首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pressurized pipelines are the most reliable and cost-effective option for the long-distance transportation of CO2 from an emitter to an onshore storage site. Propagating or unstable factures are considered catastrophic pipeline failures, resulting in a massive escape of inventory within a short period of time. The decompression curve for CO2 exhibits a large drop in decompression wave speed at the phase transition pressure, leading to a higher driving force for crack propagation. The study of fracture control plans is very important for assessing the possibility of fracture propagation and preventing unstable fracturing along CO2 pipelines. Three full-bore rupture (FBR) experiments were performed using an industrial-scale (258 m long, 233 mm inner diameter) CO2 pipeline with initial CO2 states of gaseous, dense and supercritical phases, respectively. The relation between the decompression velocity and the pipeline fracture propagation velocity was analyzed during the process of buried CO2 pipeline release. A fracture propagation criterion was established for the buried CO2 pipeline. For the gaseous CO2 leakage, the pressure plateau corresponding to the decompression wave velocity only appeared near the closed end of the pipeline. For the dense CO2 leakage, the pressure plateau corresponding to the decompression wave velocity was observed near the saturation pressure after rapid decompression. For the supercritical CO2 leakage, the pressure plateau corresponding to the decompression wave velocity was observed in the stage when the supercritical CO2 transformed into the two phases of gas and liquid. Compared with the gaseous and dense CO2, for the supercritical CO2, the initial decompression wave velocity was the smallest, and the requirement of the pipeline safety factor was the highest.  相似文献   

2.
This paper presents a risk assessment methodology for high pressure CO2 pipelines developed at the Health and Safety Laboratory (HSL) as part of the EU FP7 CO2Pipehaz project. Until recently, risk assessment of dense phase and supercritical CO2 pipelines has been problematic because of the lack of suitable source term and integral consequence models that handle the complex behaviour of CO2 appropriately. The risk assessment presented uses Phast, a commercially available source term and dispersion model that has been recently updated to handle the effects of solid CO2. A test case pipeline was input to Phast and dispersion footprints to different levels of harm (dangerous toxic load and probit values) were obtained for a set of pipeline specific scenarios. HSL's risk assessment tool QuickRisk was then used to calculate the individual and societal risk surrounding the pipeline. Knowledge gaps that were encountered such as: harm criteria, failure rates and release scenarios were identified and are discussed.  相似文献   

3.
This paper describes the development and experimental validation of a three-phase flow model for predicting the transient outflow following the failure of pressurised CO2 pipelines and vessels. The choked flow parameters at the rupture plane, spanning the dense-phase and saturated conditions to below the triple point, are modelled by maximisation of the mass flowrate with respect to pressure and solids mass fraction at the triple point. The pertinent solid/vapour/liquid phase equilibrium data are predicted using an extended Peng–Robinson equation of state.The proposed outflow model is successfully validated against experimental data obtained from high-pressure CO2 releases performed as part of the FP7 CO2PipeHaz project (www.co2pipehaz.eu).The formation of solid phase CO2 at the triple point is marked by a stabilisation in pressure as confirmed by both theory and experimental observation. For a fixed diameter hypothetical pipeline at 100 bar and 20 °C, the flow model is used to determine the impact of the pipeline length on the time taken to commence solid CO2 discharge following its rupture.  相似文献   

4.
The development of carbon capture and storage (CCS) brings challenges for safety issues regarding carbon dioxide (CO2) transmission pipelines. Once a pipeline is punctured or full-bore ruptured, the leaked CO2 is hazardous to personnel and the environment. Small-scale devices were established with the aim of studying the release and dispersion behaviour of gas and liquid CO2 from a punctured underground pipeline. A sandbox was built to simulate the underground conditions. The parameters of the sand used in the experiments were tested. CO2 concentrations on the ground and temperatures around the release orifice in the sand were analysed. The results indicate that in the CO2 gas release experiments, the CO2 concentration on the sand surface decreases with increasing horizontal distance in the form of a power function. CO2 concentrations in upward release are slightly larger than those in horizontal release at the same location but are obviously bigger than values in downward release. The temperature-drop region is much smaller than that in air. A frozen ice ball can be generated near the release orifice during the gas phase of the CO2-release process. In the liquid phase of CO2-release experiments, a large amount of dry ice is generated near the release orifice. Dry ice can only be generated in the area close to the release orifice, especially in the near-field area.  相似文献   

