首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airborne particulate matter (PM) concentrations were measured in Iksan, a suburban area in South Korea during April, 2003. PM2.5 (particles with an aerodynamic diameter less than 2.5 μm) and PM10 (particles with an aerodynamic diameter less than 10 μm) samples were collected, and the chemical characteristics of particles were examined for diurnal patterns, yellow dust/rainfall influences, and scavenging effects. Average concentrations of PM2.5 and PM10 mass measured were 37.3 ± 16.2 μg m−3 and 60.8 ± 29.5 μg m−3, respectively. The sum of ionic chemical species concentrations for PM2.5 and PM10 was 16.9 ± 7.3 and 23.1 ± 10.1 μg/m3, respectively. A significant reduction in PM mass concentrations during rainfall days was observed for coarse mode (PM2.5 − 10) particles, but less reduction was found for fine (PM2.5) mass concentration. SO4 2−, NH4 +, and K+ predominated in fine particulate mode, NO3 and Cl predominated in fine particle mode and coarse particle mode, but Na+, Mg2+, and Ca2+ mostly existed in coarse mode. The high concentration of ammonium due to local emissions and long-range transport neutralized sulfate and nitrate to ammonium sulfate and ammonium nitrate, which were major forms of airborne PM in Iksan. Average mass concentrations of PM10 in daytime and at night were 57.6 and 70.0 μg m−3, and those of PM2.5 were 35.4 and 42.5 μg m−3, respectively. NO3 and Cl in both PM2.5 and PM10 were about double at night than in the daytime, while the rest of the chemical species were equal or a little higher at night than in the daytime. The results suggest the formation of ammonium nitrate and chloride when high ammonia concentration and low air temperature are allowed. Backward air trajectory analyses showed that air masses arriving at the site during yellow dust period were transported from arid Chinese regions, which resulted in high concentrations of airborne PM mass concentrations. In the meantime, air mass trajectories during a rainfall period were mostly from the Pacific Ocean or the East China Sea, along with a relatively low PM concentration.  相似文献   

2.
In the Beijing area, March and April have the highest frequency of sand-dust weather. Floating dust, blowing sand, and dust storms, primarily from Mongolia, account for 71%, 20%, and 9% of sand-dust weather, respectively. Ambient air monitoring and analysis of recent meteorological data from Beijing sand-dust storm periods revealed that PM10 mass concentrations during dust storm events remained at 1500 μg m−3, which is five to ten times higher than during non-dust storm periods, for fourteen hours on both April 6 and 25, 2000. During the same period, the concentrations in urban areas were comparable to those in suburban areas, while the concentrations of gaseous pollutants, such as SO2, NO x , NO2, and O3, remained at low levels, owing to strong winds. Furthermore, during sand-dust storm periods, aerosols were created that consisted not only of many coarse particles, but also of a large quantity of fine particles. The PM2.5 concentration was approximately 230 μg m−3, accounting for 28% of the total PM10 mass concentration. Crustal elements accounted for 60–70% of the chemical composition of PM2.5, and sulfate and nitrate for much less, unlike the chemical composition of PM2.5 on pollution days, which was primarily composed of sulfates, nitrates, and organic material. Although the very large particle specific surface area provided by dust storms would normally be conducive to heterogeneous reactions, the conversion rate from SO2 to SO4 2− was very low, because the relative humidity, less than 30%, was not high enough.  相似文献   

3.
Emission inventory of deca-brominated diphenyl ether (DBDE) in Japan   总被引:1,自引:0,他引:1  
Atmospheric emissions of deca-brominated diphenyl ether (DBDE) in Japan were estimated based on the material flow of DBDE products and their emission factors. In 2002, the demand for DBDE in Japan was 2200 ton/year and the stock level was about 60 000 ton. The DBDE flow into the waste stream was estimated to be about 6000 ton/year and the flow out through second-hand product exports was more than 700 ton/year. Home appliance recycling facilities dismantle and crush domestic wastes containing about 600 ton of DBDE annually. Material recycling of crushed plastics is not commonly practiced as yet. Emission factors from plastics processing (2 × 10−9–1 × 10−7), textile processing (9 × 10−7), home appliance recycling (8 × 10−9–5 × 10−6), and waste incineration (1 × 10−7–2 × 10−6) were estimated using field measurement data. The DBDE emission rate through house dust during the service life of final products (2 × 10−7–9 × 10−7 per year) was estimated using the DBDE concentration in dust and the amount of dust in used televisions. Emission factors from previous studies were also used. The estimated total DBDE emission was 170–1800 kg/year. These results suggest the necessity of characterizing emissions during the service life of products, which is essential information for formulating an appropriate e-waste recycling strategy.  相似文献   

