首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
ABSTRACT: Sediment losses and water yields were measured for five years on nine forested watersheds in the Gulf Coastal Plain of Arkansas. After one year of pretreatment measurements, three watersheds were clearcut and mechanically site prepared, three were selectively harvested, and three control watersheds were left undisturbed. Sediment losses and water yields were similar for the selectively harvested and cohtrol watersheds during all four post-treatment years. However, clearcutting with mechanical site preparation significantly increased sediment losses and water yields above levels measured on other watersheds. Increased sediment losses persisted for two years, while water yields increased for one year. Although sediment losses from clear-cutting were greater than for other treatments, actual losses averaged only 264 kg/ha and 63 kg/ha for the first and second post-treatment years, respectively. The relatively low sediment losses are attributed to the flat terrain and the relatively low flow discharge rates that typify these sites.  相似文献   

2.
3.
ABSTRACT: Erosion and sedimentation data from research watersheds in the Silver Creek Study Area in central Idaho were used to test the prediction of logging road erosion using the R1-R4 sediment yield model, and sediment delivery using the “BOISED” sediment yield prediction model. Three small watersheds were instrumented and monitored such that erosion from newly constructed roads and sediment delivery to the mouths of the watersheds could be measured for four years following road construction. The errors for annual surface erosion predictions for the two standard road tests ranged from +31.2 t/ha/yr (+15 percent) to -30.3 t/ha/yr (-63 percent) with an average of zero t/ha/yr and a standard deviation of the differences of 18.7 t/ha/yr. The annual prediction errors for the three watershed scale tests had a greater range from -40.8 t/ha/yr (-70 percent) to +65.3 t/ha/yr (+38 percent) with a mean of -1.9 t/ha/yr and a standard deviation of the differences of 25.2 t/ha/yr. Sediment yields predicted by BOISED (watershed scale tests) were consistently greater (average of 2.5 times) than measured sediment yields. Hillslope sediment delivery coefficients in BOISED appear to be overly conservative to account for average site conditions and road locations, and thus over-predict sediment delivery. Mass erosion predictions from BOISED appear to predict volume well (465 tonnes actual versus 710 tonnes predicted, or a 35 percent difference) over 15 to 20 years, however mass wasting is more episodic than the model predicts.  相似文献   

4.
ABSTRACT: Five small (4 ha) forested watersheds in East Texas were instrumented in December 1980 to determine the effect of forest harvesting, mechanical site preparation, and livestock grazing on stormflow, peak discharge rate, and sediment loss. After three pretreatment years, four of the watersheds were treated as follows: (1) clearcutting followed by roller chopping; (2) clearcutting following by shearing and windrowing; (3) clearcutting following by shearing, windrowing, and continuous grazing; and (4) clearcutting followed by shearing, windrowing, and rotational grazing. Clearcut harvesting and all site preparation treatments significantly increased stormflow, peak discharge, and sediment losses over the undisturbed condition. Roller chopping and shearing/windrowing had little impact on sediment loss from these watersheds and appears to be a sound forest conservation practice for gently sloping watersheds (> 8 percent). As applied, livestock grazing had minimal impact on stormflow and peak discharge. The moderately stocked continuously grazed treatment had little impact on sediment loss, but the high stocking density of the rotational grazing treatment increased sediment losses over the undisturbed condition. Sediment losses from these intensively managed forest watersheds, even though significantly greater than from undisturbed conditions, were within the range of sediment losses from undisturbed watersheds in the Southeast, below the range of losses from mechanically prepared watersheds elsewhere, and well below potential losses from pasture and cropland.  相似文献   