5.
This paper presents a risk assessment methodology for high-pressure CO2 pipelines developed at the Health and Safety Laboratory as part of the EU FP7 project CO2Pipehaz.Traditionally, consequence modelling of dense gas releases from pipelines at major hazard impact levels is performed using integral models with limited or no consideration being given to weather bias or topographical features of the surrounding terrain. Whilst dispersion modelling of CO2 releases from pipelines using three-dimensional CFD models may provide higher levels of confidence in the predicted behaviour of the cloud, the use of such models is resource-intensive and usually impracticable. An alternative is to use more computationally efficient shallow layer or Lagrangian dispersion models that are able to account for the effects of topography whilst generating results within a reasonably short time frame.In the present work, the proposed risk assessment methodology for CO2 pipelines is demonstrated using a shallow-layer dispersion model to generate contours from a sequence of release points along the pipeline. The simulations use realistic terrain taken from UK topographical data. Individual and societal risk levels in the vicinity of the pipeline are calculated using the Health and Safety Laboratory's risk assessment tool QuickRisk.Currently, the source term for a CO2 release is not well understood because of its complex thermodynamic properties and its tendency to form solid particles under specific pressure and temperature conditions. This is a key knowledge gap and any subsequent dispersion modelling, particularly when including topography, may be affected by the accuracy of the source term.  相似文献   

6.
The accidental release of high-pressure carbon dioxide (CO2) can cause serious damages to both humans and pipeline equipment. Therefore, it is of great significance to have a deeper understanding about the release characteristics of high-pressure CO2 for improving the safety level of Carbon Capture and Storage (CCS) technologies. Both industrial-scale and laboratory-scale studies have been carried out to predict the release behaviors. In recent years, computational fluid dynamics (CFD) simulation has become a crucial method to study the instantaneous changes and microscopic details of the fluid behaviors. In this paper, the simulation method was employed to study the near-field structure and flow characteristics of high-pressure CO2 released from pipelines. The Peng-Robinson Equation of State (EOS) was used to compute the thermodynamic properties of high-pressure CO2, and SST k-ω model was applied to simulate the structure and physical parameters of the under-expanded jet. In addition, the multi-phase mixture model was introduced to study the phase transition. The non-equilibrium liquid/vapor transition is modeled by introducing ‘source terms’ for mass transfer and latent heat. Compared to the experimental results, the simulation results showed good agreement. Furthermore, the influences of operating conditions, including different stagnation pressure, stagnation temperature, and nozzle size, were analyzed.  相似文献   

7.
With the advent of Carbon Capture and Storage technology (CCS) the scale and extent of its handling is set to increase. Carbon dioxide (CO2) capture plants are expected to be situated near to power plants and other large industrial sources. Afterward CO2 is to be transported to storage site using one or a combination of transport media: truck, train, ship or pipeline. Transport by pipeline is considered the preferred option for large quantities of CO2 over long distances. The hazard connected with this kind of transportation can be considered an emerging risk and is the subject of this paper.The paper describes the Quantitative Risk Assessment of a hypothetical network pipeline located in UK, in particular the study of consequences due to a CO2 release from pipeline.The risk analysis highlighted that some sections of pipeline network cross densely populated areas. For this reason, some changes in the original path of the network have been proposed in order to achieve a significant reduction in the societal risk.  相似文献   

8.
Corrosion associated with aqueous environments containing carbon dioxide (CO2) and/or hydrogen sulphide (H2S), is a well-known phenomenon in oil and gas industries. This type of corrosion is of particular importance in transportation through steel pipelines. This transportation process could involve the movement of a complex mixture of gas and liquids. This moving mixture is in close contact with the inner surface of the steel pipelines and corrosion can occur. It has been demonstrated that this corrosion is influenced by flow.In oil and gas industries, film-forming corrosion inhibitors are the main tool used to control inner corrosion in pipelines. The movement of the environment generates mechanical shear stresses on the surface of the steel that can interfere with the formation of the film. This phenomenon is frequently not taken into account in corrosion control strategies and could cause problems. Despite the importance of this, there are few scientific studies available, which can provide control criteria.This work presents some ideas developed in order to understand the influence of flow on the corrosion process, making emphasis in the corrosion process associated with carbon dioxide (CO2).  相似文献   

