首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
ABSTRACT: The value of using climate indices such as ENSO or PDO in water resources predictions is dependent on understanding the local relationship between these indices and streamflow over time. This study identifies long term seasonal and spatial variations in the strength of El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) correlations with timing and magnitude of discharge in snowmelt streams in Oregon. ENSO is best correlated with variability in annual discharge, and PDO is best correlated with spring snowmelt timing and magnitude and timing of annual floods. Streams in the Cascades and Wallowa mountains show the strongest correlations, while the southernmost stream is not correlated with ENSO or PDO. ENSO correlations are weaker from 1920 to 1950 and vary significantly depending on whether Southern Oscillation Index (SOI) or Niño 3.4 is used. PDO correlations are strong from 1920 to 1950 and weak or insignificant other years. Although there are not consistent increasing or decreasing trends in annual discharge or spring snowmelt timing, there are significant increases in fractional winter runoff that are independent of precipitation, PDO, or ENSO and may indicate monotonic winter warming.  相似文献   

2.
Tingstad, Abbie H. and Glen M. MacDonald, 2010. Long-Term Relationships Between Ocean Variability and Water Resources in Northeastern Utah. Journal of the American Water Resources Association (JAWRA) 46(5):987-1002. DOI: 10.1111/j.1752-1688.2010.00471.x Abstract: The Uinta Mountains in the northwestern Colorado River Basin are an important source of water for Utah and the western United States. This article examines 20th Century hydrology in the Uinta Mountains region in the context of the previous four to eight centuries as well as possible relationships with Pacific and Atlantic Ocean variability using new tree-ring based reconstructions for streamflow and snowpack. The 20th Century appears to have been unusually wet compared with previous centuries. Relationships between hydrology in the region and the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) are largely insignificant in instrumental datasets but may have been stronger, although inconsistent, over the longer time spans represented by the paleoclimate records. Impacts of individual modes of sea surface temperature variability may sometimes be enhanced by periods when climate forcing by ENSO, PDO, and/or AMO coincide. Such episodes are associated with deviations from mean hydrology as high as +14% and as low as −18%. The 20th Century could be a misleading benchmark to base water resource estimates upon and flexible water management strategies are necessary to take into account the large range of natural variability observed in the longer-term hydroclimatology as well as the challenges to predictability due to the apparently complex and inconsistent influence of ocean-driven variability.  相似文献   

3.
In Pacific Northwest streams, summer low flows limit water available to competing instream (salmon) and out-of-stream (human) uses, creating broad interest in how and why low flows are trending. Analyses that assumed linear (monotonic) change over the last ~60 years revealed declining low flow trends in minimally disturbed streams. Here, polynomials were used to model flow trends between 1929 and 2015. A multidecadal oscillation was observed in flows, which increased initially from the 1930s until the 1950s, declined until the 1990s, and then increased again. A similar oscillation was detected in precipitation series, and opposing oscillations in surface temperature, Pacific Decadal Oscillation, and Interdecadal Pacific Oscillation series. Multidecadal oscillations with similar periods to those described here are well known in climate indices. Fitted model terms were consistent with flow trends being influenced by at least two drivers, one oscillating and the other monotonic. Anthropogenic warming is a candidate driver for the monotonic decline, and variation in (internal) climatic circulation for the oscillating trend, but others were not ruled out. The recent upturn in streamflows suggests that anthropogenic warming has not been the dominant factor driving streamflow trends, at least until 2015. Climate projections based on simulations that omit drivers of multidecadal variation are likely to underestimate the range, and rate of change, of future climatic variation.  相似文献   

