首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The mobility of antimony (Sb) in Japanese agricultural soils was studied by radiotracer experiments using 124Sb tracer. The soil-solution distribution coefficients (Kd) of Sb were measured for 110 soil samples. These Kds ranged from 1 to 2065 L kg(-1); the geometric mean was 62 L kg(-1) excluding one extremely high value, 2065 L kg(-1). Experimental measurement of Kd showed a decrease with both increasing pH and increasing phosphate concentration. The latter suggested that one aspect of the Sb sorption phenomena in Japanese soil was influenced by specific adsorption of anions such as phosphate. However, other aspects could not be explained by this specific adsorption mechanism, because only 20-40% of soil-sorbed Sb could be extracted by phosphate solution.  相似文献   

2.
Distribution coefficient of selenium in Japanese agricultural soils   总被引:2,自引:0,他引:2  
Nakamaru Y  Tagami K  Uchida S 《Chemosphere》2005,58(10):1347-1354
In order to evaluate the selenium (Se) sorption level in Japanese soils, soil/soil solution distribution coefficients (K(d)s) were obtained for 58 agricultural soil samples (seven soil classification groups) using 75Se as a tracer. Although several chemical forms of Se are present in agricultural fields, selenite was used, because it is the major inorganic Se form in acid soils such as found in Japan. The Kd values obtained covered a wide range, from 12 to 1060l/kg, and their arithmetic mean was 315l/kg. Among the soil groups, Andosols had higher Kd values. The Kd values for all samples were highly correlated with soil active-aluminum (Al) and active-iron (Fe) contents. Thus, active-Al and active-Fe were considered to be the major adsorbents of Se. Then, a new sequential extraction procedure was applied to 12 soil samples in order to quantify the effect of soil components on Se adsorption. The sequential extraction results showed that 80-100% of the adsorbed Se was recovered as Al-bound Se and Fe-bound Se. The amount of Al-bound Se was the highest in the soils that showed high Kd values, though the relative contribution of Fe-bound Se tended to increase with decreasing Kd values. The high values of Kd seemed to be caused mainly by the adsorption of Se onto active-Al in Japanese soils.  相似文献   

3.
Flora JR  Baker B  Wybenga D  Zhu H  Aelion CM 《Chemosphere》2008,70(6):1077-1084
A series of experiments was performed to prepare acidic macroencapsulated buffers composed of 20% Ca(H2PO4)(2) and 80% Eudragit S 100 polymer and alkaline macrocapsules composed of 65% K2HPO4 and 35% Eudragit E PO polymer (the powdered form of Eudragit E 100). Eudragit S 100 was shown to be soluble at a pH greater than 7.0, while Eudragit E 100 was soluble at a pH less than 7.0. Both polymers did not impart significant biochemical oxygen demand. The Eudragit E PO polymer solution showed low toxicity (EC50=91%) based on the Microtox Acute Toxicity Test compared to the 0.1mM background phosphate buffer solution (EC50=100%) while the Eudragit S 100 polymer solution showed higher toxicity (EC50=53%). Batch tests showed that the acidic macrocapsules reduced the pH of a 0.1mM phosphate solution from 11 to neutral, while the alkaline macrocapsules increased the pH of a 0.1mM phosphate solution from 3 to neutral. The macrocapsules could potentially be used as an in situ proportional pH controller for groundwater remediation.  相似文献   

4.
Forest/tilled soils and stream sediments from the highly polluted mining and smelting district of Príbram, Czech Republic, were subjected to single extraction procedures in order to determine the available contents of Sb and As. The results obtained from five widely-used 2-h single extraction tests were compared: deionised water, 0.01M CaCl(2), 1M NH(4)NO(3), 0.005M diethylentriaminpentaacetic acid (DTPA) and 0.1M Na(2)HPO(4). The ICP-MS determinations of Sb and As in the extracts were coupled with measurements of pH and Eh and geochemical modelling (PHREEQC-2) to determine their speciation in extracts and possible solubility-controlling phases. According to the speciation calculations, Sb in extracts was present mainly as Sb(V) with the exception of the DTPA extracts from highly organic and acidic forest soils, where Sb(III) species accounted for up to 34% of total Sb speciation. The highest extractabilities were observed for the 0.1M Na(2)HPO(4) solution (up to 9% of the total Sb and up to 34% of the total As concentration). The other extracting media yielded statistically the same results (p<0.05) with Sb extractabilities below 2% and As extractabilities below 8%. Thus, simple deionised water and 0.1M Na(2)HPO(4) extractions are preferred for quick estimates of easily-exchangeable and specifically-sorbed Sb, respectively.  相似文献   

