首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: This paper describes a methodology for the evaluation of water quality plans analogous to procedures used in flood control planning, where flood damage frequency curves provide the basis for determining flood control benefits. The proposed method uses continuous water quality simulation to develop long term information from which water quality frequency curves can be obtained. This frequency information allows the evaluation of the impact of proposed water quality control plans taking into consideration the variable nature of the water resource. Using treatment costs and other economic indicators of water quality, the frequency information can be used to estimate the cost-effectiveness and economic efficiency of alternative plans. The method is demonstrated in a semi-hypothetical environment; real hydrologic and climatic characteristics are assigned to a hypothetical watershed configuration. Alternative management plans are simulated and analyzed for both physical and economic impacts. The advantages of continuous simulation and its use in water quality planning are explored.  相似文献   

2.
ABSTRACT: A deterministic hydrologic model, encompassing the hydrologic regime and all water uses, is developed by integrating empirical hydrologic relationships. The Brandywine Basin, located in southeastern Pennsylvania and northern Delaware, is used as an example to demonstrate this modeling effort. The basin is divided into 19 subwatersheds to account for the spatial variation of resource characteristics. The output of the model is the response of the hydrologic system to various inputs such as precipitation, land use characteristics and policy decisions. This modeling effort is applicable to watersheds similar to the Brandywine Basin in size, and once the model is developed and validated, can be applied continuously in the management and planning of water resources such as predicting the hydrologic effects of proposed projects and simulating hydrologic information.  相似文献   

3.
河流水质模型中确定水文参数的经验方法探讨   总被引:1,自引:0,他引:1  
高荣松 《四川环境》1991,10(3):21-26
河流水质模型中,要涉及一些重要的水文参数。本文探索了用经验方法推求水文参数的问题。文中论证了公式的合理性,提出了能表达河流断面形状特性的指标(β),建议了根据不同情况确定公式中参数的原则,还分析了公式的适用条件。研究成果对提高水质模型的适用性和精度都具有重要意义。  相似文献   

4.
Water quality must be considered in the development and planning aspects of water resource management. To accomplish this, the decision-maker needs to have at his disposal a systematized procedure for simulating water quality changes in both time and space. The simulation model should be capable of representing changes in several parameters of water quality as they are influenced by natural and human factors impinging on the hydrologic system. The objective of this work is two-fold. The first goal is to demonstrate the feasibility of developing and utilizing a water quality simulation model in conjunction with a hydrologic simulation model. The model represents water quality changes in both time and space in response to changing atmospheric and hydrologic conditions and time-varying waste discharges at various points in the system. This model has been developed from and verified with actual field data from a prototype system selected for this purpose. The second aim is to set forth procedural guidelines to assist in the development of water quality simulation models as tools for use in the quality-quantity management of a hydrologic unit.  相似文献   

5.
Modeling the relationship between land use and surface water quality   总被引:64,自引:0,他引:64  
It is widely known that watershed hydrology is dependent on many factors, including land use, climate, and soil conditions. But the relative impacts of different types of land use on the surface water are yet to be ascertained and quantified. This research attempted to use a comprehensive approach to examine the hydrologic effects of land use at both a regional and a local scale. Statistical and spatial analyses were employed to examine the statistical and spatial relationships of land use and the flow and water quality in receiving waters on a regional scale in the State of Ohio. Besides, a widely accepted watershed-based water quality assessment tool, the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS), was adopted to model the plausible effects of land use on water quality in a local watershed in the East Fork Little Miami River Basin. The results from the statistical analyses revealed that there was a significant relationship between land use and in-stream water quality, especially for nitrogen, phosphorus and Fecal coliform. The geographic information systems (GIS) spatial analyses identified the watersheds that have high levels of contaminants and percentages of agricultural and urban lands. Furthermore, the hydrologic and water quality modeling showed that agricultural and impervious urban lands produced a much higher level of nitrogen and phosphorus than other land surfaces. From this research, it seems that the approach adopted in this study is comprehensive, covering both the regional and local scales. It also reveals that BASINS is a very useful and reliable tool, capable of characterizing the flow and water quality conditions for the study area under different watershed scales. With little modification, these models should be able to adapt to other watersheds or to simulate other contaminants. They also can be used to study the plausible impacts of global environmental change. In addition, the information on the hydrologic effects of land use is very useful. It can provide guidelines not only for resource managers in restoring our aquatic ecosystems, but also for local planners in devising viable and ecologically-sound watershed development plans, as well as for policy makers in evaluating alternate land management decisions.  相似文献   

