首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
苯酚和吡啶在竹质活性炭上的吸附研究   总被引:1,自引:0,他引:1  
以焦化废水中的代表性污染物苯酚和吡啶为吸附质,以颗粒竹质活性炭为吸附剂,考察了苯酚和吡啶在竹质活性炭上的吸附性能以及两种化合物之间的竞争吸附关系.结果发现:竹质活性炭对苯酚的吸附较符合Langmuir等温式,对吡啶的吸附较符合Freundlich等温式,苯酚和吡啶的最大吸附量分别为122.0 mg/g和344.8 mg/g.该竹质活性炭对苯酚和吡啶的吸附符合拟二级动力学方程,吸附均在4.0 h时达到平衡,当两种化合物共存于溶液中时,其吸附动力学过程和吸附平衡时间未受影响,但竞争吸附导致苯酚和吡啶的平衡吸附量分别下降了10.4%和20.8%.  相似文献   

2.
选用硅胶为基质材料、乙烯基膦酸为功能单体、Fe3+为模板离子、乙二醇双甲基丙烯酸酯为交联剂,通过表面印迹技术制备了一种新型膦酸功能化的Fe(Ⅲ)印迹硅胶聚合物。对印迹吸附材料的吸附条件、吸附选择性和重复利用率进行了研究。通过FT-IR、SEM、EDX、TG和N2吸附/脱附分析对印迹材料进行了表征,分析了印迹吸附剂对Fe3+的吸附机理。结果表明:印迹吸附剂在8 min可达吸附平衡,最大吸附量达16.12 mg/g,吸附行为符合准二级动力学方程和Langmuir吸附等温式,印迹吸附剂展现出较高的选择性识别能力,与Cr3+、Mn2+和Zn2+相比,对Fe3+的选择性系数k分别为8.9、10.75和12.37。经过6次吸附-解吸试验,印迹材料吸附Fe3+的能力仅下降了5.9%,证明其具有很好的可重复使用性能。  相似文献   

3.
柚子皮生物炭的制备及对水体中锰离子的吸附   总被引:1,自引:0,他引:1  
以柚子皮为原料经硫化钠活化后炭化处理制备了生物质炭吸附剂,并将之应用于含锰废水的吸附。考察了溶液p H值、底液质量浓度、生物炭投加量等因素对柚子皮生物炭吸附能力的影响,并研究了柚子皮吸附剂对锰离子废水的吸附平衡和动力学特征。结果表明:柚子皮吸附剂对含锰废水具备较强吸附能力,在溶液p H值为6,底液质量浓度为50 mg/L,吸附剂投加量为2 g/L的条件下,对锰离子的去除率为93.5%;吸附平衡实验表明该等温吸附过程符合Langmuir方程,饱和吸附量为24.691 mg/g;吸附动力学研究表明,该吸附过程符合二级动力学方程,吸附速率常数为0.028 6 g/(mg·min)。  相似文献   

4.
褐煤对苯酚的吸附性能及机制研究   总被引:1,自引:0,他引:1  
酚类废水是一种有毒且排放量较大的有机废水,排放之前必须进行有效处理。以污染物苯酚为研究对象,褐煤为吸附剂,基于实验室小试,在正交试验的指导下,采用振荡平衡法研究了褐煤对苯酚的吸附效果,确定了褐煤用量、振荡吸附时间、温度、pH值对苯酚模拟废水吸附效果的影响。结果表明:在褐煤用量为10 g、振荡时间为1.5 h、温度为25℃、pH值为6的条件下,对100 mL质量浓度为100 mg/L的苯酚模拟废水处理效果最佳,苯酚的去除率可达70.86%。在最佳吸附条件下,一方面结合吸附苯酚前后褐煤比表面积及孔隙结构的变化进行分析,另一方面利用FT-IR对褐煤吸附苯酚前后表面官能团的变化进行了对比分析。褐煤内部孔隙发达,存在多类孔,以50 A以下的孔居多数,表明其微孔结构较复杂,且吸附行为致使孔隙面积缩小至近1/3,微孔减少明显,表明微孔对吸附过程影响很大;褐煤表面含有丰富的含氧官能团,为吸附苯酚提供了条件,在吸附苯酚的过程中物理吸附与化学吸附同时存在,褐煤主要表面宫能团—COOH、酚羟基及苯环结构骨架在化学吸附苯酚方面发挥着重要作用。这两方面从微观角度很好地解释了褐煤的吸附机理。  相似文献   