5.
Lim TT  Goh KH 《Chemosphere》2005,58(1):91-101
Two batches of fine soil fraction of an acidic soil were deliberately contaminated with selenite (Se(IV)) and selenate (Se(VI)), respectively, and aged for more than 220 days. Speciation analysis using continuous flow-through hydride generation atomic absorption spectrometry (HGAAS) indicated that the species were predominant in their respective aged soils. A selective sequential extraction scheme was employed to fractionate the Se retained in the soils into six fractions of varying retentions. Abilities of various chemical reagents in extracting the Se in the two soil batches were then evaluated. The reagents investigated were sodium salts such as sodium chloride (NaCl), sodium sulfate (Na2SO4), sodium carbonate (Na2CO3), and sodium phosphate (Na3PO4), and two oxidants, namely, hydrogen peroxide (H2O2) and potassium permanganate (KMnO4). It was found that NaCl, Na2SO4, and Na2CO3 could only extract the exchangeable fraction of Se, while Na3PO4 could extract the exchangeable and strongly-bound fractions. Selenate was extracted more than Se(IV) by the salts. The kinetics of Se(IV) extraction by Na3PO4 could be best described by the Elovich model, while the Ritchie second-order model was the most appropriate to describe Se(VI) extraction. Efficiencies of the oxidants in Se(IV) extraction highly depended on their applied dosages. Both H2O2 and KMnO4 were able to extract greater than 93% of total Se, and therefore were significantly more effective than the salts in Se(IV) extraction.  相似文献   

6.
Phosphate fertilizers and herbicides such as glyphosate and MCPA are commonly applied to agricultural land, and antibiotics such as tetracycline have been detected in soils following the application of livestock manures and biosolids to agricultural land. Utilizing a range of batch equilibrium experiments, this research examined the competitive sorption interactions of these chemicals in soil. Soil samples (0-15 cm) collected from long-term experimental plots contained Olsen P concentrations in the typical (13 to 20 mg kg?1) and elevated (81 to 99 mg kg?1) range of build-up phosphate in agricultural soils. The elevated Olsen P concentrations in field soils significantly reduced glyphosate sorption up to 50%, but had no significant impact on MCPA and tetracycline sorption. Fresh phosphate additions in the laboratory, introduced to soil prior to, or at the same time with the other chemical applications, had a greater impact on reducing glyphosate sorption (up to 45%) than on reducing tetracycline (up to 13%) and MCPA (up to 8%) sorption. The impact of fresh phosphate additions on the desorption of these three chemicals was also statistically significant, but numerically very small namely < 1% for glyphosate and tetracycline and 3% for MCPA. The presence of MCPA significantly reduced sorption and increased desorption of glyphosate, but only when MCPA was present at concentrations much greater than environmentally relevant and there was no phosphate added to the MCPA solution. Tetracycline addition had no significant effect on glyphosate sorption and desorption in soil. For the four chemicals studied, we conclude that when mixtures of phosphate, herbicides and antibiotics are present in soil, the greatest influence of their competitive interactions is phosphate decreasing glyphosate sorption and the presence of phosphate in solution lessens the potential impact of MCPA on glyphosate sorption. The presence of chemical mixtures in soil solution has an overall greater impact on the sorption than desorption of individual organic chemicals in soil.  相似文献   

7.
The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac-sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac-sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (Koc), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac-sodium < fluometuron < prometryn < or = diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac-sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step (omega = [nad/nde - 1] x 100). Soil type and initial concentration had significant effect on omega. The effect of sorption and desorption properties of these four herbicides on the off-site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   

8.
Herbicide leaching through soil into groundwater greatly depends upon sorption-desorption and degradation phenomena. Batch adsorption, desorption and degradation experiments were performed with acidic herbicide MCPA and three soil types collected from their respective soil horizons. MCPA was found to be weakly sorbed by the soils with Freundlich coefficient values ranging from 0.37 to 1.03 mg1−1/n kg−1 L1/n. It was shown that MCPA sorption positively correlated with soil organic carbon content, humic and fulvic acid carbon contents, and negatively with soil pH. The importance of soil organic matter in MCPA sorption by soils was also confirmed by performing sorption experiments after soil organic matter removal. MCPA sorption in these treated soils decreased by 37-100% compared to the original soils. A relatively large part of the sorbed MCPA was released from soils into aqueous solution after four successive desorption steps, although some hysteresis occurred during desorption of MCPA from all soils. Both sorption and desorption were depth-dependent, the A soil horizons exhibited higher retention capacity of the herbicide than B or C soil horizons. Generally, MCPA sorption decreased in the presence of phosphate and low molecular weight organic acids. Degradation of MCPA was faster in the A soil horizons than the corresponding B or C soil horizons with half-life values ranging from 4.9 to 9.6 d in topsoils and from 11.6 to 23.4 d in subsoils.  相似文献   

