首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Concentrations and isotopic compositions (13C/12C) of aromatic hydrocarbons were determined in eight samples obtained from the strongly anoxic part of the leachate plume downgradient from the Vejen Landfill (Denmark), where methanogenic, sulfate-reducing and iron-reducing conditions were observed. Despite the heterogeneous distribution of the compounds in the plume, the isotope fractionation proved that ethylbenzene and m/p-xylene were subject to significant biodegradation within the strongly anoxic plume. The isotope fractionation factors (alphaC) for the degradation of the m/p-xylene (1.0015) and ethylbenzene (1.0021) obtained from the field observations were similar to factors previously determined for the anaerobic degradation of toluene and o-xylene in laboratory experiments, and suggest that in situ biodegradation is one major process controlling the fate of these contaminants in this aquifer. The isotope fractionation determined for 1,2,4-trimethylbenzene and 2-ethyltoluene suggested in situ biodegradation; however, the isotopic composition did not correlate well with the respective concentration as expressed by the Rayleigh equation. Some other compounds (1,2,3-trimethylbenzene, o-xylene, naphthalene and fenchone) did not show significant enrichments in delta13C values along the flow path. The compound concentrations were too low for accurate isotope analyses of benzene, toluene, 1- and 2-methylnaphthalene, while interferences in the chromatography made it impossible to evaluate the isotopic composition for 4-ethyltoluene, 1,3,5-trimethylbenzene and camphor.In addition to demonstrating the potential of assessing isotopic fractionation as a means for documenting the in situ biodegradation of complex mixtures of aromatic hydrocarbons in leachate plumes, this study also illustrates the difficulties for data interpretation in complex plumes and high analytical uncertainties for isotope analysis of organic compounds in low concentration ranges.  相似文献   

2.
Rapid degradation of cadusafos was evident in soils collected from previously-treated field sites from a potato monoculture area in northern Greece. The slower degradation of cadusafos observed in corresponding antibiotic-treated soils as well as in soils from an adjacent previously-untreated field demonstrated the microbial involvement in the rapid degradation of cadusafos in the soils from the previously-treated sites. Application of the non-specific antibacterial antibiotic chloramphenicol or of the Gram+ bacteria-inhibiting antibiotics penicillin + lyncomycin + vancomycin significantly inhibited the rapid biodegradation of cadusafos suggesting that soil bacteria and probably Gram+ bacteria are mainly responsible for the rapid biodegradation of cadusafos in the specific soil. Further experiments showed that the bacterial population of the cadusafos-adapted soil was also able to rapidly degrade the chemically related nematicide ethoprophos but not fenamiphos and oxamyl. This is the first report of the occurrence of enhanced biodegradation of cadusafos in potato fields. In addition, the finding of cross-enhancement between cadusafos and ethoprophos significantly reduces the number of available chemicals which could be alternated to prevent the development of enhanced biodegradation and thus intensifies the problem in potato monoculture areas like the one in northern Greece.  相似文献   

3.
He S  Zhang Y  Yang M  Du W  Harada H 《Chemosphere》2007,66(11):2233-2238
The residues of magnesium ammonium phosphate (MAP) decomposed by heating under alkali conditions were repeatedly used as the sources of phosphate and magnesium for the removal of high ammonium concentration from landfill leachate. Up to 96% of ammonium in MAP powder could be released under the following conditions: NH4(+):OH- molar ratio, 1:1; temperature, 90 degrees C; heating time, 2 h. Fourier transform infrared spectra and X-ray diffraction analysis of MAP before and after heating demonstrated that MAP was mainly transformed to amorphous magnesium sodium phosphate (MgNaPO4), which makes it possible for the NH4(+) to replace Na+ in MgNaPO4 to form more stable struvite. Successful ammonium removal was achieved by using the MAP decomposition residues as the sole phosphate and magnesium sources. The ammonium removal decreased gradually following the increase of MAP reuse cycles, and in the 6th cycle, ammonium removals of 84% and 62% were achieved for synthetic wastewater and landfill leachate, respectively. Analysis of the surfaces of MAP powders acquired at different reuse cycles using scanning electron microscopy with energy dispersive X-ray suggested that the existence of calcium, kalium and aluminum ions in landfill leachate might have inhibited the formation of MAP through competition with ammonium ions for phosphate ions. It is estimated that reuse of MAP for 3 cycles could save about 44% chemical costs.  相似文献   