4.
To assess the effect of changes in traffic density and fuels used for heating at the beginning of the 1990s, 1992–2005 monthly averages of PM10, SO2, NO2, NO, CO and O3 from Prague, the Czech capital, were analyzed together with long term trends in emissions of major pollutants, fuel consumption and number of vehicles registered in Prague. The data from all monitoring stations were retrieved from the database of the state automated monitoring system. Correlation coefficients between ambient monthly averaged temperature and all pollutants of concern showed distinct seasonal trends. The results showed that while SO2 and to some extent also CO concentrations dropped namely in the first half of the analyzed period (1992–1997) as a result decreased fossil fuel consumption for local heating, the behaviour of other pollutant concentrations followed a different pattern. PM10 concentrations decreased during the beginning of the 1990s but showed a sign of increase after 2000. Concentrations of ozone and NO2 did not reveal any significant change throughout the whole studied period. It can be concluded that during the studied period traditional urban sources of pollution, such as coal and oil combustion, lost their importance but were simultaneously substituted by pollutants from automotive transport (namely PM and NO2) making the problem of air quality even worse.  相似文献   

5.
A simple, low-cost method for suppression of dioxins/furans (hereinafter referred to as dioxins) is required because many middle- and, especially, small-scale incinerators have fallen into disuse or have been dismantled because of the high running and system costs of measures for the suppression of dioxins. Therefore, the purpose of the present study was to develop a simple removal method for dioxins from combustion gas and to evaluate the basic removal rate of dioxins. The removal method for suspended matter in a gas mixture (cold model) and dioxins in exhaust gases (hot model) has been investigated by means of gas injection into water, the mechanism of which is that the suspended matter in the gas gathers at the gas–liquid interface. In the cold model, the removal ratio of fine particles (RP) by gas injection into water was reproduced well by the following equation: RP (%) = 100 × {1−exp(−0.8 · SS · tC)}, where SS (cm2/cm3) is the specific surface area of bubbles and tC (s) is the residence time of bubbles in water. The removal ratio of fine particles increased as the product Ss · tC increased. In a hot model using the exhaust gas from combustion experiments of polyvinyl chloride, the removal ratio of dioxins (RD) by injecting the exhaust gas into water was estimated by the following equation: RD (%) = 100 × {1−exp(−0.8 · SS · tC · CD0 0.07)}, where CD0 [ng/cm3 (at standard temperature and pressure)] is the dioxins concentration in the exhaust gas before injection into water. RD depends greatly on the specific surface area of bubbles and the residence time of the bubbles in water, and only weakly on the dioxins concentration in the exhaust gas. Injection of the exhaust gas into water has been shown to be effective and was evaluated as a simple method for the removal of dioxins from exhaust gas.  相似文献   

6.
Recently, a typical semi-automatic recycling line is proved to be a feasible method for resource recovery of raw material of waste CRTs. However, there are no relevant studies about health risk assessment of the particles and heavy metals diffused from this physical recycling process for CRTs. In this study, TSP, PM10 and heavy metals (Cr, Ni, Cu, Zn, Cd and Pb) in the ambience of the workshop have been evaluated. The mean concentrations of TSP and PM10 in the workshop were 481.5 and 316.9 μg/m3, respectively. Meanwhile, it can be seen that Zn (8.1 and 7.9 μg/m3, respectively) was the most enriched metal in TSP and PM10, followed by Pb (3.2 and 3.0 μg/m3, respectively). Health risk assessment showed that the total hazard index was 3.29, exceeding the danger threshold. The health risk of different metals was Cr > Cd > Ni. In short, the research results show that mechanical–physical process for e-waste recycling do exist the pollutant mission. So the effective measures should be taken to reduce the harm of pollutants on the workers’ health.  相似文献   