9.
Dahiya S  Shanwal AV  Hegde AG 《Chemosphere》2005,60(9):1253-1261
Zinc adsorption was studied in the soils of three nuclear power plant sites of India. 65Zn was used as a radiotracer to study the sorption characteristics of Zn(II). The sorption of zinc was determined at 25 and 45 degrees C at pH 7.8+/-0.2 in the solution of 0.01 M Ca(NO3)2 as supporting electrolyte. The sorption data was tested both in Freundlich and Langmuir isotherms and could be described satisfactorily. The effect of organic matter and other physico-chemical properties on the uptake of zinc was also studied in all the soil samples. The results showed that the cation exchange capacity, organic matter, pH and clay content were the main contributors to zinc sorption in these soils. The adsorption maximum was found to be higher in the soil on Kakarpara Atomic Power Plant sites soils having high organic matter and clay content. The zinc supply parameters of the soils are also discussed. In the desorption studies, the sequential extraction of the adsorbed zinc from soils showed that the diethylene triamine penta acetic acid extracted maximum amount of adsorbed zinc than CaCl2 and Mg(NO3)2. The zinc sorption on the soil and amount of zinc retention after extractants desorption shows a positively correlation with vermiculite and smectite mineral content present in the clay fraction of the soil. The amount desorbed by strong base (NaOH) and demineralised water was almost negligible from soils of all the sites, whereas the desorption by strong acid (HNO3) was 75-96% of the adsorbed zinc.  相似文献   

10.
Adsorption of cadmium (Cd) and phosphate by oxides or soils has been extensively studied, but the adsorption/desorption kinetics and mutual effects of these two species in co-existing systems has received little attention. In this study, a batch equilibration method was used to investigate the effect of phosphate and its application time on Cd adsorption and desorption on goethite. The influence of Cd and its application time on phosphate sorption and desorption kinetics was also determined. For Cd adsorption, phosphate was introduced into the system by two sequences: pre-treating goethite at 40 (degrees)C for 1 week, and applying with Cd simultaneously. Similarly, for phosphate sorption, Cd was applied by pre-treating goethite at 40 (degrees)C for 1 week or simultaneous addition with phosphate. Results demonstrated that phosphate added to goethite enhanced Cd adsorption, and facilitated Cd release as compared to untreated goethite. Cadmium had slightly higher adsorption, but a significantly faster desorption rate from the goethite simultaneously treated with phosphate and Cd, as compared to phosphate-pretreated goethite. Cadmium and its application time had little impact on phosphate sorption by goethite. However, phosphate desorption kinetics was affected by Cd application time. When the sorption time was short (15 min), phosphate desorption was faster from the goethite that was simultaneously treated with phosphate and Cd, as compared to Cd pretreated or untreated goethite. In contrast, a longer sorption time (4 weeks) resulted in a higher desorption rate of phosphate from Cd pretreated goethite than simultaneously phosphate-Cd treated goethite. This study provided useful information on adsorption/desorption kinetics in complicated Cd-phosphate-goethite systems.  相似文献   

11.
Isoxaflutole is a new pre-emergence corn herbicide that undergoes rapid conversion to a diketonitrile derivative (DKN) in soils. Sorption-desorption studies were conducted in five different soils varying in physical and chemical properties. A batch equilibration technique was used with total initial aqueous solution concentrations of DKN at 0.25, 0.75, 2.0, 8.0, 25, 75, 150, and 250 mg l(-1). After the sorption process, two subsequent desorptions were conducted with an equilibration period of 7 days. A high correlation existed between the desorption coefficient, K(Fd) and the organic matter content of soils (r(2)=0.844 for the first desorption and r(2)=0.861 for the second desorption), while the clay content did not greatly influence the desorption of DKN. Although the sorption of DKN was generally reversible, a sorption-desorption hysteresis was apparent in all soils. The site energy distribution curves emphasized the fact that DKN binds tightly to soils with higher organic matter content and greater proportion of DKN was retained by those soils  相似文献   

