首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了解西安市高新区采暖期大气颗粒物(包括PM1 0和PM2.5)污染状况,于2013年1月1日到2013年3月15日在高新区进行了为期74 d的连续自动采样。结果表明:采样期间高新区PM1 0的小时浓度范围28~1744μg/m3,平均浓度为332μg/m3;PM2.5的小时浓度范围13~946μg/m3,平均浓度为207μg/m3。PM2.5占PM1 0的平均比例为63.8%。颗粒物浓度日变化呈现弱双峰特征,分别在凌晨2:00和上午7:00~8:00左右达到浓度最高值,但是上午的峰值并不明显。颗粒物在15:00~1 6:00之间浓度达到最低值,由于受采暖影响,18:00之后颗粒物浓度明显上升。  相似文献   

2.
成都市黑碳气溶胶污染特征及与气象因子的关系   总被引:1,自引:0,他引:1       下载免费PDF全文
孙欢欢  倪长健  崔蕾 《环境工程》2016,34(6):119-124
为系统了解成都市黑碳气溶胶(BC)的污染特征,利用四川省环境监测站提供的成都市人民南路四段2013年9月至2014年7月逐时BC监测数据,对其浓度进行了统计分析。结果表明:1)BC小时平均浓度变化范围较大,介于0.01~57.83μg/m3,浓度中值(5.17μg/m3)小于平均值(7.32μg/m3),即BC小时浓度具有偏态分布特征。2)BC日均浓度变化范围为2~28.2μg/m3,其浓度日变化在四季均呈明显的单谷型,谷值出现在16:00时附近,表现为从凌晨到10:00时变化较平稳,10:00—16:00时浓度急剧下降,16:00到夜间浓度急剧上升;浓度季变化呈现出冬高夏低,春秋平稳的基本特征。3)秋、冬、春、夏四季BC本底浓度值分别为2.49,5.05,2.89,2.43μg/m3。4)BC质量浓度与PM2.5和PM10变化趋势一致,BC浓度相对颗粒物浓度变化较快,在0.01水平上与PM2.5和PM10均呈显著正相关,相关系数分别为0.657、0.638,与温度、降水和风速均呈负相关,相关系数分别为-0.334,-0.338,-0.202。  相似文献   

3.
广州市PM_2.5和PM_1.0质量浓度变化特征   总被引:4,自引:1,他引:3  
文章报道了2005年干季和2006年湿季广州市大气细粒子PM2.5和PM1.0质量浓度的实时监测情况。监测结果表明:干季监测点PM2.5日均质量浓度在11.8~164.0μg/m3之间,总平均值为81.7μg/m3;湿季日均质量浓度在19.9~121.2μg/m3之间,总平均值为57.7μg/m3。干季PM1.0日均质量浓度变化范围为14.9~129.1μg/m3,总平均值为59.4μg/m3;湿季日均质量浓度在11.9~86.7μg/m3之间,总平均值为52.9μg/m3。对比发现,PM1.0总平均质量浓度在干、湿季相差很小,且与湿季PM2.5总平均质量浓度也相差不大,显示PM1.0具有相对固定成因来源且基本不受季节变化影响,而且湿季PM2.5的组成主要由PM1.0大气细粒子构成。干季PM2.5和PM1.0质量浓度日变化特征呈明显夜间高、白天低的特点,质量浓度的最大值都出现在晚上21:00左右;湿季由于雨水频繁,没有明显的日变化特征。气象分析表明,干季大气细粒子质量浓度主要受冷空气影响,而湿季主要受降雨影响。  相似文献   

4.
2013年北京市细颗粒物时空分布特征研究   总被引:1,自引:1,他引:0  
根据2013年北京市PM2.5监测数据,系统分析了北京市PM2.5污染的时空分布特征,并利用克里格插值统计了四季PM2.5不同浓度区间的国土面积。结果显示:2013年全市PM2.5年均浓度为89.5μg/m3,超过年均35μg/m3的国标1.56倍;PM2.5浓度由高到低的季节依次是冬季、春季、秋季和夏季;空间分布上PM2.5呈现明显的南北梯度分布特征;2013年PM2.5平均浓度达标对应的国土面积占比夏季最大为73%,冬季最小为22%。  相似文献   

5.
东莞城区环境空气细颗粒物PM_(2.5)特征分析   总被引:4,自引:4,他引:0  
采集2010—2012年东莞市城区5个采样点环境细粒子PM2.5,根据PM2.5浓度分析其污染特征,并结合气象要素分析其影响因素。研究表明:2010—2012年,东莞市城区各测点PM2.5年均浓度在0.035~0.054 mg/m3,PM2.5污染具有明显的夏季和非夏季2种季节性特征,夏季污染相对较轻,平均值为0.036 mg/m3,非夏季污染较严重,平均值达到0.053 mg/m3;PM2.5超标情况逐年好转,2010,2011,2012年超标率分别为20.3%、9.9%、4.6%。气象因素对PM2.5浓度变化有一定的影响,PM2.5浓度变化与风速呈一定程度的负相关,与相对湿度之间呈负相关关系,与气压之间呈正关系,而非夏季温度与其浓度变化关系不明显。  相似文献   