4.
The uptake of the organophosphates tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), tributyl phosphate (TBP), the insect repellant N,N-diethyl toluamide (DEET), and the plasticizer n-butyl benzenesulfonamide (NBBS) into plants was studied in greenhouse experiments and simulated with a dynamic physiological plant uptake model. The calibrated model was coupled to a tipping buckets soil transport model and a field scenario with sewage sludge application was simulated. High uptake of the polar, low-volatile compounds TCEP, TCPP, and DEET into plants was found, with highest concentrations in straw (leaves and stem). Uptake into carrot roots was high for TCPP and TBP. NBBS showed no high uptake but was rapidly degraded. Uptake into barley seeds was small. The pattern and levels of uptake could be reproduced by the model simulations, which indicates mainly passive uptake and transport (i.e., by the transpiration stream, with the water) into and within the plants. Also the field simulations predicted a high uptake from soil into plants of TCEP, TCPP, and DEET, while TBP is more likely taken up from air. The BCF values measured and calculated in the greenhouse study are in most cases comparable to the calculated values of the field scenario, which demonstrates that greenhouse studies can be suitable for predicting the behavior of chemicals in the field. Organophosphates have a high potential for bioaccumulation in crops and reach agricultural fields both via sewage sludge and by atmospheric deposition.  相似文献   

5.
The aerobic biodegradation of commercial nonylphenol ethoxylate (NPE) mixture and alkali lignin was studied using the OECD headspace test accompanied by the simultaneous measurement of ecotoxicity directly from the biodegradation liquors and by the follow-up of the chemical composition of the studied chemicals. NPE degradation was dependent on the inoculum source: approximately 40% of NPE was mineralized into CO2 during the 4-week experiment when inoculum from Helsinki City wastewater treatment plant (WWTP) was used, and only 12% was mineralized when inoculum from Jyväskylä City WWTP was used. Chemical analyses revealed a shift in the ethoxylate chain length from longer to shorter soon after the beginning of the NPE biodegradation tests. At the same time also toxicity (reverse electron transport assay, RET) and estrogenic activity (human estrogen receptor yeast) measured directly from the biodegradation liquors decreased. In case of alkali lignin, approximately 11% was mineralized in the test and chemical analysis showed in maximum a 30% decrease in lignin concentration. Toxicity of lignin biodegradation liquors started to decrease in the beginning of the test, but became more toxic towards the end of the test again. Especially RET assay proved to be sensitive enough for measuring toxicity changes directly from biodegradation liquors, although a concentrating treatment of the liquors is recommended for a more detailed characterization and identification of toxic metabolites.  相似文献   

6.
Ye FX  Shen DS 《Chemosphere》2004,54(10):1573-1580
The acclimation of sludge from Hangzhou citrate factory and Hangzhou municipal wastewater treatment plant for degradation dechlorination of chlorophenols (CPs) compounds, and its biodegradation kinetics were studied in batch process with or without addition of sucrose. Three monochlorophenols (2-CP; 3-CP; 4-CP) and pentachlorophenol (PCP) were concurrently fed to different bioreactors. The parameters that were monitored included biogas production, biogas composition and chemical oxygen demand (COD). The results showed that acclimation with chlorophenol can increase the degradation activity of anaerobic sludge and degradation rate of chlorophenolic compounds, and reduce the lag time. Degradation dechlorination activity of the acclimated sludge strongly depended on sludge source, microorganism population and chlorophenol congener. 2-CP was more easily acclimated than 3-CP and 4-CP. Among the four tested compounds, 4-CP was the most difficult to be acclimated. The observed degradation rate with presence of sucrose was higher than that with absence of sucrose, suggesting that addition of the external carbon source can stimulate the formation of acclimated sludge which could effectively degrade chlorophenols. Kinetic equations of biodegradation of chlorophenols were also presented in this paper.  相似文献   

7.