12.
Sorption–desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption–desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kdads, varied according to its initial concentration and was ranged 40–84 for HA, 14–58 for clay and 1.85–4.15 for bulk soil. Freundlich sorption coefficient, Kfads, values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ~800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/nads values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.  相似文献   

13.
In this study, (1) change in the concentration of bisphenol A (BPA) leached from polycarbonate (PC) tube to control water (BPA free), seawater and river water at 20 and 37 degrees C as a function of time, (2) the fate of BPA caused by addition of H(2)O(2) and Fe(3+) to seawater containing BPA leached from PC tube were assessed. BPA leached from PC tube to all water samples increased with the ascendant of temperature and with the passage of time. The BPA leaching velocity in seawater was the fastest in three samples (11 ng/day for seawater, 4.8 ng/day for river water 0.8 ng/day for control water at 37 degrees C).BPA leaching velocity from PC tube was significantly high at pH 8 (50 mM Na(2)HPO(4)) and increased dose-dependently. There was no difference in the velocity of BPA among the 50 mM phosphate-buffers at pH 6.5, 7.0 and 7.5. BPA was leached three times higher by addition of Na(+) than K(+). However, the higher the K(+) concentration, the larger the BPA leached from PC tube. Na(+) mixed with PO(4)(-) was effective on BPA leaching from PC tube, but not with SO(4)(-) or Cl(-). The results suggested that BPA leaching from PC tube would be attributed to the concentration of bibasic phosphate such as Na(2)HPO(4) and K(2)HPO(4) in water samples. BPA was degraded in both control water and seawater in the presence of radical oxygen species, but the degradation rate was lower in seawater than in control water, suggesting that anti-oxidative system exists in seawater. Neo-synthesized substance in both control water and seawater in the presence of reactive oxygen species was identified as BPA-quinone by LC-MS.  相似文献   

14.
Sorption of fipronil and its metabolites on soils from South Australia   总被引:1,自引:0,他引:1  
This paper reports on the sorption of fipronil [(+/-)-5-amino-1-(2,6-dichloro-alpha,alpha,alpha-trifluoro-p-tolyl)-4-trifluoromethyl-sulfinylpyrazole-3-carbonitrile] and its two main metabolites, desulfynil and sulfide derivatives on a range of soils from South Australia. The Freundlich sorption coefficient (Kf) values for fipronil on the soils ranged from 1.94 to 4.84 using a 5% acetonitrile/water mixture as the soil solution. Its two metabolites had a higher sorption affinity for soils, with Kf values ranging from 11.09 to 23.49 for the sulfide derivative and from 4.70 to 11.77 for the desulfynil derivative. Their sorption coefficients were found to be better related to the soil organic carbon than clay content. The presence of cosolvents in soil solutions had a significant influence on the sorption of fipronil. The Freundlich sorption coefficients showed a log linear relationship with the fractions of both acetonitrile and methanol in solutions. The sorption coefficient of fipronil on Turretfield soil in the aqueous solution was estimated to be from 13.80 to 19.19. Methanol had less effect on the sorption of fipronil than acetonitrile. The Kd values for fipronil on the eight soils using a 5% methanol/water mixture were from 5.34 to 13.85, which reflect more closely the sorption in the aqueous solution. The average Koc value for fipronil on the eight South Australian soils was calculated to be 825+/-214.  相似文献   

15.
Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14C-isoproturon and 14C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (Kd values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (Kd range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (Kd range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography.  相似文献   