5.
ABSTRACT: Prior to PL95–87 little research had been conducted to determine the impacts of mining and reclamation practices on sediment concentrations and yields on a watershed scale. Furthermore, it was unknown whether sediment yield and other variables would return to undisturbed levels after reclamation. Therefore, three small watersheds, with differing lithologies and soils, were monitored for runoff and suspended sediment concentrations during three phases of watershed disturbances: undisturbed watershed condition, mining and reclamation disturbances, and post‐reclaimed condition. Profound increases in suspended‐sediment concentrations, load rates, and yields due to mining and reclamation activities, and subsequent drastic decreases after reclamation were documented. Even with increases in runoff potential, reductions in suspended‐sediment concentrations and load rates to below or near undisturbed‐watershed levels is possible by using the mulch‐crimping technique and by removing diversions. Maximum concentrations and load rates occurred during times of active disturbances that exposed loose soil and spoil to high‐intensity rains. Sediment concentrations remained elevated compared with the undisturbed watershed when diversions were not well maintained and overtopped, and when they were not removed for final reclamation. Diversions are useful for vegetation establishment, but should be maintained until they are removed for final reclamation after good vegetative cover is established.  相似文献   

6.
ABSTRACT The movement of fallout 137Cs carried by soil particles was studied as an indicator of erosion and sedimentation in the Allerton watersheds and 4-H Memorial Lake located near Monticello, Illinois. Sediment deposition was greater in the waterway draining from watershed IB than in the waterway from watershed IA. At the average rate of 2.3 cm/yr of sediment deposition in the lake (from 1954 to 1979), there will be a loss of over 2 meters of water depth in the next century. However, there appears to be a decreasing rate of sediment deposition in the 4-H Memorial Lake as a result of improved conservation practices on the watersheds and the increased effectiveness of vegetated waterways and buffers for retaining sediment.  相似文献   

7.
Distributed parameter watershed models are often used for evaluating the effectiveness of various best management practices (BMPs). Streamflow, sediment, and nutrient yield predictions of a watershed model can be affected by spatial resolution as dictated by watershed subdivision. The objectives of this paper are to show that evaluation of BMPs using a model is strongly linked to the level of watershed subdivision; to suggest a methodology for identifying an appropriate subdivision level; and to examine the efficacy of different BMPs at field and watershed scales. In this study, the Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, sediment, and nutrient yields at the outlet of the Dreisbach (623 ha) and Smith Fry (730 ha) watersheds in Maumee River Basin, Indiana. Grassed waterways, grade stabilization structures, field borders, and parallel terraces are the BMPs that were installed in the study area in the 1970s. Sediment and nutrient outputs from the calibrated model were compared at various watershed subdivision levels, both with and without implementation of these BMPs. Results for the study watersheds indicated that evaluation of the impacts of these BMPs on sediment and nutrient yields was very sensitive to the level of subdivision that was implemented in SWAT. An optimal watershed subdivision level for representation of the BMPs was identified through numerical simulations. For the study watersheds, it would appear that the average subwatershed area corresponding to approximately 4 percent of total watershed area is needed to represent the influence of these BMPs when using the SWAT model.  相似文献   

8.
Although many studies have pointed out the various controlling factors of sediment and nutrient delivery on a plot or watershed scale, little is known on the spatial variability of sediment and nutrient delivery on a regional scale. This study was conducted to reveal regional variations in sediment-associated nutrient delivery in central Belgium. Sediment deposited in 13 small retention ponds was sampled and analyzed for total phosphorus (TP), K, Mg, and Ca content. The TP content of the sediment deposits varied from 510 to 2001 mg P per kg sediment. Nutrients are predominantly fixed on the very fine sediment fraction (<16 microm), which is the reason why the nutrient trap efficiency of the ponds is only a fraction of the sediment trap efficiency. Average nutrient trap efficiency of the studied ponds varies between 4 and 31%, whereas sediment trap efficiency varies between 10 and 72%. For watersheds ranging from 7 to 4873 ha, sediment yield ranged between 1.2 and 20.6 Mg ha(-1) yr(-1), whereas TP export varied from 1.8 to 39.7 kg ha(-1) yr(-1). The observed spatial variability in nutrient losses is primarily attributed to regional variations in erosion and sediment yield values and to a far lesser degree to the spatial variations in fertilizer application. Redistribution of manure in the framework of an agricultural policy may increase the rate of nutrient delivery by ways of erosion and sediment transport.  相似文献   

