首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
铁炭微电解-水解酸化-接触氧化法处理有机硅废水的研究   总被引:7,自引:3,他引:4  
针对有机硅废水的特性,采用铁炭微电解预处理、水解酸化和接触氧化组合工艺处理有机硅废水。废水经铁炭微电解预处理后COD去除率达40%;水解酸化处理后COD去除率达30%;接触氧化处理后COD去除率达70%;当系统进水COD为750 mg/L时,经过组合工艺处理后,出水COD可降至100 mg/L以下,达到了工业废水排放标准。  相似文献   

2.
靛蓝牛仔布印染废水组分复杂,浓度高、水量大,属于难处理的工业废水,为了有效降低后续生物处理单元的负荷,采用铁炭微电解工艺对该废水进行预处理;通过正交实验考察pH、反应时间及铁炭比处理效果的影响规律及COD去除反应动力学,并对各因素作了单因素影响实验,确定了最佳工艺条件.结果表明,铁炭微电解法是预处理靛蓝牛仔布印染废水的一种有效方法,在Fe/C为2:1、pH为3的条件下反应90 min,铁炭微电解出水COD的去除率在49.2%,色度去除率达到80%,该印染废水经微电解处理后,BOD5/COD比值可从原来的0.248上升至0.436,可生化性明显提高.此外,微电解预处理靛蓝牛仔布印染废水中COD的去除反应符合二级反应动力学规律.  相似文献   

3.
对含盐有机电镀废水进行预处理,考察了多元氧化微电解工艺对废水有机污染物的去除效果和可生化性的改善效果。结果表明,多元氧化微电解工艺的最佳条件为:pH 3.0,填充比(填料与废水的体积比)1∶1,微电解时间45min,气水比(体积比)1∶1;在此条件下,COD去除率可达67.1%。多元氧化微电解工艺能使BOD5/COD由原来的0.10升高到0.32~0.41,提高了废水的可生化性,减轻了后续生化处理负荷,是预处理含盐有机电镀废水的有效方法。  相似文献   

4.
某年产1000 tYT工业杀菌剂的生产企业,其排放的高浓度有机废水,用传统的生物化学法处理难以达标。而采用核心的创新技术,电解氧化还原、氧化沉淀、微电解法对废水进行预处理,再用传统的生物法进一步处理,从而实现了废水的达标排放。  相似文献   

5.
采用微电解生物法组合工艺处理含铬电镀废水,在实验过程中,电镀废水中的重金属离子通过微电解法预处理可去除90%以上,剩余部分被后续工艺的微生物功能菌去除。实验结果表明对Cr6+含量为50mg/L,Cu2+含量为15mg/L,Ni2+含量为10mg/L的废水,经处理后,重金属离子的净化率达999%,且无二次污染。  相似文献   

6.
微电解-生物法处理含铬电镀废水的研究   总被引:10,自引:0,他引:10  
采用微电解-生物法组合工艺处理含铬电镀废水,在实验过程中,电镀废水中的重金属离子通过微电解法预处理可去除90%以上,剩余部分被后续工艺的微生物功能菌去除。实验结果表明:对Cr^6 含量为50mg/L,Cu^2 含量为15mg/L,Ni^2 含量为10mg/L的废水,经处理后,重金属离子的净化率达99.9%,且无二次污染。  相似文献   

7.
采用高温烧结型微电解填料预处理煤制油废水,通过正交实验研究了初始pH、微电解时间及曝气强度等对废水的预处理影响。结果表明,微电解影响因素从大到小依次为:微电解时间pH曝气强度;微电解预处理煤制油废水的最佳工艺参数为:初始pH 4.0,微电解90 min,气水比3∶1充氧曝气;通过平行实验,COD平均去除率及出水水质分别为54.7%和1 773 mg/L,废水生物毒性指标EC50由原水12.5%的高毒性转化成48.3%的中毒性,为后续生化系统的正常运行提供了有利条件,是预处理煤制油废水的有效方法之一。  相似文献   

8.
Fenton氧化与铁炭微电解组合预处理DMF废水   总被引:1,自引:0,他引:1  
对COD表征模拟废水中DMF去除率的可行性进行了探讨。在此基础上,分别对铁炭微电解、Fenton氧化-铁炭微电解和铁炭微电解-Fenton氧化组合工艺对DMF废水的处理效果进行分析,结果表明,Fenton氧化-铁炭微电解工艺的处理效果较好。在pH=5,反应时间为1 h,FeSO4·7H2O投加量为1 000 mg/L、H2O2投加量为2.67 mL/L和不曝气的最佳反应条件下,Fenton氧化-铁炭微电解工艺对实际废水和废液中COD的去除率分别达到66.67%和72.22%,从而验证了该工艺处理DMF废水的可行性。此外,Fenton氧化处理DMF废水过程实际上是将酰胺基团和羰基的不饱和双键氧化分解的过程。  相似文献   

9.
铁炭微电解/Fenton试剂预处理土霉素废水的研究   总被引:10,自引:3,他引:7  
研究了铁炭微电解/Fenton试剂法工艺对高浓度难生化处理的土霉素废水预处理效果.结果表明,当原水COD在6 000 mg/L、pH值为2.2时,铁炭微电解反应时间为80 min,铁炭微电解对原水COD的去除率>40%;铁炭微电解出水再投加220 mg/L的H2O2(30%)进行Fenton试剂法处理,常温下反应50 min对原水COD的去除率可提高到75%以上.铁炭微电解 Fenton试剂联合工艺的处理效果好、运行稳定、成本低廉,适宜对难降解的土霉素废水的预处理.  相似文献   