7.
PM2.5 and PM10 samples for megalopolis atmospheric particles were collected at Shinjuku, Tokyo in December 1998–January 1999 and August 1999, for two weeks both in winter and summer, with a 24 hr sampling interval. Sampling of PM2.5 and PM10 in diesel exhaust particles (DEP) was carried out using an automobile exhaust testing system, with a diesel truck placed on a chassis dynamometer. Sampling conditions included idling, constant speed of 40 km hr-1, M-15 test pattern and 60%-revolution/40%-load of maximum power. Mass spectrums of organic compounds adhering to the surface of the PM2.5 and PM10 samples were analyzed by laser desorption time-of-flight mass spectrometry (LD-TOFMS, analytical mass range: m/z 1–m/z 380 000). LD-TOFMS analysis of those samples revealed consistently the detection of low-mass organic compounds up to m/z 800. For the megalopolis atmospheric particles, the mass spectrum pattern of wintertime samples was almost the same as that of the summertime samples for both PM2.5 and PM10. The major peak was m/z 177, and the minor peaks were m/z 84, 94, 101, 163, 189 and 235. The mass spectrum pattern of DEP was the same for all samples under all test conditions. The major peak was m/z 101, and other detected peaks were small.  相似文献   

8.
Waste combustion processes are responsible of particles and gaseous emissions. Referring to the particle emission, in the last years specific attention was paid to ultrafine particles (UFPs, diameter less than 0.1 μm), mainly emitted by combustion processes. In fact, recent findings of toxicological and epidemiological studies indicate that fine and ultrafine particles could represent a risk for health and environment. Therefore, it is necessary to quantify particle emissions from incinerators also to perform an exposure assessment for the human populations living in their surrounding areas.To these purposes, in the present work an experimental campaign aimed to monitor UFPs was carried out at the incineration plant in San Vittore del Lazio (Italy). Particle size distributions and total concentrations were measured both at the stack and before the fabric filter inlet in order to evaluate the removal efficiency of the filter in terms of UFPs. A chemical characterization of UFPs in terms of heavy metal concentration was performed through a nuclear method, i.e. Instrumental Neutron Activation Analysis (INAA), as well as a mineralogical investigation was carried out through a Transmission Electron Microscope (TEM) equipped with an Energy Dispersive Spectrometer (EDS) in order to evaluate shape, crystalline state and mineral compound of sampled particles.Maximum values of 2.7 × 107 part. cm−3 and 2.0 × 103 part. cm−3 were found, respectively, for number concentration before and after the fabric filter showing a very high efficiency in particle removing by the fabric filter. With regard to heavy metal concentrations, the elements with higher boiling temperature present higher concentrations at lower diameters showing a not complete evaporation in the combustion section and the consequent condensation of semi-volatile compounds on solid nuclei. In terms of mineralogical and morphological analysis, the most abundant compounds found in samples collected before the fabric filter are Na–K–Pb oxides followed by phyllosilicates, otherwise, different oxides of comparable abundance were detected in the samples collected at the stack.  相似文献   

9.
From the point of view of a sustainable and environment-friendly society based on the recycling of material resources, it is preferable to utilize waste gypsum as a substitute for lime, which is currently produced by the calcination of limestone. In the present work, the reductive decomposition of CaSO4 was investigated under an atmosphere of CO: 2 vol%, CO2: 30 vol%, with N2 as a carrier gas without and with the addition of SiO2, Al2O3, or Fe2O3. It was found that the decomposition temperature of CaSO4 was significantly reduced from 1673 K to 1223 K when only 5 wt% Fe2O3 was added to CaSO4. In the case of the addition of SiO2 or Al2O3 to CaSO4, the decomposition temperature was reduced from 1673 K to 1623 K. This was due to the formation of composite oxides (calcium ferrite, calcium silicate, or calcium aluminate) during the reaction of CaSO4 with the additives at a lower temperature. In addition, the formation of unfavorable product CaS was inhibited in the presence of 5 wt% Fe2O3, and this inhibition effect further increased as the addition of Fe2O3 was increased. In contrast, no significant effect on the inhibition of CaS formation was observed on the addition of SiO2 or Al2O3.  相似文献   