9.
Many small streams in coastal watersheds in the southeastern United States are modified for agricultural, residential, and commercial development. In the South Carolina Lower Coastal Plain, low‐relief topography and a shallow water table make stream channelization ubiquitous. To quantify the impacts of urbanization and stream channelization, we measured flow and sediment from an urbanizing watershed and a small forested watershed. Flow and sediment export rates were used to infer specific yields from forested and nonforested regions of the urbanizing watershed. Study objectives were to: (1) quantify the range of runoff‐to‐rainfall ratios; (2) quantify the range of specific sediment yields; (3) characterize the quantity and quality of particulate matter exported; and (4) estimate sediment yield attributable to agriculture, development, and channelization activities in the urbanizing watershed. Our results showed that the urban watershed exported over five times more sediment per unit area compared with the forested watershed. Sediment concentration was related to flow flashiness in the urban watershed and to flow magnitude in the forested watershed. Sediments from the forested watershed were dominated by organic matter, whereas mineral matter dominated sediment from the urban stream. Our results indicated that a significant shift in sediment quality and quantity are likely to occur as forested watersheds are transformed by urbanization in coastal South Carolina.  相似文献   

10.
In the Laurentian Great Lakes Basin (GLB), corn acreage has been expanding since 2005 in response to high demand for corn as an ethanol feedstock. This study integrated remote sensing-derived products and the Soil and Water Assessment Tool (SWAT) within a geographic information system (GIS) modeling environment to assess the impacts of cropland change on sediment yield within four selected watersheds in the GLB. The SWAT models were calibrated during a 6 year period (2000–2005), and predicted stream flows were validated. The R 2 values were 0.76, 0.80, 0.72, and 0.81 for the St. Joseph River, the St. Mary River, the Peshtigo River, and the Cattaraugus Creek watersheds, respectively. The corresponding E (Nash and Sutcliffe model efficiency coefficient) values ranged from 0.24 to 0.79. The average annual sediment yields (tons/ha/year) ranged from 0.12 to 4.44 for the baseline (2000 to 2008) condition. Sediment yields were predicted to increase for possible future cropland change scenarios. The first scenario was to convert all “other” agricultural row crop types (i.e., sorghum) to corn fields and switch the current/baseline crop rotation into continuous corn. The average annual sediment yields increased 7–42 % for different watersheds. The second scenario was to further expand the corn planting to hay/pasture fields. The average annual sediment yields increased 33–127 % compared with baseline conditions.  相似文献   

11.
ABSTRACT: The watershed model GAMES is used for the evaluation of a targeting approach to control fluvial sedimentation arising from soil erosion in agricultural areas. The data considered for the analysis consists of output from the application of the model to existing and hypothetical soil and crop management systems in two small watersheds of southern Ontario, one in the rolling uplands and the other in a very flat lowland area. The model output includes estimates of spring sediment yield from field-size cells to the stream outlet for existing agricultural management conditions, and estimates of sediment yield resulting from the successive implementation of two levels of soil erosion controls under four remedial measures strategies. The results reveal that, for the rolling upland watershed exhibiting a wide range of soil erosion and sediment yield rates, targeted control programs can be expected to provide an extremely effective approach to sediment control. For flat lowland watersheds, exhibiting relatively uniform soil erosion and sediment yield rates, the strategy of targeting controls may be somewhat more effective than a random approach to control, but not as efficient as in the case of watersheds in more rolling terrain. It is evident from the study that a screening model such as GAMES provides a very useful tool for the planning and evaluation of erosion and sediment control programs.  相似文献   