6.
The rationale and outline of an implementation plan for restoring coastal wetlands in Louisiana is presented. The rationale for the plan is based on reversing the consequences of documented cause-and-effect relationships between wetland loss and hydrologic change. The main feature is to modify the extensive interlocking network of dredged spoil deposits, or spoil banks, by reestablishing a more natural water flow at moderate flow velocity (<5 cm/sec). Guidelines for site selection from thousands of potential sites are proposed. Examples of suitable sites are given for intermediate marshes. These sites exhibit rapid deterioration following partial or complete hydrologic impoundment, implying a strong hydrologic, rather than sedimentological, cause of wetland deterioration. We used an exploratory hydrologic model to guide determination of the amount of spoil bank to be removed. The results from an economic model indicated a very effective cost-benefit ratio. Both models and practical experience with other types of restoration plans, in Louisiana and elsewhere, exhibit an economy of scale, wherein larger projects are more cost effective than smaller projects. However, in contrast to these other projects, spoil bank management may be 100 to 1000 times more cost effective and useful in wetland tracts <1000 ha in size. Modest spoil bank management at numerous small wetland sites appears to offer substantial positive attributes compared to alternative and more intensive management at a few larger wetland sites.  相似文献   

7.
ABSTRACT: An assessment of current and future water quality conditions in the southeastern United States has been conducted using the EPA BASINS GIS/database system. The analysis has been conducted for dissolved oxygen, total nitrate nitrogen and pH. Future streamflow conditions have been predicted for the region based on the United Kingdom Hadley Center climate model. Thus far, the analyses have been conducted at a fairly coarse spatial scale due to time and resource limitations. Two hydrologic modeling techniques have been employed in future streamflow prediction: a regional stochastic approach and the application of a physically based soil moisture model. The regional model has been applied to the entire area while the physically based model is being used at selected locations to enhance and support the stochastic model. The results of the study reveal that few basins in the southeast exhibit dissolved oxygen problems, but that several watersheds exhibit high nitrogen levels. These basins are located in regions of intense agricultural activity or in proximity to the gulf coast. In many of these areas, streamflow is projected to decline over the next 30–50 years, thus exacerbating these water quality problems.  相似文献   

8.
ABSTRACT: A growing concern for environmental quality paralleled with increasing demands on our forest resources has prompted the Washington State Department of Natural Resources to evaluate simulation modeling as a technique for analyzing management decisions in terms of their environmental effects. The evaluation focused on a system of integrated models developed at the University of Washington which simulate processes and activities within the forest ecosystem. A major part of the system is a hydrologic model which predicts changes in discharge, stream temperature, and concentrations of suspended sediment and dissolved oxygen based on information generated by other models representing intensive management practices. The evaluation consisted of applying the system to a 72,000 acre tract of forest land, validating the models with two years of discharge and water quality data from a 93,000 acre watershed, and determining the pertinence of hydrologic modeling for management purposes. Results show several potential uses of hydrologic modeling for forest management planning, especially for analyzing the effects of timber harvesting strategies on water quality.  相似文献   

9.
ABSTRACT. A mathematical model to predict water quality in a surface-groundwater system is under development. This project is being sponsored by the Environmental Protection Agency. The ultimate goal of this study is to obtain cause and effect relationships between pollutant sources and the ensuing concentrations at different locations in a basin. Several programs are used to model the various hydrologic processes occurring in nature, namely: rainfall, runoff, flow in surface bodies of water, infiltration, and groundwater flow. At every time step in the simulation, the water quantity computations for the above hydrologic models are performed first. Subsequently, the results of these computations, typically in the form of flow velocities, are used as input to the water quality calculations. The water quality routines involve the modeling of the associated physical, chemical, and biological processes. In this study, emphasis is being placed on pollution in agricultural areas. Accordingly the Lake Apopka basin in Central Florida is being used as the application site.  相似文献   