6.
北京地区秋季雾霾天PM2.5污染与气溶胶光学特征分析   总被引:15,自引:9,他引:6  
利用北京城区和郊区2011年9月1日~12月7日PM2.5质量浓度、气溶胶散射系数(σsca)和黑碳浓度观测资料,研究了雾霾天气条件下北京地区PM2.5污染与气溶胶光学参数的变化特征,并讨论了气象条件的作用.结果表明,北京地区PM2.5污染和气溶胶光学特性受雾霾天气的影响非常明显.PM2.5浓度、σsca和气溶胶吸收系数(σabs)在雾霾期均明显高于非雾霾期,雾霾期日均PM2.5浓度在城区和郊区分别达到97.6μg·m-3和64.4μg·m-3,为非雾霾期日均浓度的3.3和4.8倍.城区高PM2.5浓度造成雾霾类天气出现频率明显高于郊区.轻雾天城区PM2.5浓度、σsca和σabs明显高于郊区,区域输送的影响相对较弱,轻雾和霾天城郊差异较小,区域性特征明显,而雾天σsca城郊非常接近且在各雾霾类天气中相对最高,气溶胶散射能力最强,区域性特征较为明显.气象条件的不同造成各雾霾过程PM2.5浓度、σsca和σabs的空间分布、PM2.5污染及气溶胶消光强度上呈现不同的特点.边界层以上偏南风将南部地区污染物向北京输送,在整层下沉气流作用下使得边界层内污染物浓度增加,加之边界层高度持续稳定在600 m左右,边界层内风速很低,污染物水平、垂直扩散均很弱,造成局地污染物的累积,形成了PM2.5污染和气溶胶消光强度最强的一次雾霾过程.  相似文献   

7.
为了了解北京城区大气细颗粒物(PM2.5)中有机碳(OC)和元素碳(EC)的浓度水平与季节变化特征,2013年5月、8月、10月和2014年1月分季节在北京城区进行了PM2.5和PM2.5中OC、EC的连续监测。在监测期间,PM2.5质量浓度平均值为86.8μg/m3,PM2.5中OC的平均浓度为15.46μg/m3,占PM2.5的17.8%;EC的平均浓度为2.88μg/m3,占PM2.5的3.3%。北京城区的PM2.5和OC、EC随季节变化明显,冬季最高,秋季大于春季,夏季最低。其中秋、冬季的OC、EC浓度的日变化有着明显的白天低、傍晚前后逐渐升高、在午夜出现峰值的特点。通过一次重污染过程分析发现,静稳、高湿的气象条件使PM2.5、OC、EC的浓度都有着显著地增加。对OC、EC相关分析显示,冬季两者的相关性最高。而且OC/EC的比值都大于2.0,说明北京存在着一定的二次污染。  相似文献   

8.
为了解深圳市坪山新区环境空气质量现状,研究运用坪山新区PM2.5浓度数据,分析该区PM2.5的污染特征及气象条件对其的影响,坪山新区PM2.5浓度呈现了明显的季节变化、月变化特征,表现为秋冬季高、夏季低、春季居中的特点;PM2.5浓度最高出现在12月,最低出现在7月.该区PM2.5浓度日间变化呈双峰分布,7:00~9:00出现短期高峰,夜间21:00~次日4:00出现长期高峰.坪山新区PM2.5超标情况多出现在秋冬季及初春.在超标日期里,区域一般温度较低、风速较小,相对湿度也较低.污染源分析模型结果表明,坪山新区PM2.5的排放强度高值区主要集中在北部和西部,南部和东部排放强度稍低.由此可见,坪山新区大气环境亟待提升,需要针对区域内大气颗粒物污染进行有效防治.  相似文献   

9.
为了解下沙空气PM2.5的污染状况、分布规律及其影响因素,对2011年9月~2013年2月期间下沙站点的PM2.5进行了连续监测与分析.结果表明:2011年9月~2013年2月下沙站点PM2.5的小时浓度范围为1~453μg/m3,2012年平均浓度值为61μg/m3.下沙PM2.5浓度呈现明显的季度变化,且夜间高于昼间,这主要与本地及周边特殊的工业结构和能源消耗、气象条件、地理位置等因素有关.  相似文献   

10.
北京地区SO2、NOx、O3和PM2.5变化特征的城郊对比分析   总被引:25,自引:11,他引:14  
刘洁  张小玲  徐晓峰  徐宏辉 《环境科学》2008,29(4):1059-1065
2006-01-01~2006-12-31在北京上甸子区域大气本底站和城区宝联环境观测站连续观测了SO2、NOx、O3和PM2.5的浓度,分析了北京城区和郊区的季节变化及日变化的差异,并结合风向讨论了城区污染对于大气本底的影响.结果表明,①NOx、SO2浓度在采暖季城郊差异最大,城区是本底的4~6倍,城郊O3有一致的浓度变化.本底站PM2.5在4、5月达到100μg/m3以上,是年平均的2~3倍;②NOx和SO2的日变化在城区表现为双峰型,在09:00前后和22:00前后形成高值,郊区表现为单峰型,在22:00前后出现高值.郊区O3的日变化峰值滞后于城区大约2 h.PM2.5日变化规律表现得较不规则;③西南风条件下本底各污染物浓度明显受城区输送影响而升高,东北风条件下干洁气团的影响比较明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号