9.
In many countries where electricity generation is based on their natural resources of fossil fuels a need arises to implement new power engineering technologies that allow carbon dioxide capture. Simultaneously, efforts are made to find new energy carriers which, if fired, do not involve carbon dioxide emissions. Hydrogen is one of such fuels with this future potential which is now becoming increasingly popular. Obviously, this means that the two gases mentioned above – carbon dioxide and hydrogen – will be produced in large quantities in future, which in many cases will necessitate their transport over considerable distances. If a pipeline failure occurs, the transport of the gases may pose a serious hazard to people in the immediate vicinity of the leakage site. This paper presents an analysis of the possibility of reducing the level of risk related to pipelines transporting CO2 and H2 by means of safety valves. It is shown that for a 50 km long and a 0.4 m diameter pipeline transporting gas with the pressure of 15 MPa the individual risk level can be reduced from 1·10−4 to 6.5·10−7 for CO2 and from 1·10−6 to 6·10−10 for H2. The social risk can be diminished in similar proportions.  相似文献   

10.
为提升含腐蚀缺陷管道失效压力预测精度,准确把控管道状态,建立基于DE-BPNN的含腐蚀缺陷管道失效压力预测模型,有效避免BPNN模型陷入局部最优问题,提升预测精度。基于61组管道爆破实验数据,分别用DE-BPNN与BPNN模型进行仿真计算。结果表明:DE-BPNN预测结果平均相对误差为3.26%,R2为0.985 85,预测精度较BPNN模型有明显提升。应用DE-BPNN模型预测含腐蚀缺陷的管道失效压力可为长输管道运输调配和检维修提供决策支持。  相似文献   

11.
The world of oil pipelines is subjected to serious issues due to occurrences of toxic spills, explosions and deformations like particle deposition, corrosions and cracks due to the contact of oil particles with the pipeline surface. Hence, the structural integrity of these pipelines is of great interest due to the probable environmental, infrastructural and financial losses in case of structural failure. Based on the existing technology, it is difficult to analyze the risks at the initial stage, since traditional methods are only appropriate for static accident analyses. Nevertheless, most of these models have used corrosion features alone to assess the condition of pipelines. To sort out the above problem in the oil pipelines, fault identification and prediction methods based on K-means clustering and Time-series forecasting incorporated with linear regression algorithm using multiple pressure data are proposed in this paper. The real-time validation of the proposed technique is validated using a scaled-down experimental hardware lab setup resembling characteristics exhibited by onshore unburied pipeline in India. In the proposed work, crack and blockages are identified by taking pressure rise and pressure drop inferred from two cluster assignment. The obtained numerical results from K-means clustering unveils that maximum datasets accumulated range of multiple pressures are within 16.147–10.638 kg/cm2, 14.922–12.1674 kg/cm2, 2.7645–1.2063 kg/cm2 correspondingly. Hence by this final cluster center data, inspection engineers able to estimate the normal and abnormal performance of oil transportation in a simple-robust manner. The developed forecast model successfully predicts future fault occurrences rate followed by dissimilarity rate from clustering results holds the validity of 91.9% when applied to the historical pressure datasets. The models are expected to help pipeline operators without complex computation processing to assess and predict the condition of existing oil pipelines and hence prioritize the planning of their inspection and rehabilitation.  相似文献   

12.
Release of liquid and supercritical carbon dioxide is a fundamental research topic in CCS. Traditional approach is largely based on HEM and, in general, assumes equilibrium from the outlet to the Mach disc. Experimental results have shown that this approach is not always effective in describing the expansion phenomenon; therefore a significant lack of knowledge exists about CO2 properties at the under-expanded jet zone boundary, which is a main focus in process safety. Here, solid formation, vapour quality, sonic velocity and final temperature are generally calculated according to equilibrium saturation condition, and this is generally incorrect. This article deals with non-equilibrium thermodynamics of liquid and supercritical CO2 expansion, illustrating relaxation dynamics through the HRM models, and discussing the very specific singularities of CO2 phase transitions, vapour to liquid and liquid to solid, that result away from the equilibrium condition, due to the rapid phase changes and to the specific properties of CO2 multi phase thermodynamics, including nucleation and particle growth. Statistical rate theory has been applied with the aim at identifying the phase transition energy barrier, resulting in a significant entropy increase. A case study based on HEM conservation equations integrated with the statistical rate approach has been presented, which covers the gap of the equilibrium hypothesis. The objective of the article is to provide a more accurate method to predict the properties of carbon dioxide following an expansion.  相似文献   