4.
Coastal ecosystems are dependent on terrestrial freshwater export which is affected by both climate trends and natural climate variability. However, the relative role of these factors is not clear. Here, both climate trends and internal climate variabilities at different time scales are related to variations in terrestrial freshwater export into the eastern United States (U.S.) coastal region. For the recent 35‐year period, the intensified hydro‐meteorological processes (annual precipitation or evapotranspiration) may explain the observed streamflow variability in the northeast. However, in the southeast, streamflow is positively correlated with climate variability induced by the Pacific Ocean conditions (El Nino‐Southern Oscillation [ENSO] and Pacific Decadal Oscillation) rather than Atlantic Ocean conditions (Atlantic Multi‐decadal Oscillation and North Atlantic Oscillation). The centroid location for volume of terrestrial freshwater export integrated along the eastern U.S. has a positive temporal trend and is negatively correlated with ENSO conditions, suggesting the northward trend in freshwater export to U.S. eastern coast may be disturbed by the natural climate variability, especially ENSO conditions, i.e., the center of freshwater mass moves southward (northward) during El Nino (La Nina) years. The results indicate the spatial and temporal variations in freshwater export from the eastern U.S. are affected by both climate change and inter‐annual climate variability during the recent 35‐year period (1980‐2014).  相似文献   

5.
Using nonparametric Mann‐Kendall tests, we assessed long‐term (1953‐2012) trends in streamflow and precipitation in Northern California and Southern Oregon at 26 sites regulated by dams and 41 “unregulated” sites. Few (9%) sites had significant decreasing trends in annual precipitation, but September precipitation declined at 70% of sites. Site characteristics such as runoff type (groundwater, snow, or rain) and dam regulation influenced streamflow trends. Decreasing streamflow trends outnumbered increasing trends for most months except at regulated sites for May‐September. Summer (July‐September) streamflow declined at many sites, including 73% of unregulated sites in September. Applying a LOESS regression model of antecedent precipitation vs. average monthly streamflow, we evaluated the underlying streamflow trend caused by factors other than precipitation. Decreasing trends in precipitation‐adjusted streamflow substantially outnumbered increasing trends for most months. As with streamflow, groundwater‐dominated sites had a greater percent of declining trends in precipitation‐adjusted streamflow than other runoff types. The most pristine surface‐runoff‐dominated watersheds within the study area showed no decreases in precipitation‐adjusted streamflow during the summer months. These results suggest that streamflow decreases at other sites were likely due to more increased human withdrawals and vegetation changes than to climate factors other than precipitation quantity.  相似文献   

6.
ABSTRACT: Climate data from the Malcolm Knapp Research Forest (MKRF) in the Coast Range mountains of southwestern British Columbia were used to examine relationships between climate and hydrology and variations in the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Air and water temperatures were higher and precipitation was lower during in‐phase or warm PDO/E1 Niño events than in other years. In contrast, in‐phase or cool PDO/La Niña years were generally cooler and wetter than other years. Precipitation and East Creek discharge were positively related to the Southern Oscillation Index (SOI) and negatively related to the PDO index. Conversely, air and water temperatures were negatively related to the SOI and positively related to the PDO index. Differences in precipitation and air temperature were also evident at longer time scales when separated by PDO phase. Because of drier conditions during in‐phase El Niño events, the flow of organic matter from East Creek to downstream portions of the channel network was lower compared to other years. This reduction has implications for downstream communities, as these subsidies provide a major source of energy for stream food webs. Therefore, short term and long term shifts in climate, discharge, and water temperature may have profound impacts on the ecology of Pacific Northwest (PNW) watersheds due to changes in a number of ecosystem processes such as altered flux of organic matter from headwater streams to larger rivers.  相似文献   

7.
ABSTRACT: A network of 32 drought sensitive tree‐ring chronologies is used to reconstruct mean water year flow on the Columbia River at The Dalles, Oregon, since 1750. The reconstruction explains 30 percent of the variability in mean water year (October to September) flow, with a large portion of unexplained variance caused by underestimates of the most severe low flow events. Residual statistics from the tree‐ring reconstruction, as well as an identically specified instrumental reconstruction, exhibit positive trends over time. This finding suggests that the relationship between drought and streamflow has changed over time, supporting results from hydrologic models, which suggest that changes in land cover over the 20th Century have had measurable impacts on runoff production. Low pass filtering the flow record suggests that persistent low flows during the 1840s were probably the most severe of the past 250 years, but that flows during the 1930s were nearly as extreme. The period from 1950 to 1987 is anomalous in the context of this record for having no notable multiyear drought events. A comparison of the flow reconstruction to paleorecords of the Pacific Decadal Oscillation (PDO) and El Nino/Southern Oscillation (ENSO) support a strong 20th Century link between large scale circulation and streamflow, but suggests that this link is very weak prior to 1900.  相似文献   

