, ELC and SP were 44 ± 3 kWh kg(MOr)−1, 4.1 ± 0.2 kg(Al) kg(MOr)−1 and 17.2 ± 0.9 kg(sludge) kg(MOr)−1, respectively. With the enhanced electrochemical efficiency resulting from the periodic electrode reversal, the coefficients of increased resistance and decreased current density between the two electrodes in the PREC setup were 2.48 × 10−4 Ω cm−2 min−1 and 0.29 mA cm−2 min−1, respectively, as compared to 7.72 × 10−4 Ω cm−2 min−1 and 0.79 mA cm−2 min−1 as measured for the traditional electrocoagulation process. The rate constant of decolorization was also enhanced by 20.4% from 0.152 min−1 in the traditional electrocoagulation process to 0.183 min−1 in the PREC process. These performance characteristics indicate that the PREC approach may be more promising in terms of practical application, as a cost-effective treatment, than conventional electrocoagulation for textile dye removals.  相似文献   

10.
Mixture of sewage sludge with organic garbage was alternatively composted by aerobic and anaerobic technology for 60 days. A basin-scale experiment was performed by planting watercress with kailyard (KY) soil amended with the compost. The results show that average total organic carbon (TOC) increases from 98.45% to 787.69%, and average total nitrogen (TN), total phosphorus (TP) and total potassium (TK) increases to 98.53%, 27.34%, and 41.62%, respectively. The results of watercress in 6 pot experiments with a control treatment show that biomass production increases from 76.47% to 312.00% with the increase of addition of compost from 50 g to 150 g per pot but decreases from 312.00% to 102.29% with the addition of compost to soil and further increases from 150 g to 400 g per pot. The optimal amount of compost added to KY soil is 0.4 g of compost 1 kg of KY soil. Heavy metals accumulated by watercress demonstrate that Cu, Ni, Cd, Pb, Cr, Zn in the crop are much lower than the limited levels of Chinese criteria for vegetables. KY soil is proper to be amended with compost of sewage sludge without threat of bio-magnification of heavy metals to planting watercress.  相似文献   

11.
Biological control of odor gases has gained more attention in recent years. In this study, removal performance of a vertical bio-trickling filter inoculated with bacteria and fungi was studied. Bacteria and fungi were isolated from activated sludge in a sewage treatment plant. By adopting “three step immobilization method”, the bio-trickling filter could degrade pollutant immediately once hydrogen sulfide (H2S) passed. The optimal empty bed resident time was 20 s. The optimal elimination capacity was about 60 g H2S m?3 h?1 with removal efficiency of 95%. And the maximum elimination capacity was 170 g H2S m?3 h?1. Pressure drop was ranged between 5 and 15 mm H2O per bed over the whole operation. Removal efficiency was not affected obviously after terminating nutrient supply. The bio-trickling filter could recover back after shut down H2S gaseous and liquid supplies simultaneously. Microbial community structure in the bio-trickling filter was not changed significantly.Combining bacteria and fungi would be a better choice for inoculation into a bio-trickling filter because of the quickly degradation of H2S and rapid recovery under shut-down experiment. This is the first study attempting to combine bacteria and fungi for removal of H2S in a bio-trickling filter.  相似文献   

12.
In this study, chemical oxygen demand (COD) was characterized as total organic constituents and the isolated humic substances (HS) were characterized as an individual organic contaminant in landfill leachate. It was found that the HS content of landfill leachate was 83.3%. The results of laboratory tests to determine the roles of HS in reducing the organic content of landfill leachate during Fenton process are presented. Furthermore, the performances of oxidation and coagulation of Fenton reaction on the removal of HS and COD from leachate were investigated. The change curves of HS removal were similar to those of COD. The HS removal was 30% higher than COD removal, which indicated that HS were mostly degraded into various intermediate organic compounds but not mineralized by Fenton reagent. The oxidation removal was greatly influenced by initial pH relative to the coagulation removal. The oxidation and coagulation removals were linear dependent with hydrogen peroxide and ferrous dosages, respectively. Ferrous dosage greatly influenced the coagulation removal of COD at low ratio ([H2O2]/[Fe2+] < 3.0), but not at extremely high ratio ([H2O2]/[Fe2+] > 6.0). The coagulation removal of HS was not affected obviously by oxidation due to both Fenton oxidation and coagulation remove high molecular weight organics preferentially. Higher temperature gave a positive effect on oxidation removal at low Fe2+ dosage, but this effect was not obvious at high Fe2+ dosage.  相似文献   