13.
为了解决复杂天然气管道堵塞定位难题,快速定位出堵塞位置,提出利用压力脉冲波法检测复杂管道堵塞。改造搭建长18.1 m、包含17个三通结构的压力波堵塞检测实验台,进行不同堵塞率以及气液混输管道的堵塞定位实验。结果表明:管道三通会引起频率范围为150~200 Hz的高频反射波,利用FFT谐波变换方法可以有效地对原始信号进行滤波分析,更利于对堵塞定位分析。在堵塞率100%时,定位误差为1.07%;在堵塞率50%时,定位误差最大,达到1.93%;对于含液率8%的气液混输管道,100%堵塞时,定位误差为0.48%。研究结果有效地证实了压力脉冲法检测复杂输运管道堵塞的可行性,可为该方法的现场应用提供指导和数据支撑。  相似文献   

14.
Individual risk analysis of high-pressure natural gas pipelines   总被引:1,自引:0,他引:1  
Transmission pipelines carrying natural gas are not typically within secure industrial sites, but are routed across land out of the ownership of the pipeline company. If the natural gas is accidentally released and ignited, the hazard distance associated with these pipelines to people and property is known to range from under 20 m for a smaller pipeline at lower pressure to up to over 300 m for a larger pipeline at higher pressure. Therefore, pipeline operators and regulators must address the associated public safety issues.This paper focuses on a method to explicitly calculate the individual risk of a transmission pipeline carrying natural gas. The method is based on reasonable accident scenarios for route planning related to the pipeline's proximity to the surrounding buildings. The minimum proximity distances between the pipeline and buildings are based on the rupture of the pipeline, with the distances chosen to correspond to a radiation level of approximately 32 kW/m2. In the design criteria for steel pipelines for high-pressure gas transmission (IGE/TD/1), the minimum building proximity distances for rural areas are located between individual risk values of 10−5 and 10−6. Therefore, the risk from a natural gas transmission pipeline is low compared with risk at the building separated minimum distance from chemical industries.  相似文献   

15.
With the development of natural gas transportation systems, major accidents can result from internal gas leaks in pipelines that transport high-pressure gases. Leaks in pipelines that carry natural gas result in enormous financial loss to the industry and affect public health. Hence, leak detection and localization is a major concern for researchers studying pipeline systems. To ensure the safety and improve the efficiency of pipeline emergency repair, a high-pressure and long-distance circular pipe leakage simulation platform is designed and established by similarity analysis with a field transmission pipeline, and an integrated leakage detection and localization model for gas pipelines is proposed. Given that the spread velocity of acoustic waves in pipelines is related to the properties of the medium, such as pressure, density, specific heat, and so on, this paper proposes a modified acoustic velocity and location formula. An improved wavelet double-threshold de-noising optimization method is also proposed to address the original acoustic wave signal collected by the test platform. Finally, the least squares support vector machine (LS-SVM) method is applied to determine the leakage degree and operation condition. Experimental results show that the integrated model can enhance the accuracy and precision of pipeline leakage detection and localization.  相似文献   

16.
The process chain for Carbon Capture and Sequestration (CCS) includes tubing for injection of CO2 into saline aquifers. The compressed CO2 is likely to contain specific impurities; small concentrations of SO2 and NO2 in combination with oxygen and humidity are most harmful. In addition, CO2 saturated brine is supposed to rise in the well when the injection process is interrupted. The material selection has to ensure that neither CO2 nor brine or a combination of both will leak out of the inner tubing. In this comprehensive paper the investigated materials range from low-alloy steels and 13% Cr steels up to high-alloy materials. Electrochemical tests as well as long term exposure tests were performed in CO2, in brine and combination of both; pressure was up to 100 bar, temperature up to 60 °C. Whereas the CO2 stream itself can be handled using low alloy steels, combinations of CO2 and brine require more resistant materials to control the strong tendency to pitting corrosion. The corrosion behavior of heat-treated steels depends on factors such as microstructure and carbon content. For different sections of the injection tube, appropriate materials should be used to guarantee safety and consider cost effectiveness.  相似文献   