12.
Management of Sedimentation in Tropical Watersheds   总被引:2,自引:0,他引:2  
/ The sedimentation of reservoirs is a serious problem throughout the tropics, yet most attempts to control sedimentation in large river basins have not been very successful. Reliable information on erosion rates and sources of sediments has been lacking. In regions where geologically unstable terrain combines with high rainfall, natural erosion rates might be so high that the effects of human activity are limited. Estimates of natural erosion in these situations often have been poor because of the episodic nature of most erosion during large storms and because mass-wasting may supply much of the sediment. The predominance of mass-wasting in some watersheds can result in an unexpectedly high ratio of bedload to suspended load, shifting sedimentation to "live" rather than "dead" storage within reservoirs. Furthermore, the inappropriate use of the Universal Soil Loss Equation to assess the effectiveness of erosion control measures has led to inaccurate estimates of the sediment reduction benefits that could accrue to watershed treatment efforts. Although reducing erosion from cultivated areas is desirable for other reasons, efforts aimed at reducing reservoir sedimentation by controlling agricultural sources of erosion may have limited benefits if the principal sources are of natural origin or are associated with construction of the dams and reservoirs and with rural roads and trails. Finally, the most appropriate locations for watershed rehabilitation depend on the magnitude of temporary storage of colluvium and alluvium within the river basin: Where storage volume is large and residence time of sediment very long, reducing agricultural erosion may have limited impacts on sedimentation within the expected life of a reservoir. Systematic development and analysis of sediment budgets for representative watersheds is needed to address these limitations and thereby improve both the planning of river basin development schemes and the allocation of resources towards reducing sedimentation. When sedimentation of reservoirs is the key issue, sediment budgets must focus especially on channel transport rates and sediment delivery from hillsides. Sediment budgets are especially critical for tropical areas where project funds and technical help are limited. Once sediment budgets are available, watershed managers will be able to direct erosion control programs towards locations where they will be most effective. KEY WORDS: Tropical watersheds; Sedimentation; Reservoirs; Erosion control  相似文献   

13.
Abstract: Alluvial fans in southern California are continuously being developed for residential, industrial, commercial, and agricultural purposes. Development and alteration of alluvial fans often require consideration of mud and debris flows from burned mountain watersheds. Accurate prediction of sediment (hyper‐concentrated sediment or debris) yield is essential for the design, operation, and maintenance of debris basins to safeguard properly the general population. This paper presents results based on a statistical model and Artificial Neural Network (ANN) models. The models predict sediment yield caused by storms following wildfire events in burned mountainous watersheds. Both sediment yield prediction models have been developed for use in relatively small watersheds (50‐800 ha) in the greater Los Angeles area. The statistical model was developed using multiple regression analysis on sediment yield data collected from 1938 to 1983. Following the multiple regression analysis, a method for multi‐sequence sediment yield prediction under burned watershed conditions was developed. The statistical model was then calibrated based on 17 years of sediment yield, fire, and precipitation data collected between 1984 and 2000. The present study also evaluated ANN models created to predict the sediment yields. The training of the ANN models utilized single storm event data generated for the 17‐year period between 1984 and 2000 as the training input data. Training patterns and neural network architectures were varied to further study the ANN performance. Results from these models were compared with the available field data obtained from several debris basins within Los Angeles County. Both predictive models were then applied for hind‐casting the sediment prediction of several post 2000 events. Both the statistical and ANN models yield remarkably consistent results when compared with the measured field data. The results show that these models are very useful tools for predicting sediment yield sequences. The results can be used for scheduling cleanout operation of debris basins. It can be of great help in the planning of emergency response for burned areas to minimize the damage to properties and lives.  相似文献   

14.
ABSTRACT: The pebble count, a quick and simple technique for characterizing streambed materials, has long been used by geomorphologists, hydrologists, and river engineers. This paper describes how pebble counts have been used to monitor fine sediment (particles less then 6 mm in size) on the Boise National Forest. Data from two watersheds subjected to major wildfires and the failure of a dam are discussed. Following wildfires, pebble count data showed increases in streambed fines followed by improvement of the stream substrate with time as the watersheds recovered. For the dam failure, pebble count data showed an increase in fines in the stream below the failure and were used to track the distance of sediment movement downstream. Pebble counts may be best used where fine sediment on channel substrates are a concern, such as in granitic watersheds where coarse sands are a large component of bedload and land-disturbing activities introduce fine sediment into streams. Pebble counts are found to be a simple and rapid monitoring method that can be used to help determine whether or not land management activities or land disturbances are introducing fine sediment into streams.  相似文献   