8.
Abstract: Long‐term flow records for watersheds with minimal human influence have shown trends in recent decades toward increasing streamflow at regional and national scales, especially for low flow quantiles like the annual minimum and annual median flows. Trends for high flow quantiles are less clear, despite recent research showing increased precipitation in the conterminous United States over the last century that has been brought about primarily by an increased frequency and intensity of events in the upper 10th percentile of the daily precipitation distribution – particularly in the Northeast. This study investigates trends in 28 long‐term annual flood series for New England watersheds with dominantly natural streamflow. The flood series are an average of 75 years in length and are continuous through 2006. Twenty‐five series show upward trends via the nonparametric Mann‐Kendall test, 40% (10) of which are statistically significant (p < 0.1). Moreover, an average standardized departures series for 23 of the study gages indicates that increasing flood magnitudes in New England occurred as a step change around 1970. The timing of this is broadly synchronous with a phase change in the low frequency variability of the North Atlantic Oscillation, a prominent upper atmospheric circulation pattern that is known to effect climate variability along the United States east coast. Identifiable hydroclimatic shifts should be considered when the affected flow records are used for flood frequency analyses. Special treatment of the flood series can improve the analyses and provide better estimates of flood magnitudes and frequencies under the prevailing hydroclimatic condition.  相似文献   

9.
We analyzed annual peak flow series from 127 naturally flowing or naturalized streamflow gauges across western Canada to examine the impact of the Pacific Decadal Oscillation (PDO) on annual flood risk, which has been previously unexamined in detail. Using Spearman's rank correlation ρ and permutation tests on quantile‐quantile plots, we show that higher magnitude floods are more likely during the negative phase of the PDO than during the positive phase (shown at 38% of the stations by Spearman's rank correlations and at 51% of the stations according to the permutation tests). Flood frequency analysis (FFA) stratified according to PDO phase suggests that higher magnitude floods may also occur more frequently during the negative PDO phase than during the positive phase. Our results hold throughout much of this region, with the upper Fraser River Basin, the Columbia River Basin, and the North Saskatchewan River Basin particularly subject to this effect. Our results add to other researchers' work questioning the wholesale validity of the key assumption in FFA that the annual peak flow series at a site is independently and identically distributed. Hence, knowledge of large‐scale climate state should be considered prior to the design and construction of infrastructure.  相似文献   

10.
ABSTRACT: Associations between the El Nino Southern Oscillation (ENSO) climate pattern and temporal variability in flow and 12 water quality variables were assessed at 77 river sites throughout New Zealand over a 13‐year period (1989 through 2001). Trends in water quality were determined for the same period. All 13 variables showed statistically significant linear regression relationships with values of the Southern Oscillation Index (SOI). The strongest relationships were for water temperature (mean R2= 0.20), dissolved reactive phosphorus (0.18), and oxidized nitrogen (0.17). The association with SOI varied by climate region. The observed patterns were generally consistent with known ENSO effects on New Zealand rainfall and air temperature. Trends in water quality variables for the periods 1989 through 1993, 1994 through 1998, and 1989 through 1998 were reasonably consistent with trends in SOI, even when the influence of river flow was removed from the data. This suggests that SOI effects on water quality are not necessarily a direct consequence of changes in flow associated with rainfall variation. In addition, both Baseline (32 upstream) and Impact (45 downstream) sites showed similar trends, indicating that changes in management were not directly responsible. We conclude that interpretation of long term water quality datasets in rivers requires that climate variability be fully acknowledged and dealt with explicitly in trend analyses.  相似文献   