5.
采用铝盐浸渍法制备改性活性炭。研究了铝盐种类、浸渍液浓度和不同吸附条件对Cr(Ⅵ)吸附性能的影响。结果表明:采用0. 1 mol/L Al_2(SO_4)_3浸渍法制得的改性PAC吸附效果最好,Cr(Ⅵ)的吸附量由0. 75 mg/g提高到4. 86 mg/g。当温度为30℃时,Al-PAC的最佳吸附条件为:投加量0. 2 g(每100m L),p H为4,吸附时间30 min,溶液中Cr(Ⅵ)浓度由10 mg/L降至0. 45 mg/L以下,低于排放限值。吸附动力学符合拟二级动力学方程,吸附等温线符合Freundlich方程,吸附过程为以离子交换为主要机制的化学吸附。  相似文献   

6.
通过浸渍-焙烧的方法制得铁改性活性炭,并将之应用于废水中甲醛的吸附.分别考察了吸附时间、初始溶液质量浓度、吸附剂投加量对改性活性炭吸附甲醛效果的影响,并研究了铁改性活性炭对甲醛水溶液的等温吸附及动力学.结果表明:在25℃、活性炭投加量为10 g/L、吸附时间为360 min时,铁改性活性炭对甲醛的去除率为91.8%;用准一级、准二级及内扩散动力学模型拟合吸附过程,准二级动力学模型符合该吸附过程;用Langmuir和Freundlich模型描述等温吸附过程,该吸附过程服从Langmuir模型,饱和吸附量为3.396 7mg/g.  相似文献   

7.
考察了波茨坦短芽孢杆菌对4-氯酚的降解特性及4-氯酚与苯酚在双底物体系中的相互作用。结果表明,波茨坦短芽孢杆菌能以4-氯酚为唯一碳源和能源,完全降解200 mg/L、250 mg/L及300 mg/L的4-氯酚所需时间分别为48 h、63 h和84 h,但该菌无法降解350 mg/L的4-氯酚,表明较高浓度的4-氯酚对细胞生长有较强的抑制作用。酶活分析表明,4-氯酚可诱导波茨坦短芽孢杆菌合成氯代邻苯二酚1,2-加氧酶并通过邻位裂解途径降解。细胞生长动力学过程符合Haldane方程,动力学参数为细胞最大比生长速μmax=0.145 h~(-1),半饱和系数KS=30.45 mg/L,底物抑制系数Ki=127.62 mg/L,决定系数R~2=0.98。在4-氯酚和苯酚双底物降解过程中,4-氯酚的存在会抑制苯酚的降解,当4-氯酚初始质量浓度为40 mg/L时,1 400 mg/L苯酚被完全降解耗时更长,菌体优先利用苯酚作为碳源和能源,苯酚被完全降解后大部分4-氯酚才开始被降解;苯酚对4-氯酚降解的影响体现为低浓度促进和高浓度抑制,苯酚促进时质量浓度为100~300 mg/L,而苯酚质量浓度高于300 mg/L会产生抑制作用,当苯酚初始质量浓度为200 mg/L时4-氯酚降解速率最大。采用Abuhamed动力学方程可以准确描述4-氯酚/苯酚双底物降解体系中细胞生长过程,苯酚对4-氯酚降解的抑制程度I_(1,2)=1.47,4-氯酚对苯酚降解的抑制程度I_(2,1)=2.56,决定系数R~2=0.95。研究表明,4-氯酚对苯酚降解的抑制作用大于苯酚对4-氯酚。  相似文献   

8.
活性炭对垃圾渗滤液中甲醛、苯酚和苯胺吸附规律的研究   总被引:8,自引:0,他引:8  
本采用经过预处理的200目活性炭作为吸附剂进行吸附实验,研究了在不同的活性炭加入量、吸附pH值、吸附温度、初始质量浓度和吸附时间等条件下,活性炭吸附甲醛、苯酚和苯胺单组份溶液的规律。吸附实验中,甲醛、苯酚和苯胺的初始质量浓度控制在垃圾渗滤液的范围,同时,其它条件也按照吸附操作的常用条件进行。结果表明:活性炭对苯酚和苯胺的吸附量随着pH值的升高呈下降的趋势,而对甲醛的吸附量呈上升的趋势;初始质量浓度对吸附量的影响较小;随温度的升高,吸附量呈下降的趋势;活性炭对甲醛、苯酚和苯胺吸附达到饱和时,所需时间分别为120min、40mm和80min左右,饱和吸附量分别为0.0148mg/g、0.708mg/g和1.14mg/g左右;由吸附等温公式的拟合结果显示,吸附是一复杂的过程,不是单一的物理或化学吸附。此外,活性炭对垃圾渗滤液的吸附处理,有较好的效果,去除率为55%~65%。所得活性炭的吸附规律,既可以为活性炭吸附这些物质或近似物提供参考,又可以为新型吸附剂的研制提供参照标准。  相似文献   