15.
ABSTRACT: The AGNPS (AGricultural NonPoint Source) model was evaluated for predicting runoff and sediment delivery from small watersheds of mild topography. Fifty sediment yield events were monitored from two watersheds and five nested subwater-sheds in East Central Illinois throughout the growing season of four years. Half of these events were used to calibrate parameters in the AGNPS model. Average calibrated parameters were used as input for the remaining events to obtain runoff and sediment yield data. These data were used to evaluate the suitability of the AGNPS model for predicting runoff and sediment yield from small, mild-sloped watersheds. An integrated AGNPS/GIS system was used to efficiently create the large number of data input changes necessary to this study. This system is one where the AGNPS model was integrated with the GRASS (Geographic Resources Analysis Support System) GIS (Geographical Information System) to develop a decision support tool to assist with management of runoff and erosion from agricultural watersheds. The integrated system assists with the development of input GIS layers to AGNPS, running the model, and interpretation of the results.  相似文献   

16.
Abstract: The watershed scale Soil and Water Assessment Tool (SWAT) model divides watersheds into smaller subwatersheds for simulation of rainfall‐runoff and sediment loading at the field level and routing through stream networks. Typically, the SWAT model first needs to be calibrated and validated for accurate estimation through adjustment of sensitive input parameters (i.e., Curve Number values, USLE P, slope and slope‐length, and so on). However, in some instances, SWAT‐simulated results are greatly affected by the watershed delineation and Digital Elevation Models (DEM) cell size. In this study, the SWAT ArcView GIS Patch II was developed for steep sloping watersheds, and its performance was evaluated for various threshold values and DEM cell size scenarios when delineating subwatersheds using the SWAT model. The SWAT ArcView GIS Patch II was developed using the ArcView GIS Avenue program and Spatial Analyst libraries. The SWAT ArcView GIS Patch II improves upon the SWAT ArcView GIS Patch I because it reflects the topographic factor in calculating the field slope‐length of Hydrologic Response Units in the SWAT model. The simulated sediment value for 321 subwatersheds (watershed delineation threshold value of 25 ha) is greater than that for 43 subwatersheds (watershed delineation threshold value of 200 ha) by 201% without applying the SWAT ArcView GIS Patch II. However, when the SWAT ArcView GIS Patch II was applied, the difference in simulated sediment yield decreases for the same scenario (i.e., difference in simulated sediment with 321 subwatersheds and 43 subwatersheds) was 12%. The simulated sediment value for DEM cell size of 50 m is greater than that for DEM cell size of 10 m by 19.8% without the SWAT ArcView GIS Patch II. However, the difference becomes smaller (3.4% difference) between 50 and 10 m with the SWAT ArcView GIS Patch II for the DEM scenarios. As shown in this study, the SWAT ArcView GIS Patch II can reduce differences in simulated sediment values for various watershed delineation and DEM cell size scenarios. Without the SWAT ArcView GIS Patch II, variations in the SWAT‐simulated results using various watershed delineation and DEM cell size scenarios could be greater than those from input parameter calibration. Thus, the results obtained in this study show that the SWAT ArcView GIS Patch II should be used when simulating hydrology and sediment yield for steep sloping watersheds (especially if average slope of the subwatershed is >25%) for more accurate simulation of hydrology and sediment using the SWAT model. The SWAT ArcView GIS Patch II is available at http://www.EnvSys.co.kr/~swat for free download.  相似文献   