This study revealed a dual pathway for the degradation of tris(1-chloro-2-propanyl) phosphate (TCPP) by zero-valent iron (ZVI) and persulfate as co-milling agents in a mechanochemical (MC) process. Persulfate was activated with ZVI to degrade TCPP in a planetary ball mill. After milling for 2 h, 96.5% of the TCPP was degraded with the release of 63.16, 50.39, and 42.01% of the Cl?, SO42?, and PO43?, respectively. In the first degradation pathway, persulfate was activated with ZVI to produce hydroxyl (·OH) radicals, and ZVI is oxidized to Fe(II) and Fe(III). A substitution reaction occurred as a result of the attack of ·OH on the P–O–C bonds, leading to the successive breakage of the three P–O–C bonds in TCPP to produce PO43?. In the second pathway, a C–Cl bond in part of the TCPP molecule was oxidized by SO4·? to carbonyl and carboxyl groups. The P–O–C bonds continued to react with ·OH to produce PO43?. Finally, the intermediate organochloride products were further reductively dechlorinated by ZVI. However, the synergistic effect of the oxidation (·OH and SO4·?) and the reduction reaction (ZVI) did not completely degrade TCPP to CO2, resulting in a low mineralization rate (35.87%). Moreover, the intermediate products still showed the toxicities in LD50 and developmental toxicant. In addition, the method was applied for the degradation of TCPP in soil, and high degradations (>?83.83%) were achieved in different types of soils.

  相似文献   

8.
Demonstration of natural attenuation of xenobiotic organic compounds (XOCs) in landfill leachate plumes is a difficult task and still an emerging discipline within groundwater remediation. One of the early studies was made at the Vejen Landfill in Denmark in the late 1980s, which suggested that natural attenuation of XOCs took place under strongly anaerobic conditions within the first 150 m of the leachate plume. This paper reports on a revisit to the same plume 10 years later. Within the strongly anaerobic part of the plume, 49 groundwater samples were characterized with respect to redox-sensitive species and XOCs. The analytical procedures have been developed further and more compounds and lower detection limits were observed this time. In addition, the samples were screened for degradation intermediates and for toxicity. The plume showed fairly stationary features over the 10-year period except that the XOC level as well as the level of chloride and nonvolatile organic carbon (NVOC) in the plume had decreased somewhat. Most of the compounds studied were subject to degradation in addition to dilution. Exceptions were benzene, the herbicide Mecoprop (MCPP), and NVOC. In the early study, NVOC seemed to degrade in the first part of the plume, but this was no longer the case. Benzyl succinic acid (BSA) was for the first time identified in a leachate plume as a direct indicator, and as the only intermediate of toluene degradation. Toxicity measurements on solid phase-extracted (SPE) samples revealed that toxic compounds not analytically identified were still present in the plume, suggesting that toxicity measurements could be helpful in assessing natural attenuation in leachate plumes.  相似文献   