9.
CTMAB改性沸石及其对对硝基苯酚吸附效果的研究   总被引:1,自引:0,他引:1  
为提高沸石对水体中有机污染物的吸附效果,采用酸热活化-十六烷基三甲基溴化铵(CTMAB)改性沸石,研究了改性沸石吸附对硝基苯酚的能力,探讨了改性条件对沸石吸附能力的影响和改性沸石吸附对硝基苯酚的适宜条件.结果表明,改性溶液中CTMAB的量低于沸石阳离子交换量时,沸石负载表面活性剂的量越大,所得到的有机沸石对对硝基苯酚的吸附能力越强; 改性溶液pH值增大,所获得的有机沸石吸附对硝基苯酚的能力也增强.CTMAB溶液的质量分数为1.1%,改性时间为2 h所制备的有机沸石对对硝基苯酚有较高的去除率.在利用已制备的有机沸石处理污水中对硝基苯酚的实际应用中,有机沸石投加量为25 g/L,对硝基苯酚溶液在pH值为6,振荡50 min的条件下,有机沸石对对硝基苯酚的去除率可达98.3%.  相似文献   

10.
采用以废弃桑枝制备的活性炭吸附水中Pb(Ⅱ)和Cr(Ⅵ)。考察了吸附时间、pH值、活性炭用量和Pb(Ⅱ)、Cr(Ⅵ)初始浓度对吸附效果的影响,对等温吸附规律和吸附动力学作了数学模拟。结果表明,活性炭对Pb(Ⅱ)和Cr(Ⅵ)的吸附性能良好,等温吸附规律符合Langmuir模型,吸附过程可用准二级动力学模型描述。在温度25℃、活性炭用量0.01 g/100 mL、Pb(Ⅱ)溶液pH值为6且初始质量浓度20 mg/L、Cr(Ⅵ)溶液pH值为2且初始质量浓度10 mg/L、以200 r/min的速率恒温振荡120 min的条件下,Pb(Ⅱ)和Cr(Ⅵ)的平衡吸附量分别可达136.3 mg/g和74.32 mg/g。  相似文献   

11.
碳纳米管对2-硝基苯酚和2,4-二氯苯酚的吸附特性研究   总被引:1,自引:0,他引:1  
研究多壁碳纳米管对水中2-硝基苯酚和2,4-二氯苯酚的吸附规律.测定不同温度下两物质的吸附等温线,研究吸附的热力学特性和吸附机理.结果表明,碳纳米管对2-硝基苯酚和2,4-二氯苯酚具有良好的吸附效果,饱和吸附量分别达到24.54 mg/g和30.53mg/g.用Freundlich等温方程拟合碳纳米管对两种化合物的吸附,其线性相关系数均大于0.95;用Clapeyron-Clausius方程拟合吸附过程,两种物质的线性相关系数都达0.99.293~353 K时,碳纳米管对2-硝基苯酚吸附的△H、△G、△S分别为-7.74~-7.05 kJ·mol-1、-6.14~-4.80 kJ·mol-1、-8.33~-3.00 J·mol-1·K-1;对2.4-二氯苯酚吸附的△H、△G、△S分别为-24.75~-17.78 kJ·mol-1、-6.79~-6.22kJ·mol-1、-61.29~-32.75 J·mol-1·K-1.由于对酚分子π-π共轭作用的强弱不同.碳纳米管对2,4-二氯苯酚的吸附能力大于2-硝基苯酚.本文得到的碳纳米管吸附规律,为研究碳纳米管吸附含苯环类物质提供了参考.  相似文献   