17.
18.
Fox, James F., Charles M. Davis, and Darren K. Martin, 2010. Sediment Source Assessment in a Lowland Watershed Using Nitrogen Stable Isotopes. Journal of the American Water Resources Association (JAWRA) 46(6):1192–1204. DOI: 10.1111/j.1752-1688.2010.00485.x Abstract: Sediment sources and transported sediments were sampled in a lowland watershed with pronounced fine sediment storage in the streambed. Sediments were analyzed for carbon and nitrogen content and stable nitrogen isotopic composition. Analysis of the data shows that temporarily stored streambed sediments dominate the sediment load during moderate- and low-flow hydrologic events. Modeling of sediment transport and nitrogen elemental and isotopic mass balance was performed for the watershed for a 12-month time period using a continuous, conceptual-based model. The model results show that during moderate- and low-flow hydrologic events, the streambed is slowly downcutting. During very high-flow hydrologic events, deposition is pronounced in the streambed and sediment is replenished to the bed. Nitrogen model results show that elemental and isotopic nitrogen of streambed sediments vary substantially over the simulation period. In this manner, the streambed in a lowland watershed functions as a temporary storage zone that, in turn, can impact the nitrogen elemental and isotopic signature of sediments. The variation could significantly impact estimates of sediment provenance using nitrogen tracer-based methods. Future work should consider both hydrologic and biogeochemical control on the nitrogen isotopic signature of sediments in small lowland watersheds and streams where a significant portion of deposited fines are temporarily stored.  相似文献   

19.
In a climate of limited resources, it is often necessary to prioritize restoration efforts geographically. The synoptic approach is an ecologically based tool for geographic prioritization of wetland protection and restoration efforts. The approach was specifically designed to incorporate best professional judgment in cases where information and resources are otherwise limited. Synoptic assessments calculate indices for functional criteria in subunits (watersheds, counties, etc.) of a region and then rank the subunits. Ranks can be visualized in region-scale maps which enable managers to identify areas where efforts optimize functional performance on a regional scale. In this paper, we develop a conceptual model for prioritizing watersheds whose wetlands can be restored to reduce total sediment yield at the watershed outlet. The conceptual model is designed to rank watersheds but not individual wetlands within a watershed. The synoptic approach is valid for applying the sediment yield reduction model because there is high demand for prioritizing disturbed wetlands for restoration, but there is limited, quantitative, accurate information available with which to make decisions. Furthermore, the cost of creating a comprehensive database is prohibitively high. Finally, because the model will be used for planning purposes, and, specifically, for prioritizing based on multiple decisions rather than optimizing a single decision, the consequence of prioritization errors is low. Model results cannot be treated as scientific findings. The conclusions of an assessment are based on judgement, but this judgement is guided by scientific principles and a general understanding of relevant ecological processes. The conceptual model was developed as the first step towards prioritizing of wetland restoration for sediment yield reduction in US EPA Region 4.  相似文献   

20.
Abstract: Sediments and soils were analyzed using stable carbon and nitrogen isotope ratio mass spectrometry and carbon and nitrogen elemental analyses to evaluate the their ability to indicate land‐use and land management disturbance and pinpoint loading from sediment transport sources in forested watersheds disturbed by surface coal mining. Samples of transported sediment particulate organic matter were collected from four watersheds in the Southern Appalachian forest region of southeastern Kentucky. The four watersheds had different surface coal mining history that were classified as undisturbed, active mining, and reclaimed conditions. Soil samples were analyzed including reclaimed grassland soils, undisturbed forest soils, geogenic organic matter associated with coal fragments in mining spoil, and soil organic matter from un‐mined grassland soils. Statistically significant differences were found for all biogeochemical signatures when comparing transported sediments from undisturbed watersheds and surface coal mining disturbed watersheds, and the results were attributed to differences in erosion sources and the presence of geogenic organic matter. Sediment transport sources in the surface coal mining watersheds were analyzed using Monte Carlo mass balance un‐mixing and it was found that: δ15N showed the ability to differentiate streambank erosion and surface soil erosion; and δ13C showed the ability to differentiate soil organic matter and geogenic organic matter. Results from the analyses suggest that streambank erosion downstream of surface coal mining sites is an especially significant source of sediment in coal mining disturbed watersheds. Further, the results suggest that the sediment transport processes governing streambank erosion loads are taking longer to reach geomorphologic equilibrium in the watershed as compared with the surface erosion processes. The dual‐isotope technique provides a useful method for further investigation of the impact of surface coal mining in the uplands of the watershed upon the geomorphologic state of the channel and the source of organic matter in aquatic systems impacted by surface coal mining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号