9.
Due to worldwide restrictions on polybrominated diphenyl ethers (PBDEs), the demand for alternative flame retardants (AFRs), such as organophosphate flame retardants (OPFRs), novel brominated FRs (NBFRs) and hexabromocyclododecanes (HBCDs), has recently increased. Little is known about human exposure to NBFRs and OPFRs and that their levels in dust have been scarcely evaluated worldwide. To increase the knowledge regarding these chemicals, we measured concentrations of five major NBFRs, ten OPFRs and three HBCD isomers in indoor dust from New Zealand homes. Dust samples were taken from living room floors (n=34) and from mattresses of the same houses (n=16). Concentrations (ngg(-1)) of NBFRs were: 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) (<2-175), decabromodiphenyl ethane (DBDPE) (<5-1430), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) (<2-2285) and bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH) (<2-640). For OPFRs, concentrations (ngg(-1)) ranged between: tri-ethyl-phosphate (TEP) (<10-235), tri-n-butyl-phosphate (TnBP) (<20-7545), tris-(2-chloroethyl)-phosphate (TCEP) (<20-7605), tris-(1-chloro-2-propyl) phosphate (TCPP) (20-7615), tri-(2-butoxyethyl)-phosphate (TBEP) (50-27325), tris-(2,3-dichloropropyl)-phosphate (TDCPP) (20-16560), tri-phenyl-phosphate (TPhP) (20-35190), and tri-cresyl-phosphate (TCP) (<50-3760). HBCD concentrations fell in the range <2-4100ngg(-1). BTBPE, DBDPE, TBPH, TBEP, and TnBP showed significant positive correlation (p<0.05) between their concentrations in mattresses and the corresponding floor dust (n=16). These data were used to derive a range of plausible exposure scenarios. Although the estimated exposure is well below the corresponding reference doses (RfDs), caution is needed given the likely future increase in use of these FRs and the currently unknown contribution to human exposure by other pathways such as inhalation and diet.  相似文献   

10.
Rapid anaerobic degradation of toxaphene in sewage sludge   总被引:2,自引:0,他引:2  
Buser HR  Haglund P  Müller MD  Poiger T  Rappe C 《Chemosphere》2000,40(9-11):1213-1220
We studied the degradation of technical toxaphene in anaerobic sewage sludge from a municipal waste water treatment plant. Chlorobornanes, chlorocamphenes and related compounds were rapidly degraded, with degradation rates in the order of decachloro>nonachloro>octochloro>heptachloro approximately = hexachloro compounds. The half-lives of individual congeners ranged from <1 day to several days. We also studied the degradation of technical toxaphene in previously sterilized sludge (control), and found it was slower than in the anaerobic sludge. The chlorobornanes that degraded most rapidly in the non-sterilized anaerobic sludge were those with gem chloro substitution on the 6-member carbon-ring, including the toxic congeners, Toxicant A and B. Non-gem chloro substituted congeners, like the biologically persistent P26 and P50, also degraded, but less rapidly. Toxaphene degradation in sewage sludge proceeded primarily via reductive dechlorination, leading to HxSed, HpSed, TC2 and other persistent metabolites. Enantioselective determinations indicated little, if any, enantioselectivity in the formation and/or degradation of these compounds. The isomer and enantiomer profiles of the hexa-, hepta-, and octachlorobornanes are similar to those observed in sediment from the Baltic Sea, suggesting that technical toxaphene is the source of these compounds and that its composition was changed via similar anaerobic degradation pathways.  相似文献   

11.
Two sulfonylurea herbicides, chlorsulfuron and metsulfuron-methyl, were studied under laboratory conditions, in order to elucidate the biodegradation pathway operated by Aspergillus niger, a common soil fungus, which is often involved in the degradation of xenobiotics. HPLC-UV was used to study the kinetic of degradation, whereas LC-MS was used to identify the metabolites structure. In order to avoid the chemical degradation induced by a decrease in pH, due to the production of citric acid by the fungus, the experiments were performed in a buffered neutral medium. No significant degradation for both compounds was observed in mineral medium with 0.2% sodium acetate. On the contrary, in a rich medium, after 28 days the degradations, chemical degradation excluded, were about 30% for chlorsulfuron and 33% for metsulfuron-methyl. The main microbial metabolites were obtained via cleavage of the sulfonylurea bridge. In addition the fungus seems to be able to hydroxylate the aromatic ring of chlorsulfuron. In the case of metsulfuron-methyl the only detected metabolite was the triazine derivative, while the aromatic portion was completely degraded. Finally, the demethylation of the methoxy group on the triazine ring, previously observed with a Pseudomonas fluorescens strain, was not observed with A. niger.  相似文献   