10.
A 3-D biological model was developed and coupled to a hydrodynamic model, i.e., Princeton Ocean Model, to simulate the seasonal variation and budget of dissolved inorganic nitrogen, phosphate, and silicate in Jiaozhou Bay. The modeled nutrients distribution pattern is consistent with observation. Silicate, the most important limiting element for phytoplankton growth, is characterized by consumption in spring, increase in summer and autumn, and accumulation in winter, whereas dissolved inorganic nitrogen and phosphorous have increasing trend with low rates in spring, due to excessive river loads. Phytoplankton plays an important role in nutrient renewal by photosynthesis and respiration processes. During an annual cycle, 7.83 × 103 t N, 0.28 × 103 t P, and 3.93 × 103 t Si are transported to the bay’s outer sea, i.e., the Yellow Sea, suggesting that Jiaozhou Bay is a significant source of nutrients for the Yellow Sea. The spatial distribution of nutrients is characterized by vertically homogeneous profiles, with high concentration inside the bay and low concentration toward the bay channel. These features are mainly governed by strong turbulent mixing, fluvial influx, water exchange rate, and Yellow Sea water intrusion. Numerical experiments suggest that the government should pay enough attention to proper layout of sewage drainage.  相似文献   

11.
Monitoring of dust pollution at the western shore of Tae-ahn Peninsula (TAP) and in the Chongju area of central Korea was carried out from January to May 2001. It was found that in Koreathere were 9 cases of sand and duststorms (DS) and 16 associatedsignificant dustfall (SD) days. Observed maximum concentrations of DS and SD coming from NW China and Mongolia were in the rangeof 300–920 for TSP, 200–690 for PM10 and 100–170 g m-3 for PM2.5.Satellite measurements clearly showed the formation and subsequent movement of DS to the Korean Peninsula and onward to the Korea East Sea, Japan and the Gulf of Alaska. According to satellite image analysis of dust clouds there were abundant coarse particles, measuring in size of 11.0 m. Medium-sizedparticles measuring in the range of 3.5–7.0 were also prevalent,while fine particles of less than 2.0 m were less distinctive in reflectivity. Measured values of PM2.5 were alsorelatively low with SD events.The measured average pH values of dusty precipitation associatedwith DS were 7.24. Alkaline precipitation can play a `temporary'role in the neutralization of acidified soil until the subsequentevent of acidic rain. The new selection criteria of SD days from PM2.5 at 85 g m-3, PM10 190 g m-3 and TSP 250 g m-3 are recommended on dust pollution occurring from the invasion of a DS elsewhere.  相似文献   

12.
The amounts of harmful gas emissions from the process of composting swine waste were determined using an experimental composting apparatus. Forced aeration (19.2–96.1 l/m3/min) was carried out continuously, and exhaust gases were collected and analyzed periodically. With weekly turning and the addition of a bulking agent in order to decrease the moisture content and increase air permeability, the temperature of most of the contents rose to 70°C and composting was complete within 3–5 weeks. NH3, CH4, and N2O emissions were high in the early stage of composting. About 10%–25% of the nitrogen in the raw material was lost as NH3 gas during composting. The emission rate of NH3 mainly depended on the aeration rate, so that as the aeration rate rose, the level of NH3 emissions increased. The CH4 and N2O emissions could be kept lower with adequate treatment at more than 40 l/m3/min aeration. N2O may be mainly the result of the denitrification of NO x -N in the additional matured compost used as a composting accelerator. Received: September 11, 1998 / Accepted: November 8, 1999  相似文献   

13.
The long-term monitoring of precipitation and its chemical composition are important for identifying trends in rain quality and for assessing the effectiveness of pollution control strategies. A statistical test has been used to the atmospheric concentrations measured in the French rural monitoring network (MERA) in order to bring out spatio-temporal trends in precipitation quality in France over the period 1990–2003. The non-parametric Mann–Kendall test which has been developed for detecting and estimating monotonic trends in the time series was used and applied in our study at annual values of wet-only precipitation concentrations. The emission data suggest that SO2 and NO x emissions decreased (−3.3 and −2.0% year−1, respectively) contrary to NH3 emissions that increased slightly (+0.2% year−1) over the period 1990–2002 in France. On the national scale, the pH values have a significant decreasing trend of −0.025 ± 0.02 unit pH year−1. and concentrations in precipitation have a significant decreasing trend, −3.0 ± 1.6 and −3.3 ± 0.6% year−1, respectively, corresponding with the downward trends in SO2 emissions in France (−3.3% year−1). A good correlation (R 2 = 0.84) between SO2 emissions and concentrations was obtained. The decreasing trend of was more significant (−5.4 ± 5.2% year−1) than that of (−1.3 ± 2.4% year−1). Globally, the concentration of the major ions showed a clear downward trend including marine and alkaline ions. In addition, the relative contribution of HNO3 to acidity precipitation increased by 51% over the studied period.  相似文献   