16.
Cs+ transport experiments carried out in columns packed with uncontaminated Hanford formation sediment from the SX tank farm provide strong support for the use of a multisite, multicomponent cation exchange model to describe Cs+ migration in the Hanford vadose zone. The experimental results indicate a strong dependence of the effective Cs+ Kd on the concentrations of other cations, including Na+ that is present at high to extremely high concentrations in fluids leaking from the Hanford SX tanks. A strong dependence of the Cs+ Kd on the aqueous Cs+ concentration is also apparent, with retardation of Cs+ increasing from a value of 41 at a Cs+ concentration of 10(-4) M in the feed solution to as much as 282 at a Cs+ concentration of 5x10(-7) M, all in a background of 1 M NaNO3. The total cation exchange capacity (CEC) of the Hanford sediment was determined using 22Na isotopic equilibrium exchange in a flow-through column experiment. The value for the CEC of 120 microeq/g determined with this method is compatible with a value of 121.9 microeq/g determined by multi-cation elution. While two distinct exchange sites were proposed by Zachara et al. [Geochim. Cosmochim. Acta 66 (2002) 193] based on binary batch exchange experiments, a third site is proposed in this study to improve the fit of the Cs+-Na+ and Cs+-Ca+ exchange data and to capture self-sharpened Cs+ breakthrough curves at low concentrations of Cs+. Two of the proposed exchange sites represent frayed edge sites (FES) on weathered micas and constitute 0.02% and 0.22% of the total CEC. Both of the FES show a very strong selectivity for Cs+ over Na+ (K(Na-Cs)=10(7.22) and 10(4.93), respectively). The third site, accounting for over 99% of the total CEC, is associated with planar sites on expansible clays and shows a smaller Na+-Cs+ selectivity coefficient of 10(1.99). Parameters derived from a fit of binary batch experiments alone tend to under predict Cs+ retardation in the column experiments. The transport experiments indicate 72-90% of the Cs+ sorbed in experiments targeting exchange on FES was desorbed over a 10- and 24-day period, respectively. At high Cs+ concentrations, where sorption is controlled primarily by exchange on planar sites, 95% of the Cs+ desorption was desorbed. Most of the difficulty in desorbing Cs+ from FES is a result of the extremely high selectivity of these sites for Cs+, although truly irreversible sorption as high as 23% was suggested in one experiment. The conclusion that Cs+ exchange is largely reversible in a thermodynamic sense is supported by the ability to match Cs+ desorption curves almost quantitatively with an equilibrium reactive transport simulation. The model for Cs+ retardation developed here qualitatively explains the behavior of Cs+ in the Hanford vadose zone underneath a variety of leaking tanks with differing salt concentrations. The high selectivity of FES for Cs+ implies that future desorption and migration is very unlikely to occur under natural recharge conditions.  相似文献   

17.
Leachate from ash landfills is frequently enriched with As and Se but their off-site movement is not well understood. The attenuation potential of As and Se by soils surrounding selected landfills during leachate seepage was investigated in laboratory column studies using simulated ash leachate. As(III, V) and Se(IV, VI) concentrations as well as pH, flow rate, and a tracer were monitored in influent and effluent for up to 800 pore volumes followed by sequential desorption, extraction, and digestion of column segments. Column breakthrough curves (BTCs) were compared to predictions based on previously measured sorption isotherms. Early As(V) breakthrough and retarded As(III) breakthrough relative to predicted BTCs are indicative of oxidative transformation during seepage. For Se(VI), which exhibits linear sorption and the lowest sorption propensity, measured BTCs were predicted fairly well by equilibrium sorption isotherms, except for the early arrival of Se(IV) in one site soil, which in part, may be due to higher column pH values compared to batch isotherms. Most of the As and Se retained by soils during leaching was found to be strongly sorbed (60–90%) or irreversibly bound (10–40%) with <5% readily desorbable. Redox potential favoring transformation to the more sorptive valence states of As(V) and Se(IV) will invoke additional attenuation beyond equilibrium sorption-based predictions. With the exception of Se(IV) on one site soil, results indicate that attenuation by down-gradient soils of As and Se in ash landfill seepage will often be no less than what is predicted by equilibrium sorption capacity with further attenuation expected due to favorable redox transformation processes, thus mitigating contaminant plumes and associated risks.  相似文献   