12.
渗滤液污染包气带中铁的形态变化   总被引:1,自引:0,他引:1  
从渗滤液场龄和包气带岩性两方面出发,研究了新、老渗滤液对亚粘土和细砂包气带环境中Fe的含量及存在形态的影响。结果表明:新、老渗滤液分别能使细砂包气带介质中除残渣态以外Fe的含量增加16.68%或降低13.82%。亚粘土比细砂作为包气带介质更能缓冲渗滤液对介质中Fe的影响程度,其受影响范围在包气带0~20 cm深度处。当亚粘土为介质的包气带被新渗滤液污染后,其表层介质中碳酸盐结合态Fe的含量会增加15倍之多,为缓冲渗滤液Fe的污染做出了巨大贡献,但这部分Fe的存在也是潜在的二次污染源,在环境pH急剧变化的情况下,它可能会引起地下水高铁污染。  相似文献   

13.
BACKGROUND, AIM, AND SCOPE: Perfluoroalkylated substances (PFAS) are chemicals with completely fluorinated alkyl chains. The specific properties of the F-C bond give PFAS a high stability and make them very useful in a wide range of applications. PFAS also pose a potential risk to the environment and humans because they have been recently characterized as persistent, bioaccumulative, and toxic. The objective of this work is to study the bacterial degradation of PFAS under aerobic and anaerobic conditions in municipal sewage sludge as a contribution toward understanding their environmental fate and behavior. MATERIALS AND METHODS: Bacterial communities from sewage sludge were exposed to a mixture of PFAS under aerobic or anaerobic conditions. Individual PFAS concentrations were determined in the experiment media at different exposure times using liquid chromatography-mass spectrometry analysis after extraction with solid-phase extraction. RESULTS: The PFAS analyses of samples of sludge showed repeatable replicate results, allowing a reliable quantification of the different groups of PFAS analyzed. No conclusive evidence for PFAS degradation was observed under the experimental conditions tested in this work. Reduction in concentrations, however, was observed for some PFAS in sludge under aerobic conditions. DISCUSSION: The largest concentration decrease occurred for the fluorotelomer alcohols (FTOHs), especially for the 8:2 FTOH, which have been described as biodegradable in the literature. However, this concentration decrease could be due to different causes: sorption to glass, septa, or matrix components, as well as bacterial activity. Therefore, it is not certain that biodegradation occurred. CONCLUSIONS: PFAS are very recalcitrant chemicals, especially when fully fluorinated. Although some decreases in concentration have been observed for some PFAS, such as the FTOHs, there is no conclusive evidence for biodegradation. It can be concluded that the PFAS tested in these experiments are non-biodegradable under these experimental conditions. RECOMMENDATIONS AND PERSPECTIVES: Since the presence of PFAS is ubiquitous in the environment and they can be toxic, more research is needed in this field to elucidate which PFAS are susceptible to biodegradation, the conditions required for biodegradation, and the possible routes followed. A possible inhibitory effect of PFAS on bacteria, the threshold concentrations, and conditions of inhibition should also be investigated.  相似文献   

14.
Matsushita T  Matsui Y  Saeki R  Inoue T 《Chemosphere》2005,61(8):1134-1141
Previous studies have revealed that the mutagenicity of fenitrothion increases during anaerobic biodegradation, suggesting that this insecticide's mutagenicity could effectively increase after it pollutes anaerobic environments such as lake sediments. To investigate possible changes to the mutagenicity of fenitrothion under aerobic conditions after it had already been increased by anaerobic biodegradation, batch incubation cultures were maintained under aerobic conditions. The mutagenicity, which had increased during anaerobic biodegradation, decreased under aerobic conditions with aerobic or facultative bacteria, but did not disappear completely in 22 days. In contrast, it did not change under aerobic conditions without bacteria or under continued anaerobic conditions. These observations suggest that the mutagenicity of anaerobically metabolized fenitrothion would not necessarily decrease after it arrives in an aerobic environment: this would depend on the presence of suitable bacteria. Therefore, fenitrothion-derived mutagenic compounds may pollute the water environment, including our drinking water sources, after accidental pollution of aerobic waters. Although amino-fenitrothion generated during anaerobic biodegradation of fenitrothion was the principal mutagen, non-trivial contributions of other, unidentified metabolites to the mutagenicity were also observed.  相似文献   