10.
To answer the difficult question of how to integrate operation of ground and surface water supplies into their management plans, the decision-makers must be able to predict the effects of various alternative modes of operation and meteorological conditions on the groundwater basin. Many types of models have been used for simulating the behavior of groundwater basins under these changes. Analog simulators, analog computers, and digital computers have been employed for model development. To achieve plausible models, detailed hydraulic and hydrologic characteristics are required, such as data on transmissivity, storage, and net deep percolation. These data are used in the equations that form the model. Water quality, which cannot be separated from quantity, deserves equal consideration. Recently, considerable efforts have been made to develop water quality prediction tools through the use of modeling techniques.  相似文献   

11.
ABSTRACT: Proper economic evaluation of alternative plans will maximize the utility achieved from the resources available for water resource management. A knowledge of the frequency of occurrence of the events under study is necessary to fully utilize the advantages of economic evaluation in planning. Frequency information is widely used in flood control and water supply, but relatively unknown in water quality planning. A continuous, dynamic hydrologic and water quality model is presented to develop frequency curves for various water quality criteria. Results from the Denver Regional Water Quality Management Study are discussed as an example of the use of frequency analysis for economic evaluation of water quality management.  相似文献   

12.
ABSTRACT: Levee sump systems are used by many riverine communities for temporary storage of urban wet weather flows. The hydrologic performance and transport of stormwater pollutants in sump systems, however, have not been systematically studied. The objective of this paper is to present a case study to demonstrate development and application of a procedure for assessing the hydraulic performance of flood control sumps in an urban watershed. Two sumps of highly variable physical and hydraulic characteristics were selected for analysis. A hydrologic modeling package was used to estimate the flow hydrograph for each outfall as part of the flow balance for the sump. To validate these results, a water balance was used to estimate the total runoff using sump operational data. The hydrologic model calculations provide a satisfactory estimate of the total runoff and its time‐distribution to the sump. The model was then used to estimate pollutant loads to the sump and to the river. Although flow of stormwater through a sump system is regulated solely by flood‐control requirements, these sumps may function as sedimentation basins that provide purification of stormwater. A sample calculation of removals of several conventional pollutants in the target sumps using a mass balance approach is presented.  相似文献   

13.
Spackman Jones, Amber, David K. Stevens, Jeffery S. Horsburgh, and Nancy O. Mesner, 2010. Surrogate Measures for Providing High Frequency Estimates of Total Suspended Solids and Total Phosphorus Concentrations. Journal of the American Water Resources Association (JAWRA) 1‐15. DOI: 10.1111/j.1752‐1688.2010.00505.x Abstract: Surrogate measures like turbidity, which can be observed with high frequency in situ, have potential for generating high frequency estimates of total suspended solids (TSS) and total phosphorus (TP) concentrations. In the semiarid, snowmelt‐driven, and irrigation‐regulated Little Bear River watershed of northern Utah, high frequency in situ water quality measurements were recorded in conjunction with periodic chemistry sampling. Site‐specific relationships were developed using turbidity as a surrogate for TP and TSS at two monitoring locations. Methods are presented for employing censored data and for investigating categorical explanatory variables (e.g., hydrologic conditions). Turbidity was a significant explanatory variable for TP and TSS at both sites, which differ in hydrologic and water quality characteristics. The relationship between turbidity and TP was stronger at the upper watershed site where TP is predominantly particulate. At both sites, the relationships between turbidity and TP varied between spring snowmelt and base flow conditions while the relationships between TSS and turbidity were consistent across hydrological conditions. This approach enables the calculation of high frequency time series of TP and TSS concentrations previously unavailable using traditional monitoring approaches. These methods have broad application for situations that require accurate characterization of fluxes of these constituents over a range of hydrologic conditions.  相似文献   

14.
15.
Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.  相似文献   

16.
ABSTRACT: Watershed functions that dominate the hydrologic environment are identified and discussed. Hydrological and ecological functions are considered in relation to the storm and annual hydrographs, and to water quality. Two integrative watershed responses to these functions are also articulated. Since most of the Earth's water is in storage, consideration of the hydrologic cycle as movement between water storage sites enhances this functional and response characterization of the watershed which, in turn, suggests guidance and direction for the restoration of watershed functions.  相似文献   