14.
This study focuses on providing a direct insight into the process by which sulfate is formed on mineral dust surface in the actual atmosphere. Six sets of aerosol measurements were conducted in the outskirts of Beijing, China, in 2002–2003 using a tethered balloon. The mineralogy of individual dust particles, as well as its influence on the S (sulfur) loadings was investigated by SEM-EDX analysis of the directly collected particles. The mixed layer in the urban atmosphere was found to be quite low (500–600m), often appearing as a particle dense stagnant layer above the surface. It is suggested that mineral dust is a common and important fraction of the coarse particles in Beijing (35–68%), and that it is relatively enriched with Calcite (>28%). An exceptional amount of S was detected in the mineral particles, which can be explained neither by their original composition, nor by coagulation processes between the submicron sulfates and the dust. Heterogeneous uptake of gaseous SO2, and its subsequent oxidation on dust was suggested as the main pathway that has actually taken place in the ambient environment. The mineral class found with the largest number of particles containing S was Calcite, followed by Dolomite, Clay, Amphibole etc., Feldspar, and Quartz. Among them, Calcite and Dolomite showed distinctly higher efficiency in collecting sulfate than the other types. A positive correlation was found with the number of S containing particles and the relative humidity. Calcite in particular, since almost all of its particles was found to contain S above 60% r.h. On the other hand, the active uptake of SO2 by the carbonates was not suggested in the free troposphere downwind, and all the mineral classes exhibited similar S content. Relative humidity in the free troposphere was suggested as the key factor controlling the SO2 uptake among the mineral types. In terms of sulfate loadings, the relationship was not linear, but rather increased exponentially as a function of relative humidity. The humidity-dependent uptake capacity of mineral types altogether showed an intermediate value of 0.07 gSO4 2− g−1 mineral at 30% r.h. and 0.40 gSO4 2− g−1 mineral at 80%, which is fairly consistent with laboratory experiments.  相似文献   

15.
Despite many studies of the N2O emission, there is a lack of knowledge on the role of subsoil for N2O emission, particularly in sandy soils. To obtain insight into the entrapment, diffusion, convection and ebullition of N2O in the soil, the N2O concentration in the soil atmosphere was measured over a period of 1 year in 4 lysimeters (agricultural soil monoliths of 1 m2 × 2 m) at 30, 50, 80, 155, and 190 cm depth with altogether 86 gas probes. Additionally the N2O emission into the atmosphere was measured in 20 closed chambers at the soil surface. Concurrently the soil temperature and soil water content were recorded in order to quantify their effects on the fate of N2O in the soil. Results of the continuous measurements between January and December 2006 were: N2O concentrations were highest in the deeper soil; maximum concentration was found at a depth of 80 cm, where the water content was high and the gas transport reduced. The highest N2O concentration was recorded after ‘special events’ like snowmelt, heavy rain, fertilization, and grubbing. The combination of fertilization and heavy rain led to an increase of up to 2,700 ppb in the subsoil.  相似文献   

16.
Present study envisaged the sequential experimental design approach for the development of biodegradable Gelatin-Tapoica/polyacrylamide superabsorbent. Percentage water uptake efficacy of candidate sample was optimized using Response Surface Methodology (RSM) design under microwave irradiation. Different process variables such as potassium persulphate and ammonium persulphate (KPS:APS) ratio, pH, reaction time concentration of acrylamide and N,N-methylene-bis-acrylamide (MBA) were investigated as a function of percentage swelling using sequential experimental design. Maximum liquid efficacy of 1550% was obtained at KPS:APS?=?1.0:0.5; acrylamide?=?7.67?×?10?1 mol L?1; MBA?=?1.76?×?10?2 mol L?1; pH 10 and time?=?110 s. The 3D crosslinked network formed was characterized using Fourier Transformation Infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopic (SEM) techniques and thermal stability was ensured by Thermal gravimetric Analysis/Differential Thermal Analysis/Differential Thermal Gravimetric (TGA/DTA/DTG) studies. Superabsorbent synthesized could increase the moisture content in different type of soils and was found to enhance the water-holding capability of the soil upto 60 days in clayey, 40 days in sandy and 51 days in mixture of two soils under controlled conditions. Further, candidate polymer was investigated for the in-vitro controlled release of the KNO3 with diffusion exponent ‘n’ was found to be 0.4326 indicating Fickian type diffusion. Also, initial diffusion coefficient (DI?=?3.49?×?10?5 m2 h?1) was found to be greater than the lateral diffusion coefficient (DL?=?3.76?×?10?6 m2 h?1) indicated rapid release of KNO3 during initial hours with slow release afterwards. The ecofriendly nature of the synthesized polymer was also tested by conducting biodegradation studies and it was found to degrade upto 94% and 88.1% within 70 days with degradation rate of 1.34 and 1.26% per day using composting method and vermicomposting method respectively. So, the synthesized candidate polymer was found to be boon for agriculture-horticulture sector with wide applicability.  相似文献   