13.
The effect of 7 mT (milliTesla) SMF (static magnetic field) on poly-3-hydroxybutyrate (PHB) production was studied at an acetate concentration of 260 Cmmol l?1 and temperature of 10 °C. The SMF decreased the specific acetate uptake rate by 29%, but increased the maximum PHB content and the yield of PHB on acetate by 32 and 28% respectively. The ratio qP/(qS ? qP), which described specific PHB production rate over the difference between specific acetate uptake rate and specific PHB production rate, was introduced for evaluation of the ratio of carbon flux into PHB synthesis and into the TCA (tricarboxylic acid) cycle. This value reached 2.3 when activated sludge culture was exposed to magnetic field of 7 mT, which was 1.1 times higher than the qP/(qS ? qP) value obtained without magnetic exposure. Therefore, the SMF promoted diversion of more acetyl-CoA towards PHB synthesis and could offset adverse effects of high acetate concentration and low temperature. These results provide evidence that SMF enhances PHB production by activated sludge.  相似文献   

14.
The individual alkaline or microwave pretreatment has been proved to be effective in disintegration and acidification of waste activated sludge (WAS). In this study, the effects of combined alkaline and microwave pretreatment at different pH and specific energy input (Es) on WAS disintegration were investigated using response surface methodology (RSM). Combined pretreatment achieved disintegration degree (DD) of 65.87% at Es of 38,400 kJ/kg TS and pH 11.0. The ANOVA further demonstrated that pH showed more significant effect on DD than Es. Anaerobic batch experiment results showed that combined pretreatment not only significantly improved volatile fatty acids (VFAs) accumulation but also shortened the time for the highest VFAs accumulation. The maximal VFAs accumulation (1500 mg COD/L) obtained at Es of 28,800 kJ/kg TS and fermentation time of 72 h, which was about two times that of the treatment without microwave (850 mg COD/L) at 96 h. The analysis of VFAs composition showed that the VFAs mainly consisted of acetic and iso-valeric acids, accounting for 57.3–70.1% of total VFAs.  相似文献   

15.
To investigate the mechanism of removal of selected pharmaceuticals in activated sludge systems, laboratory-scale batch experiments were conducted to assess the adsorption and degradation behavior of trace oxytetracycline (OTC). The adsorption equilibrium of OTC was observed in 30 min and the adsorption process could be well described by a pseudo-second-order model with a rate of 0.362 L μg?1 min?1. The OTC adsorption rate decreased with increasing temperature and could be fitted by the Freundlich isotherm. The linear partition coefficients (Kd) were 1.19, 0.999, and 0.841 L g?1 at temperatures of 15, 20, and 25 °C, respectively. Thermodynamic analysis revealed that the adsorption of OTC onto the inactivated sludge was spontaneous (ΔG = ?16.7 to ?17.0 kJ mol?1), enthalpy-driven (ΔH = ?24.9 kJ mol?1), entropy-retarded (ΔS = ?27.4 J (mol K)?1), and predominantly a physical adsorption.  相似文献   

16.
This study aimed to explore the influences of single-chamber systems with different applied voltage on bio-hydrogen (H2) production. The reactor used was the bio-electrochemically assisted microbial reactor (BEAMR) membrane-less (BEAMR-membrane-less, BML). The microbial dark fermentative H2 production method was adopted. After the hot screening process and the DNA sequencing, the domesticated dominant microflora was Clostridium sp. This study discussed the influences of the cases with (continuous and intermittent) and without applied voltage separately. The results showed that, the H2 production rate of the case with intermittent applied voltage (117 mL/h g VSS) of 0.24 V was increased of 1.7 folds higher than the without applied voltage (69 mL/h g VSS) and 1.3 folds higher than the case with continuous applied voltage (88.2 mL/h g VSS) of 0.24 V. The produced H2 concentration with intermittent applied voltage was 18.9% (18.6–19.1%) higher than the without applied voltage, while there was no significant difference with continuous applied voltage.  相似文献   