17.
ABSTRACT: The performance of the Soil and Water Assessment Tool (SWAT) and artificial neural network (ANN) models in simulating hydrologic response was assessed in an agricultural watershed in southeastern Pennsylvania. All of the performance evaluation measures including Nash‐Sutcliffe coefficient of efficiency (E) and coefficient of determination (R2) suggest that the ANN monthly predictions were closer to the observed flows than the monthly predictions from the SWAT model. More specifically, monthly streamflow E and R2 were 0.54 and 0.57, respectively, for the SWAT model calibration period, and 0.71 and 0.75, respectively, for the ANN model training period. For the validation period, these values were ?0.17 and 0.34 for the SWAT and 0.43 and 0.45 for the ANN model. SWAT model performance was affected by snowmelt events during winter months and by the model's inability to adequately simulate base flows. Even though this and other studies using ANN models suggest that these models provide a viable alternative approach for hydrologic and water quality modeling, ANN models in their current form are not spatially distributed watershed modeling systems. However, considering the promising performance of the simple ANN model, this study suggests that the ANN approach warrants further development to explicitly address the spatial distribution of hydrologic/water quality processes within watersheds.  相似文献   

18.
Representing hydrologic connectivity of non‐floodplain wetlands (NFWs) to downstream waters in process‐based models is an emerging challenge relevant to many research, regulatory, and management activities. We review four case studies that utilize process‐based models developed to simulate NFW hydrology. Models range from a simple, lumped parameter model to a highly complex, fully distributed model. Across case studies, we highlight appropriate application of each model, emphasizing spatial scale, computational demands, process representation, and model limitations. We end with a synthesis of recommended “best modeling practices” to guide model application. These recommendations include: (1) clearly articulate modeling objectives, and revisit and adjust those objectives regularly; (2) develop a conceptualization of NFW connectivity using qualitative observations, empirical data, and process‐based modeling; (3) select a model to represent NFW connectivity by balancing both modeling objectives and available resources; (4) use innovative techniques and data sources to validate and calibrate NFW connectivity simulations; and (5) clearly articulate the limits of the resulting NFW connectivity representation. Our review and synthesis of these case studies highlights modeling approaches that incorporate NFW connectivity, demonstrates tradeoffs in model selection, and ultimately provides actionable guidance for future model application and development.  相似文献   

19.
The development of Watershed Management Plans (WMPs) in urban areas aids municipalities in allocating resources, engaging the public and stakeholders, addressing water quality regulations, and mitigating issues related to stormwater runoff and flooding. In this study, 124 urban WMPs across the United States were reviewed to characterize historic approaches and identify emerging trends in watershed planning. Planning methods and tools were qualitatively evaluated, followed by statistical analyses of a subset of 63 WMPs to identify relationships between planning factors. Plans developed by a municipality or consultant were associated with more occurrences of hydrologic modeling and site‐specific recommendations, and fewer occurrences of characterizing social watershed factors, than plans authored by agencies, organizations, or universities. WMPs in the past decade exhibited greater frequency in the use of pollutant load models and spatially explicit hydrologic and hydraulic models. Project prioritization was found to increasingly focus on feasibility to implement proposed strategies. More recent plans additionally exhibited greater consideration for water quality, ecological health, and public participation. Innovation in planning methods and consideration of future watershed conditions are primary areas that were found to be deficient in the study WMPs, although analysis methods and tools continue to improve in the wake of advancing technology and data availability.  相似文献   

20.
The utilization of water quality analysis to inform optimal decision-making is imperative to achieve sustainable management of river water quality. A multitude of research works in the past has focused on river water quality modeling. Despite being a precise statistical regression technique that allows for fitting separate models for all potential combinations of predictors and selecting the optimal subset model, the application of best subset method in river water quality modeling is not widely adopted. The current research aims to validate the use of best subset method in evaluating the water quality parameters of the Godavari River, one of the largest rivers in India, by developing regression equations for different combinations of its physicochemical parameters. The study involves in formulating best subset regression equations to estimate the concentrations of river water quality parameters while also identifying and quantifying their variations. A total of 17 water quality parameters are analyzed at 13 monitoring sites using 13 years (1993–2005) of observed data for the monsoon (June–October) period and post-monsoon (November–February) period. The final subset model is selected among model combinations that are developed for each year's dataset through widely used statistical criteria such as R2, F value, adjusted R2a, AICc, and RSS. The final best subset model across all parameters exhibits R2 values surpassing 0.8, indicating that the models possess the ability to account for over 80% of the variations in the concentrations of dependent parameters. Therefore, the findings demonstrated the appropriateness of this method in evaluating the water quality parameters in extensive rivers. This work is very useful for decision-making and in the management of river water quality for its sustainable use in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号