11.
ABSTRACT: Trends in streamflow characteristics were analyzed for streams in southwestern Wisconsin's Driftless Area by using data at selected gaging stations. The analyses indicate that annual low flows have increased significantly, whereas annual flood peaks have decreased. The same trends were not observed for forested areas of northern Wisconsin. Streamflow trends for other streams in southeastern Wisconsin draining predominantly agricultural land were similar to trends for Driftless Area streams for annual low flows. The causes for the trends are not well understood nor are the effects. Trends in annual precipitation do not explain the observed trends in streamflow. Other studies have found that erosion rates decreased significantly in the Driftless Area, and have attributed this reduction to a change of agricultural practices, which increase infiltration, decrease flood peaks, and increase low flows.  相似文献   

12.
Abstract: The Loess Plateau region in northwestern China has experienced severe water resource shortages due to the combined impacts of climate and land use changes and water resource exploitation during the past decades. This study was designed to examine the impacts of climatic variability on streamflow characteristics of a 12‐km2 watershed near Tianshui City, Gansu Province in northwestern China. Statistic analytical methods including Kendall’s trend test and stepwise regression were used to detect trends in relationship between observed streamflow and climatic variables. Sensitivity analysis based on an evapotranspiration model was used to detect quantitative hydrologic sensitivity to climatic variability. We found that precipitation (P), potential evapotranspiration (PET) and streamflow (Q) were not statistically significantly different (p > 0.05) over the study period between 1982 and 2003. Stepwise regression and sensitivity analysis all indicated that P was more influential than PET in affecting annual streamflow, but the similar relationship existed at the monthly scale. The sensitivity of streamflow response to variations of P and PET increased slightly with the increase in watershed dryness (PET/P) as well as the increase in runoff ratio (Q/P). This study concluded that future changes in climate, precipitation in particular, will significantly impact water resources in the Loess Plateau region an area that is already experiencing a decreasing trend in water yield.  相似文献   

13.
Clark, Gregory M., 2010. Changes in Patterns of Streamflow From Unregulated Watersheds in Idaho, Western Wyoming, and Northern Nevada. Journal of the American Water Resources Association (JAWRA) 46(3):486-497. DOI: 10.1111/j.1752-1688.2009.00416.x Abstract: Recent studies have identified a pattern of earlier spring runoff across much of North America. Earlier spring runoff potentially poses numerous problems, including increased risk of flooding and reduced summer water supply for irrigation, power generation, and migratory fish passage. To identify changing runoff patterns in Idaho streams, streamflow records were analyzed for 26 U.S. Geological Survey gaging stations in Idaho, western Wyoming, and northern Nevada, each with a minimum of 41 years of record. The 26 stations are located on 23 unregulated and relatively pristine streams that drain areas ranging from 28 to >35,000 km2. Four runoff parameters were trend tested at each station for both the period of historical record and from 1967 through 2007. Parameters tested were annual mean streamflow, annual minimum daily streamflow, and the dates of the 25th and 50th percentiles of the annual total streamflow. Results of a nonparametric Mann-Kendall trend test revealed a trend toward lower annual mean and annual minimum streamflows at a majority of the stations, as well as a trend toward earlier snowmelt runoff. Significant downward trends over the period of historical record were most prevalent for the annual minimum streamflow (12 stations) and the 50th percentile of streamflow (11 stations). At most stations, trends were more pronounced during the period from 1967 through 2007. A regional Kendall test for water years 1967 through 2007 revealed significant regional trends in the percent change in the annual mean and annual minimum streamflows (0.67% less per year and 0.62% less per year, respectively), the 25th percentile of streamflow (12.3 days earlier), and the 50th percentile of streamflow (11.5 days earlier).  相似文献   