12.
采用改进的滴加成球法合成壳聚糖树脂,用环氧氯丙烷对树脂进行交联,制备新型壳聚糖交联树脂.研究了交联树脂对Cr(Ⅵ)的吸附效果,探讨了溶液pH值、吸附时间、温度、Cr(Ⅵ)初始质量浓度等因素对吸附性能的影响及吸附热力学和动力学.结果表明,各因素中pH值对壳聚糖交联树脂吸附Cr(Ⅵ)影响较大.对初始质量浓度为120 mg/L的Cr(Ⅵ)溶液,壳聚糖交联树脂投加量为1 g/L,pH=3,温度为25℃,吸附2h时可达到最大吸附容量(72 mg/g).用Langmuir 等温模型和Pseudo second-order动力学模型对树脂的吸附过程进行线性拟合,R2分别为0.999 9和0.999 7,模型计算的饱和吸附容量qmax(73.53 mg/g)和平衡吸附量qe(29.23mg/g)与试验结果(72.10 mg/g和27.73 mg/g)基本吻合.Fick扩散模型表明,树脂对Cr(Ⅵ)的吸附可分为3个阶段,说明Cr(Ⅵ)的去除是物理吸附和化学吸附共同作用的结果.  相似文献   

13.
以Cd2+作为模板,γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)为交联剂,硅胶作为载体,制备特性Cd2+硅胶表面印迹聚合物,利用扫描电镜和X射线衍射仪表征了聚合物的结构,采用平衡吸附法研究了该印迹聚合物的吸附性能和选择识别能力。结果表明,该印迹聚合物的最大吸附量分别为4.3mg/g;对Cd2+的吸附行为符合Lagergren第一速率定律;25min即可达到吸附平衡;当pH=5~7时,该印迹聚合物保持了较好的吸附容量。  相似文献   

14.
用天然鸡蛋壳吸附处理含三价铬溶液。采用SEM-EDS技术对吸附材料进行了表征,并考察了溶液p H、接触时间、温度、吸附剂投加量、三价铬浓度、吸附材料粒径等因素对鸡蛋壳吸附三价铬的影响。最大吸附量48.6 mg/g是在低投加量0.5 g/L条件下获得,其实验条件为30℃、溶液p H=5.0、粒径0.1~0.3mm、初始浓度为100 mg/g。实验数据能较好的拟合朗缪尔等温吸附方程和准二级动力学方程。  相似文献   

15.
从皮革铬鞣、复鞣污泥等处分离、纯化出4株吸附Cr3+菌株TP、XB、MY和TQ,采用ASS和FTIR等方法研究了其对低质量浓度Cr3+的吸附特性.结果表明,4种微生物吸附剂对低质量浓度Cr3+有较好的吸附作用,在实验室条件下其对Cr3+的最佳吸附条件是pH值4.0,投加量0.5 g/L,吸附温度30℃;TP、XB、MY和TQ的最大吸附量分别是8.66 mg/g、11.65 mg/g、11.05 mg/g和10.22 mg/g.碱处理有助于提高微生物吸附的吸附量,经过0.3 mol/L NaOH预处理后,其吸附量分别提高了17.86% ~ 38.96%.吸附等温曲线拟合研究表明,吸附剂TP、MY和TQ更符合Langmuir等温方程,XB更符合Temkin等温方程;用Dubimim-Radushkevich (D-R)等温曲线方程拟合发现,TP、XB.和TQ吸附过程属于离子交换吸附.吸附动力学研究表明,4种吸附剂对Cr3+的吸附过程符合拟二级动力学模型;颗粒内扩散模型拟合表明,该过程主要分为吸附剂外表面吸附、细孔内缓慢吸附和平衡吸附3个阶段.  相似文献   

16.
分别采用热提法与蒸汽法对好氧污泥胞外聚合物(Extracellular Polymeric Substances,EPS)进行了提取,对两种方法提取效果进行比较,并探讨了EPS投加量、吸附时间、温度、pH值等对吸附的影响。结果表明:采用热提法提取的EPS中蛋白质、多糖与核酸质量浓度分别为2.111 g/L、0.235 3 g/L、0.111 0 mg/L,蛋白质与多糖质量浓度比值为8.971;而采用蒸汽法提取的EPS中蛋白质、多糖与核酸质量浓度分别为2.828 g/L、0.744 4 g/L、0.247 9 mg/L,蛋白质与多糖质量浓度比值为3.800。pH值对染色剂玫瑰红B的吸附过程影响显著,适宜pH=6。随温度增加,吸附量增大,在50℃时达到最大。染色剂玫瑰红B在EPS上的吸附量随吸附时间增加而增大,初始进行得很快,在720min时达到吸附平衡。当EPS初始质量浓度为800 mg/L时,其饱和吸附量为12.61 mg/g。准二级动力方程很好地拟合了各温度的吸附动力学数据且R20.987。分别采用Langmuir与Freundlich等温吸附模型进行热力学拟合,Langmuir等温模型在各温度下的模拟方程决定系数均在0.7以下;而Freundlich等温模型各温度的模拟方程决定系数在0.81~0.98,相关性明显好于Langmuir吸附等温模型,因此吸附较符合Freundlich等温模型。  相似文献   