15.
Flame retardants are used in polymers to reduce the flammability of building materials, electric appliances, fabric and papers. In recent years, organophosphate flame retardants have been used as substitutes for polybrominated flame retardants (BFRs). In Japan, the amount of organophosphate flame retardants used in 2001 was about five times more than in 2000. Recently, several studies have shown the health concerns for some organophosphate flame retardants. Little research has been performed on the emission of organophosphate flame retardants, especially the relationship between content and emissions. In this study, a new type of passive sampler was developed to measure emissions of organophosphate flame retardants from plastic materials. With this sampler, emissions from polyvinyl chloride wallpaper samples with different content of tris(2-chloroisopropyl)phosphate (TCPP) at different temperatures were examined. The observed maximum emissions of TCPP from 1, 3, 5, 10 and 20 w/w% content wallpaper materials were 262.3, 452.6, 644.8, 1119.1 and 2166.8 μg m−2 h−1, respectively. Emissions from 5% TCPP content materials at 40 and 60 °C were 1135.7 and 2841.2 μg m−2 h−1, respectively. A significantly positive correlation between the flux of TCPP and the TCPP content of the wallpaper samples was observed. A linear relationship was found between the inverse of temperature and the logarithm of TCPP emission. The results imply that the use of materials with a high organophosphate flame retardant content can lead to high emission rates in high-temperature indoor environments.  相似文献   

16.
为加速好氧填埋场的稳定化进程,提出利用生物强化技术加速好氧填埋垃圾的生物降解,通过模拟实验,研究了微生物菌剂对填埋垃圾稳定过程的影响。结果表明:微生物菌剂降低了好氧填埋场的有机污染负荷,使渗滤液COD下降更加明显,整个填埋周期所产渗滤液的COD总量较对照组少20.20%;加速了含氮物质的生物转化,氨氮峰值出现较对照组提前6 d,经历峰值以后,氨氮快速下降,较对照组提前22 d达到国家生活垃圾填埋场污染控制标准(GB 16889-2008)所规定的渗滤液氨氮排放标准25 mg/L,并使整个填埋周期氨氮总量减少9.15%;微生物菌剂降低了渗滤液的产量,使整个填埋周期渗滤液累计产量减少8.29%;使垃圾中有机质降解加快并使其降解更加彻底,至实验结束时总有机质含量较对照组低8.82%,干重较对照组减少35.95%;沉降性能优于对照组,至填埋结束时较对照组沉降量提高6.35%。  相似文献   

17.
The degradation of the herbicide acetochlor, in a neoluvisol and in a calcosol were studied as a function of depth (0-25cm and 25-50cm) and temperature (25 degrees C and 15 degrees C) under controlled laboratory conditions during 58 and 90 days, respectively. The surface and sub-surface soil samples were respectively spiked with 1 and 0.01mgkg(-1) of 14C-acetochlor, the concentrations observed in previous field monitoring. The half-lives (DT50) varied from 1.4 to 14.9 days depending on the soil, temperature and applied concentration. The maximal mineralization (24%) was observed for the surface calcosol at 25 degrees C. The comparison of results obtained for sterilized and non-sterilized soils, the decrease of DT50 with the increase of temperature, the shape of CO2 emissions and the increase of number of aerobic endogenous microflora through the experiment suggested that biological process are dominant in degradation. A particular attention was paid to the formation and dissipation of metabolites ESA (ethanesulphonic acid) and OA (oxanilic acid) during the whole experiment. At 25 degrees C, ESA and OA were observed after three days, but as ESA concentration decreased over time in surface calcosol, it remained constant in surface neoluvisol. A difference in ESA/OA ratio depends on the soil with a predominance of OA in surface neoluvisol and a disappearance of OA in surface calcosol.  相似文献   