14.
The Jack Creek watershed, a 133 km2 (51.5 mi2) drainage in southwestern Montana, was impacted by a mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic in 1975–1977 which killed an estimated 35 percent of its total timber. Analyses of USGS streamflow data for four years prior to and five years after mortality suggest a 15 percent post-epidemic increase in annual water yield, a two-to three-week advance in the annual hydrograph, a 10 percent increase in low flows and little increase of peak runoff.  相似文献   

15.
ABSTRACT: This paper considers the distribution of flood flows in the Upper Mississippi, Lower Missouri, and Illinois Rivers and their relationship to climatic indices. Global climate patterns including El Niño/Southern Oscillation, the Pacific Decadal Oscillation, and the North Atlantic Oscillation explained very little of the variations in flow peaks. However, large and statistically significant upward trends were found in many gauge records along the Upper Mississippi and Missouri Rivers: at Hermann on the Missouri River above the confluence with the Mississippi (p = 2 percent), at Hannibal on the Mississippi River (p < 0.1 percent), at Meredosia on the Illinois River (p = 0.7 percent), and at St. Louis on the Mississippi below the confluence of all three rivers (p = 1 percent). This challenges the traditional assumption that flood series are independent and identically distributed random variables and suggests that flood risk changes over time.  相似文献   

16.
Abstract: Sierra Nevada snowmelt and runoff is a key source of water for many of California’s 38 million residents and nearly the entire population of western Nevada. The purpose of this study was to assess the impacts of expected 21st Century climatic changes in the Sierra Nevada at the subwatershed scale, for all hydrologic flow components, and for a suite of 16 General Circulation Models (GCMs) with two emission scenarios. The Soil and Water Assessment Tool (SWAT) was calibrated and validated at 35 unimpaired streamflow sites. Results show that temperatures are projected to increase throughout the Sierra Nevada, whereas precipitation projections vary between GCMs. These climatic changes drive a decrease in average annual streamflow and an advance of snowmelt and runoff by several weeks. The largest streamflow reductions were found in the mid‐range elevations due to less snow accumulation, whereas the higher elevation watersheds were more resilient due to colder temperatures. Simulation results showed that decreases in snowmelt affects not only streamflow, but evapotranspiration, surface, and subsurface flows, such that less water is available in spring and summer, thus potentially affecting aquatic and terrestrial ecosystems. Declining spring and summer flows did not equally affect all subwatersheds in the region, and the subwatershed perspective allowed for identification for the most sensitive basins throughout the Sierra Nevada.  相似文献   

17.
During a 1-year period, we sampled stream water total phosphorus (TP) concentrations daily and soluble reactive phosphorus (SRP) concentrations weekly in four Seattle area streams spanning a gradient of forested to urban-dominated land cover. The objective of this study was to develop time series models describing stream water phosphorus concentration dependence on seasonal variation in stream base flows, short-term flow fluctuations, antecedent flow conditions, and rainfall. Stream water SRP concentrations varied on average by ±18% or ±5.7 μg/L from one week to another, whereas TP varied ±48% or ±32.5 μg/L from one week to another. On average, SRP constituted about 47% of TP. Stream water SRP concentrations followed a simple sine-wave annual cycle with high concentrations during the low-flow summer period and low concentrations during the high-flow winter period in three of the four study sites. These trends are probably due to seasonal variation in the relative contributions of groundwater and subsurface flows to stream flow. In forested Issaquah Creek, SRP concentrations were relatively constant throughout the year except during the fall, when a major salmon spawning run occurred in the stream and SRP concentrations increased markedly. Stream water SRP concentrations were statistically unrelated to short-term flow fluctuations, antecedent flow conditions, or rainfall in each of the study streams. Stream water TP concentrations are highly variable and strongly influenced by short-term flow fluctuations. Each of the processes assessed had statistically significant correlations with TP concentrations, with seasonal base flow being the strongest, followed by antecedent flow conditions, short-term flow fluctuations, and rainfall. Times series models for each individual stream were able to predict ∼70% of the variability in the SRP annual cycle in three of the four streams (r2 = 0.57–0.81), whereas individual TP models explained ∼50% of the annual cycle in all streams (r2 = 0.39–0.59). Overall, time series models for SRP and TP dynamics explained 82% and 76% of the variability for these variables, respectively. Our results indicate that SRP, the most biologically available and therefore most important phosphorus fraction, has simpler and easier-to-predict seasonal and weekly dynamics.  相似文献   