17.
针对影响长输埋地管道安全运行的山体滑坡问题,基于深层圆弧形滑坡理论和有限元方法,建立了在深层圆弧形滑坡作用下的管道计算 模型,对管道的受力进行了数值模拟。对土壤密度、管道壁厚、管道内压以及土抗剪强度进行了参数敏感性分析,研究了各参数对发生滑坡时 管道所受最大应力的影响规律。结果表明:当滑坡规模、滑坡角度增大时,管道所受Von Mises值会随之增大;随土壤密度的增加,管道所受的 应力也会增加;在滑坡多发区,应设计大壁厚的管道,以增加管道安全性;应确保管道内压小于10MPa,当内压突增时应有紧急预案;土抗剪强 度对在深层圆弧形滑坡作用下管道所受应力的影响明显小于其他3个敏感参数。该研究工作为山体滑坡区的安全管道设计提供了一定的参考,对 确保滑坡区埋地管道的安全运营有重要意义。  相似文献   

18.
与天然气管道相比,超临界CO2管道放空时的降压可能导致管道内的低温,甚至形成干冰对管道及设备造成损伤,危害管道安全。针对超 临界CO2放空过程可能出现的潜在风险,建立了超临界CO2管道放空计算模型,借助OLGA软件对超临界CO2管道放空进行了稳态和动态模拟,并研 究放空管设计对管道放空的热力水力影响。研究表明:超临界CO2管道放空时管道沿线上各点之间的压力、温度变化差异不大;CO2首先由超临 界相变为气相,然后沿着气液相平衡线或气固相平衡线进行,管内温度降到一定值后逐步回升至管道埋地温度;放空管的直径对超临界CO2管道 放空过程的总时间、放空速率、最大温降以及是否生成干冰有直接影响;放空管高度对放空过程管内参数变化几乎无影响。  相似文献   

19.
The increase in GHG concentration has a direct effect on global climate conditions. Among the possible technologies to mitigate GHG emissions, CCS is being accepted to gain emission reduction. Such technology also involves cryogenic CO2 capture processes based on CO2 freeze-out or where the formation of solid CO2 must be avoided. Captured CO2 is usually transported in pipelines for the reinjection.The risk associated to the release of CO2 is due to the changing temperatures and pressures the system may experience, which can lead to the deposition of solid CO2 where it must be avoided. Prolonged exposure to dry ice can cause severe skin damage and its resublimation could pose a danger of hypercapnia. It is, thus, necessary to build up a tool able to predict the conditions in which CO2 can freeze-out.A thermodynamic methodology based on cubic EoSs has been developed which is able to predict solid–liquid–vapor equilibrium of CO2 mixtures with n-alkanes or H2S which are usually found in equipment for acidic gas, mainly natural gas, treatment.The focus is a detailed analysis of the method performances when more than two components are present since, for such a case, literature does not provide significant modeling results.  相似文献   

20.
This paper discusses the validation of discharge and subsequent atmospheric dispersion for both unpressurised and pressurised carbon dioxide releases using the consequence modelling package Phast.The paper first summarises the validation of the Phast dispersion model (UDM) for unpressurised releases. This includes heavy gas dispersion from either a ground-level line source (McQuaid wind-tunnel experiments) or an area source (Kit-Fox field experiments). For the McQuaid experiments minor modifications of the UDM were made to support line sources. For the Kit Fox experiments steady-state and 20-s finite-duration releases were simulated for both neutral and stable conditions. Most accurate predictions of the concentrations for finite duration releases were obtained using the UDM Finite Duration Correction method.Using experiments funded by BP and Shell and made available via DNV's CO2PIPETRANS JIP, the paper secondly summarises the validation of the Phast discharge and dispersion models for pressurised CO2 releases. This modelling accounted for the possible presence of the solid CO2 phase following expansion to atmospheric pressure. These experiments included both high-pressure steady-state and time-varying cold releases (liquid storage) and high-pressure time-varying supercritical hot releases. Both the flow rate and the concentrations were found to be predicted accurately.The above validation was carried out with no fitting whatsoever of the Phast extended discharge and dispersion models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号