18.
The ability of microorganisms in a wide range of river waters and activated sludges to degrade the heterocyclic compound morpholine was determined by die-away tests and also by most probable number counts of the morpholine degrading microbes. All activated sludges were capable of morpholine degradation but the rate at which degradation occurred could not be related to the type of influent treated. Nearly all river waters contained morpholine degrading microbes which could degrade morpholine in die-away tests. Generally, biodegradation of morpholine occurred more rapidly the further down stream the sample was taken. Morpholine degradation rates could not, however, be related to the immediate severity of pollution (as measured by National Water Council (NWC) classification) at any sampling site. It may be that morpholine degradation rate is related to the cumulative effects of successive discharges of polluting effluents rather than the immediate effect of any particular discharge. Clearly, the capacity to degrade morpholine exists in rivers and activated sludges from sewage works; in practice, however, the rates of degradation observed are very low and it is unlikely that significant morpholine biodegradation generally occurs in these systems.  相似文献   

19.
Landfilling is a dominant municipal solid waste (MSW) disposal method in most developing countries. In China, approximately 85% of the generated MSW is being disposed of in the landfills. The amount of MSW is growing rapidly with the rate of approximately 8-10% annually, which contains a high quantity of moisture and organic matters. The problems of leachate treatment and landfill gas (LFG) emissions are increasing gradually. Reducing the hazard before emplacement, pretreatment of MSW before landfilling has become very important for the conventional landfill. In this study, aerobic pretreatment of mixed MSW was used, and much attention has been given to the natural convection of air in the mixed and unshredded MSW for bioconversion of organic matter (OM). This study is an attempt to investigate aerobic pretreatment suitability for the mixed and unshredded MSW at Beijing. A pilot-scale aerobic pretreatment simulator (APS) was developed at Beishen Shu Landfill in Beijing. To work out the biodegradation of the OM in the APS, fresh and pretreated MSW samples were collected and analyzed for OM, moisture content, temperature, chemical oxygen demand, total organic carbon, carbon, nitrogen, hydrogen, lignocelluloses, and biochemical methane potential at various stages of the pretreatment. Furthermore, results of the fresh and pretreated MSW are compared. Significant reduction in the observed parameters of the pretreated waste samples is observed. This work demonstrates that pretreatment is significantly effective in reducing the landfill emissions that is leachate and LFG.  相似文献   

20.
Nakamaru Y  Tagami K  Uchida S 《Chemosphere》2006,63(1):109-115
Desorption levels of soil-sorbed selenium (Se) were studied by adding phosphate to 22 typical Japanese agricultural soils. Soil-soil solution distribution coefficients of Se (Kd-Se) were measured using a batch process as an index of Se sorption level, adding 75Se as a tracer. After the Kd measurement, extraction of soil-sorbed 75Se with a 0.1 M or 1 M Na2HPO4 solution followed to determine the amount of 75Se desorbed by the phosphate. When the 0.1 M Na2HPO4 solution was used, 18-70% of soil-sorbed Se was extracted (average: 47%). However, when the 1 M Na2HPO4 solution was used, 27-83% of soil-sorbed Se was extracted (average: 57%). The observed 75Se desorption percentage indicated the maximum Se removability by phosphate addition. The desorption percentage of Se with 1 M Na2HPO4 correlated with Kd-Se values, suggesting that the soil sample with higher Kd-Se contained more reactive components for phosphate-sorption than the soil sample with lower Kd-Se. To evaluate the effect of phosphate concentration on the Se sorption, the Kd-Se was measured for two typical soils under different levels of phosphate (0.1-10 mM PO4). The Kd values were decreased by phosphate addition for both soils. The Kd decrease was observed even for just 1 mM PO4. The phosphate addition with 1 mM PO4 is the same level as in P fertilizer applied to paddy fields in Japan. Therefore, it was suggested that Se desorption should occur in Japanese soils due to the phosphate input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号