18.
ABSTRACT: Effective planning for use of water resources requires accurate information on hydrologic variability induced by climatic fluctuations. Tree-ring analysis is one method of extending our knowledge of hydrologic variability beyond the relatively short period covered by gaged streamflow records. In this paper, a network of recently developed tree-ring chronologies is used to reconstruct annual river discharge in the upper Gila River drainage in southeastern Arizona and southwestern Arizona since A.D. 1663. The need for data on hydrologic variability for this semi-arid basin is accentuated because water supply is inadequate to meet current demand. A reconstruction based on multiple linear regression (R2=0.66) indicates that 20th century is unusual for clustering of high-discharge years (early 1900s), severity of multiyear drought (1950s), and amplification of low-frequency discharge variations. Periods of low discharge recur at irregular intervals averaging about 20 years. Comparison with other tree-ring reconstructions shows that these low-flow periods are synchronous from the Gila Basin to the southern part of the Upper Colorado River Basin.  相似文献   

19.
Spatial and temporal patterns in low streamflows were investigated for 183 streamgages located in the Chesapeake Bay Watershed for the period 1939–2013. Metrics that represent different aspects of the frequency and magnitude of low streamflows were examined for trends: (1) the annual time series of seven‐day average minimum streamflow, (2) the scaled average deficit at or below the 2% mean daily streamflow value relative to a base period between 1939 and 1970, and (3) the annual number of days below the 2% threshold. Trends in these statistics showed spatial cohesion, with increasing low streamflow volume at streamgages located in the northern uplands of the Chesapeake Bay Watershed and decreasing low streamflow volume at streamgages in the southern part of the watershed. For a small subset of streamgages (12%), conflicting trend patterns were observed between the seven‐day average minimum streamflow and the below‐threshold time series and these appear to be related to upstream diversions or the influence of reservoir‐influenced streamflows in their contributing watersheds. Using multivariate classification techniques, mean annual precipitation and fraction of precipitation falling as snow appear to be broad controls of increasing and decreasing low‐flow trends. Further investigation of seasonal precipitation patterns shows summer rainfall patterns, driven by the Atlantic Multidecadal Oscillation, as the main driver of low streamflows in the Chesapeake Bay Watershed.  相似文献   

20.
Haucke, Jessica and Katherine A. Clancy, 2011. Stationarity of Streamflow Records and Their Influence on Bankfull Regional Curves. Journal of the American Water Resources Association (JAWRA) 47(6):1338–1347. DOI: 10.1111/j.1752‐1688.2011.00590.x Abstract: Bankfull regional curves, which are curves that establish relationships among channel morphology, discharge, drainage area, are used extensively for stream restoration. These curves are developed upon the assumption that streamflows maintain stationarity over the entire record. We examined this assumption in the Driftless Area of southwestern Wisconsin where agricultural soil retention practices have changed, and precipitation has increased since the 1970s. We developed a bankfull regional curve for this area using field surveys of bankfull channel performed during 2008‐2009 and annual series of peak streamflows for 10 rivers with streamflow records ranging from the 1930s to 2009. We found bankfull flows to correlate to a 1.1 return period. To evaluate gage data statistics, we used the sign test to compare our channel morphology to historic 1.5 return period discharge (Q1.5) for five time periods: 1959‐1972, 1973‐1992, 1993‐2008, 1999‐2008, and the 1959‐2008 period of record. Analysis of the historic gage data indicated that there has been a more than 30% decline in Q1.5 since 1959. Our research suggests that land conservation practices may have a larger impact on gaging station stationarity than annual precipitation changes do. Additionally, historic peak flow data from gages, which have records that span land conservation changes, may need to be truncated to represent current flow regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号