17.
Simultaneous photocatalytic reduction of poisonous Cr(VI) and Ni(II) ions, coupled with photocatalytic oxidation of sodium dodecyl benzene sulfonate (SDBS) were studied with a trace amount of commercial titania nanoparticles and by means of a direct-photo-irradiation reactor. The co-presence of metal ions and SDBS causes metal ions reduction as well as SDBS oxidation to enhance and energy efficiency to improve. XRD, XPS and FTIR analysis were used to characterize TiO2 particles before and after usage with the aim of evaluating the mechanism of reactions. The effect of major operating parameters, pH and temperature, was investigated. Under conditions of [Cr(VI)]0 = [Ni(II)]0 = 5 mg/L, [SDBS]0 = 10 mg/L, [TiO2] = 40 mg/L, pH 6 and T = 35 °C; the removal efficiencies of 55.4%, 71.2% and 57.2% were obtained, respectively, for Cr(VI) and Ni(II) reduction, as well as for SDBS oxidation, after 110 min operation. The relevant kinetic model jointed with the Arrhenius equation was introduced. Pseudo-first-order reactions are relevant. Energy consumption (electrical and thermal) evaluations revealed that operations at higher temperatures provide significant cost reduction. Meantime, a criterion was proposed for a consistent assessment of this kind of processes.  相似文献   

18.
The effects of some commonly used pH conditioners, viz., lime, banana ash, the carbonate and the bicarbonate of sodium and potassium and their binary mixture, on simultaneous removal of arsenic and iron ions from water have been studied. KHCO3 has been found to be the most suitable pH conditioner for the purpose. About 80 mg/L KHCO3 can remove both arsenate and iron ions from initial 250 μg/L and 20 mg/L to below their respective guideline values of the WHO for drinking water, retaining the final pH in the acceptable range for drinking. The simultaneous removal of arsenate and iron by the pH-conditioners decreases in the order: Lime > KHCO3 > NaHCO3 > K2CO3 > Na2CO3 > ash. However, lime requires post-treatment correction of highly alkaline pH. The arsenate ion is removed predominantly through goethite or ferrihydrite in the presence of the bicarbonates and through ferric hydroxide in the presence of the more alkaline pH-conditioners. KHCO3 is more advantageous over the more basic substances including NaHCO3, because with it, one not only needs the smallest dose but also can avoid careful adjustment of the dose for regulating the initial and the final pH. The paper clearly demonstrates the potential of KHCO3 to substitute the currently used pH-conditioners, viz., ash, lime and NaHCO3 for simultaneous removal of arsenate and iron ions.  相似文献   

19.
The aim of this work is the study of p-nitrophenol (PNP) removal, as a nitroaromatic compound, using a hybridized photo-thermally activated potassium persulfate (KPS) in a fully recycled batch reactor. Response surface method was used for modeling the process. Reaction temperature, KPS initial dosage and initial pH of the solution were selected as variables, besides PNP degradation efficiency was selected as the response. ANOVA analysis reveals that a second order polynomial model with F-value of 41.7, p-value of 0.0001 and regression coefficient of 0.95 is able to predict the response. Based on the model, the process optimum conditions were introduced as initial pH of 4.5, [KPS]0 = 1452 mg/L and T = 66 °C. Also experiments showed that using thermolysis and photolysis of the persulfate simultaneously, the role of thermolysis is not considerable. A pseudo first order kinetic model was established to describe the degradation reaction. Operational cost, as a vital industrial criterion, was estimated so that the condition of initial pH of 4.5, [KPS]0 = 1452 mg/L and T = 25 °C showed the highest cost effective case. Under the preferred mild condition, the process will reach to 84% and 89% of degradation and mineralization efficiencies, after 60 and 120 min, respectively.  相似文献   

20.
A soft wheat variety has been tested as the raw material for fuel ethanol production via a novel processing route. The bran stream produced by the break section of a Buhler mill was used as the sole nutrient source in solid-state fermentation for the production of hydrolytic enzymes by two fungal strains, Aspergillus awamori and Aspergillus oryzae. Co-fermentation of the two fungi was largely problematic because of a significant difference between their growth rates. A mixture of the two enzyme solutions produced by separate cultivation of the two strains was effective for simultaneous starch and protein hydrolyses. Response surface methodology was used to design ethanol production trials using the flour hydrolysate as the only nutrient source by Saccharomyces cerevisiae. In a medium containing 150 g l−1 glucose and 310 mg l−1 free amino nitrogen, ethanol yield on glucose reached 50.7%, i.e., 99.2% of the theoretical conversion ratio, in 72 h. The yield of CO2 from glucose was approximated as slightly higher than its theoretical yield due possibly to the availability of O2 in the early fermentation stage. The overall production of 2-methyl-1-butanol, 1-propanol, 2-methyl-1-propanol and 3-methyl-butanol in all trials of yeast fermentation remained below 1000 ppm. Mass balance calculation concluded conversion ratios of 29.61% (w/w) ethanol and 23.74% (w/w) CO2 from the wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号