17.
Hydrogarnet was synthesized hydrothermally below 200°C using molten slag obtained from municipal solid waste. For comparison, it was also synthesized using pure-phase CaO–Al2O3–SiO2–H2O, as reported previously. The structural and textural properties of this material were investigated using various analytical and spectroscopic techniques such as X-ray diffraction, X-ray fluorescence spectrometry, atomic absorption spectrometry (AAS), thermogravimetry/differential thermal analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The Cl fixation ability of hydrogarnet was investigated in the temperature range 500–800°C in a fixed-bed flow reactor using a HCl concentration (1000 p.p.m.v.) similar to that of incinerator exhaust gas. Under these experimental conditions, the hydrogarnet was capable of reducing the HCl gas level to less than 1 p.p.m.v. Analysis of the spent catalyst revealed that the hydrogarnet was being transformed into wadalite and CaCl2 at high temperatures. The elution test for chromium ions in hydrogarnet obtained from slag was also used, and it was found that chromium ions were not eluted from hydrogarnet. Received: January 27, 2001 / Accepted: October 11, 2001  相似文献   

18.
Activated carbons were prepared from cattle manure compost (CMC) by ZnCl2 activation with various ZnCl2/CMC mass ratios. Based on the N2 adsorption-desorption isotherms, mathematical models including the Dubinin-Radushkevich (DR) equation, the αs plot, and the Horvath-Kawazoe method were used to analyze the pore structural characteristics of the prepared activated carbons. It was found that for carbons possessing both micro-and mesopores, the DR method provided a more accurate estimation than the αs method for the extent of microporosity. The effect of the ZnCl2 impregnation ratio on the pore structure was discussed using the DR method. The results revealed that pore evolution involved three distinct regions with increases in the amount of impregnated ZnCl2: raising the ZnCl2/CMC mass ratio from 0.00 to 0.50 resulted in a 19-fold increase in micropore volume (Vme D) but caused no change in the mesopore volume (Vme D); increasing the ZnCl2/CMC mass ratio from 0.50 to 1.00 led to an increment in Vmi D of about 50% and in Vme D of 170%; while raising the ratio from 1.50 to 2.50 caused a slight decrease in Vmi D but a 200% increment in the value of Vme D.  相似文献   

19.
This study uses a combination of data from U.K. monitoringstations and from modelling undertaken with the U.K.Meteorological Office's NAME Model to investigate therelative influences of primary and secondary particulateson total PM10 levels at sites in the United Kingdom. Co-located PM10 and sulphate aerosol measurementsindicate that sulphate has a disproportionately largeinfluence on the variation of PM10 levels incomparison to its contribution to their total mass.Comparisons of measured PM10 at urban centre, roadsideand rural sites suggest that local primary sources havevery little influence on daily mean levels. NAME has beenused to model both primary particles and sulphate aerosolfrom sources across the whole of Europe. The discrepanciesbetween modelled and observed PM10 suggest that coarseparticles, such as windblown dust and resuspended roaddust,may comprise a very large, if not dominant, proportion ofobserved PM10 levels. The apparently minor role ofprimary particles (especially locally-sourced ones) raisesa number of issues regarding the suitability of current U.K.and European legislation to addressing the particle problem.  相似文献   

20.
This paper gives the results of partial oxidation experiments of polyethylene (PE) in supercritical water (SCW). The experiments were carried out at a reaction temperature of 693K and a reaction time of 30 min using 6 cm3 of a batch-type reactor. The loaded sample weight was 0.3 g and there was 2.52 g water (0.42 g/cm3). The ratio of oxygen atoms to carbon atoms was 0.3. The results show a significant CO formation in O2–SCW, and the 1-alkene/n-alkane ratio in partial oxidation was higher than that in SCW pyrolysis. These results suggest the possibility of the hydrogenation of hydrocarbon through partial oxidation followed by a water–gas shift reaction. Received: July 19, 2000 / Accepted: September 28, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号