17.
灭活面包酵母菌对溶液中铅离子的吸附研究   总被引:2,自引:0,他引:2  
为研究灭活面包酵母菌对溶液中Pb2 的吸附效果和机理,在实验室进行批量实验,通过AAS、SEM/EDS等手段对实验结果进行分析.实验室条件下面包酵母菌吸附Pb2 的最佳条件为:pH值4.0~5.5,菌体质量浓度4.0 g/L,初始Pb2 浓度1.0 mmol/L,吸附温度30℃.酵母菌实验最大吸附量为45.07 mg/g,吸附效率为92.45%.不同温度下的动力学分析表明,其吸附过程是一个快速过程,且较低温度时吸附平衡过程迟滞.实验结果很好地符合Langmuir等温吸附模型,计算得面包酵母菌在10℃、20℃和30℃时的最大吸附量qmax分别为71.53 mg/g、72.10 mg/g和75.82 mg/g.SEM/EDS分析发现Pb2 被吸附到面包酵母菌表面,与细胞壁上有机物结合后以颗粒物形式附着在细胞表面.并随着溶液中Pb2 初始浓度的增加而增多.研究表明,灭活酵母菌是一种快速高效的Pb2 生物吸附剂.  相似文献   

18.
生物质热解半焦对水中磷的吸附去除   总被引:1,自引:0,他引:1  
以生物质热解副产物半焦为吸附剂,研究了对水中磷的吸附动力学行为及其主要影响因素.实验结果表明,生物质半焦对水中磷的平衡吸附量为9.71 mg/g,该吸附过程能够较好地符合准一级动力学模型.此外,磷在生物质半焦上的等温吸附能较好地用Freundlich吸附等温线方程表示.在半焦用量为3 g/L、温度为40℃、pH值为3的...  相似文献   

19.
水稻、油菜秸秆对水中镉的吸附特性   总被引:1,自引:0,他引:1  
为了解水稻秸秆和油菜秸秆对废水中Cd2+的吸附特性,研究了吸附时间、初始离子质量浓度、秸秆投加量、初始pH值和振荡速率对溶液中Cd2+去除率与吸附量的影响,通过动力学、热力学模型拟合和扫描电镜(SEM)、红外光谱(FTIR)分析,探讨其吸附机理.结果表明:水稻和油菜秸秆具有良好的Cd2+吸附效果,pH值为4~7时,Cd2+吸附率均可达到50%以上;在投加量为10 g/L、初始pH值为6、振荡速率为150 r/min、温度为25℃的条件下,处理200 mg/L含Cd2+废水时,水稻和油菜秸秆对Cd2+的去除率分别达到66.5%和68.2%,吸附平衡时间约为90 min;其吸附动力学过程以准二级动力学方程拟合效果最好,等温吸附模型符合Langmuir方程,在25℃下油菜秸秆和水稻秸秆的最大吸附量理论值分别为14.28 mg/g和13.76 mg/g;结合SEM和FTIR分析推断,两种秸秆吸附Cd2主要发生在吸附剂表层,吸附过程以化学吸附为主.研究表明,油菜秸秆和水稻秸秆是具有潜在利用价值的Cd2+吸附剂.  相似文献   

20.
采用后嫁接法,先后以硅烷偶联剂NQ-62和EDTA-2Na为改性剂,制备出功能化的介孔二氧化硅SBA-15,利用热重分析、元素分析对样品进行了表征,并探讨了吸附动力学和吸附等温线。采用单因素实验法确定了最佳吸附条件:投加量为1.0 g/L,温度为308~313 K,p H为6。研究结果表明,改性后的SBA-15吸附水中Co~(2+)可以在120 min趋于平衡,吸附过程符合拟二级动力学模型。Langmuir等温线模型很好地描述了吸附材料对Co2+的吸附行为,可算出在308 K时吸附量最大,最大值为30.12 mg/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号