18.
GOAL, SCOPE AND BACKGROUND: One of the principal experimental variables which effect the results of phosphorus (P) sorption studies is the ionic composition, in addition to both species and concentrations of the contacting solution. In spite of the realization that ionic species, concentrations and their compositions effect P sorption and/or desorption, most of the salt-related studies are confined to Cl- (anion) in association with different cations. While the knowledge about the comparative response of P to Cl- and SO4(2-) ions was lacking, the current study was conducted to evaluate the comparative effects of anions (in association with cations) on inorganic P release and P fractions in the soil. METHODS: The test soil was amended with livestock compost manure (OP); KH2PO4 (IPk) or Ca(H2PO4)2 (IPc) at a rate of 1ppm. Soil was subjected to one salt and nine subsequent water extractions and different P fractions were measured. Four salt types, NaCl, Na2SO4, KCl and K2SO4, were used at levels of 0.5 M. RESULTS: Irrespective of P sources, P release was substantially increased in the salt-pretreated soil as compared to the non-saline soil. Sulfate salts released more P in subsequent water extractions than Cl-. Phosphorus release decreased for salt types with Na2SO4 > NaCl > K2SO4 > KCl and for P sources with OP approximately IPk > Control (without P application) > IPc, respectively. DISCUSSION: No previous study was found to compare the results of more P release by SO4(2-) than Cl- salt. Most of the previous studies focused on anion sorption capacities, but the mechanism for their adsorption is not fully known. Most of the authors suggested that the mechanisms of SO4(2-) and PO4(3-) adsorption are similar, and that both ions compete for the same sorption sites (Kamprath et al. 1956, Couto et al. 1979, Pasricha and Fox 1993). Although adsorbed SO4(2-) does not compete strongly with PO4(3-), there is likely to be some competition for sorption between these anions which may cause comparatively more P release by SO4(2-) than Cl- salts. Higher P release by Na-saturation could be due to the release of P associated with oxide surfaces or due to dissolution of Ca-P phases (Curtin et al. 1987). CONCLUSIONS: Study clearly showed that not only cations species differ for P desorption capacity, but associated anions also play a vital role in the fate of P under saline environments. Synergetic effects exist between Na and SO4(2-) ions which enhanced the P release. This study has also confirmed the fact that P from organic sources is available as well as from inorganic P sources. However, P release depends more on the type of P source applied than on total P. RECOMMENDATIONS AND PERSPECTIVES: It is highly recommended that more than one anion species must be used in the research plans for evaluating the P response in a saline environment. The results have important implications from the point of view of research, as most of the researchers focus on different cations only for evaluating P response to salts from an environmental point of view. However, our study has made it clear that anions in association with cations differed for their effects on P release.  相似文献   

19.
Miscible-displacement experiments were conducted to compare the effects of aqueous soil solutions with ethyl alcohol, ethylene glycol, diethylene glycol, and triethylene glycol on the movement of metals through soils. Aqueous or alcohol solutions containing 1 mM each Cd, Ni, and Zn and 5 mM Ca were perfused through columns containing River Sand, Canelo loam (Canelo 1) or Mohave sandy clay loam (Mohave scl) until effluent metal concentrations (C) equaled influent concentrations (C0) or CC0−1 = 1. In general, the order of sorption was Zn > Ni > Cd in aqueous-perfused columns, while in alcohol-perfused columns sorption of Ni Cd ≥ Zn. In comparison to aqueous solutions, alcohols reduced total metal sorption by at least 25%. Metal sorption was best correlated to cation exchange capacity of the soil, sorption of metals being greatest in the Mohave scl and least in the River Sand. After CC0−1 = 1 was reached, columns were leached with deionized water. While leaching did not affect the sorption of metals in columns which had been perfused with aqueous solvents, sorption behavior of metals changed significantly in columns which had been perfused with alcohol solvents. Leaching caused desorption of 5 to 30% of the sorbed Ni. In general, Cd was desorbed (up to 45%) from the soils tested. The exceptions were River Sand columns perfused with diethylene and triethylene glycol in which additional Cd was sorbed to the soil from the soil solution. Additional Zn was sorbed in all columns tested with the exception of the Canelo 1 column perfused with ethyl alcohol.  相似文献   

20.
To assess the effects of three types of Mg and P salt mixtures (potassium phosphate [K3PO4]/magnesium sulfate [MgSO4], potassium dihydrogen phosphate [K2HPO4]/MgSO4, KH2PO4/MgSO4) on the conservation of N and the biodegradation of organic materials in an aerobic food waste composting process, batch experiments were undertaken in four reactors (each with an effective volume of 30 L). The synthetic food waste was composted of potatoes, rice, carrots, leaves, meat, soybeans, and seed soil, and the ratio of C and N was 17:1. Runs R1-R3 were conducted with the addition of K3PO4/ MgSO4, K2HPO4/MgSO4, and KH2PO4/MgSO4 mixtures, respectively; run R0 was a blank performed without the addition of Mg and P salts. After composting for 25 days, the degrees of degradation of the organic materials in runs R0-R3 were 53.87, 62.58, 59.14, and 49.13%, respectively. X-ray diffraction indicated that struvite crystals were formed in runs R1-R3 but not in run R0; the gaseous ammonia nitrogen (NH3-N) losses in runs R0-R3 were 21.2, 32.8, 12.6, and 3.5% of the initial total N, respectively. Of the tested Mg/P salt mixtures, the K2HPO4/ MgSO4 system provided the best combination of conservation of N and biodegradation of organic materials in this food waste composting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号