10.
铁炭-混凝沉淀-生化处理强酸性染料废水的中试研究   总被引:1,自引:0,他引:1  
采用铁炭-混凝沉淀-水解酸化-生物接触氧化工艺对强酸性染料废水进行中试处理研究。在铁炭微电解单元主要考察了铁炭比、HRT和曝气量大小对处理效果的影响;在水解酸化单元主要考察了进水pH和HRT对处理效果的影响。通过铁炭微电解和水解酸化,在大幅改善废水的可生化性的同时,还可以有效去除废水的色度、削减有机负荷,以保证后续的生物接触氧化工艺的高效稳定运行。在生物接触氧化单元主要考察了进水浓度、HRT对处理效果的影响。经过组合工艺的处理,最终的出水COD〈75 mg/L,出水色度〈40倍。  相似文献   

11.
通过采用铁碳微电解-Fenton法预处理苯胺基乙腈生产废水的实验研究,分析了处理过程的COD降解动力学;同时研究了单纯活性炭吸附和微电解过程中COD去除率的变化。结果表明,铁碳微电解的初期COD降解过程近似符合一级反应动力学,并且得到微电解与活性炭吸附对铁碳微电解降解COD的关系式;Fenton反应中通过研究有机物浓度和过氧化氢初始浓度与反应进程的关系,建立了反应动力学模型;单纯吸附实验COD去除率在24 h内快速下降,而微电解在相应时间内COD去除率波动较小,为实际应用提供了数据经验和理论依据。  相似文献   

12.
多元微电解技术对高浓度化学清洗废水预处理的影响   总被引:1,自引:1,他引:0  
秦树林 《环境工程学报》2012,6(10):3563-3567
以高浓度化学清洗废水为研究对象,分别考察了常规混凝沉淀、多元微电解2种工艺对有机物污染物的去除效率和改善废水可生化性的效果。结果表明:多元微电解工艺的最佳pH 3.0,填充比1∶3,微电解1 h,气水比1∶1的条件下,其对COD平均去除率可达到60%,而直接混凝沉淀仅为10.5%,多元微电解工艺能使BOD5/COD值由原来的0.12升高到0.32,提高了废水的可生化性,减轻了后续生化处理负荷,是对高浓度化学清洗废水的有效预方法。  相似文献   

13.
铁炭微电解深度处理焦化废水的研究   总被引:19,自引:11,他引:19  
采用曝气铁炭微电解工艺对焦化废水进行了深度处理.结果表明,在活性炭、铁屑和NaCl投加量分别为10 g/L、30 g/L和200 mg/L的条件下反应240 min,出水COD去除率在30%~40%;酸性条件可以进一步提高COD去除率;微电解可以去除原生化出水中的难降解有机物,出水物质的分子量主要集中于2000 Da以下,以脂类和烃类化合物为主;出水的可生化性有了大幅度提高,BOD5/COD由0.08增加到0.53.实验结果表明,铁炭微电解是深度处理焦化废水的一种有效工艺.  相似文献   

14.
微波强化微电解技术处理硝基苯废水   总被引:1,自引:0,他引:1  
研究了微波强化微电解组合工艺处理硝基苯废水。研究结果表明,在Fe/C比为3,进水pH=3,微波功率640W,微波辐射时间4 min和曝气量为2.5 L/min的最佳条件下,废水COD、色度和浊度去除率分别达到94.7%、95.6%和90.3%。同时,与单一微波辐射和单一微电解相比,该方法处理效果明显优于这二种方法。实验还采用GC-MS分析方法研究了单一微电解及微波强化微电解法处理硝基苯废水的中间降解产物和降解机理。  相似文献   

15.
通过采用铁碳微电解-Fenton法预处理苯胺基乙腈生产废水的实验研究,分析了处理过程的COD降解动力学;同时研究了单纯活性炭吸附和微电解过程中COD去除率的变化。结果表明,铁碳微电解的初期COD降解过程近似符合一级反应动力学,并且得到微电解与活性炭吸附对铁碳微电解降解COD的关系式;Fenton反应中通过研究有机物浓度和过氧化氢初始浓度与反应进程的关系,建立了反应动力学模型;单纯吸附实验COD去除率在24h内快速下降,而微电解在相应时间内COD去除率波动较小,为实际应用提供了数据经验和理论依据。  相似文献   

16.
通过对六硝基芪(HNS)生产过程中第二段工艺的产品洗涤废水进行水质分析,针对该段废水含有大量吡啶和多种溴代和硝基芳香类化合物的特点,探究了减压蒸馏耦合锌碳微电解法处理二段洗水的效果并优化工艺参数。结果显示,70℃条件下,二段洗水蒸馏至原体积的86.9%时,蒸馏剩余废水TOC去除率为44%,并且此前收集的馏分中吡啶浓度为10%~31.9%(V/V)。减压蒸馏工艺起到收集吡啶同时降低废水TOC的双重作用。减压蒸馏后,残留在废水中的有机物以溴代和硝基芳香化合物为主,采用微电解工艺,其条件优化实验的结果显示,在废水初始pH=1.0,锌投加量为25g/L,锌碳投加比为1:1,反应60min后,废水TOC去除率为33%,采用多级微电解工艺可提高去除效果。  相似文献   

17.
微电解-Fenton联合工艺预处理煤层气井压裂废水   总被引:1,自引:0,他引:1  
利用Fenton强化微电解工艺对煤层气井压裂废水展开预处理研究,以COD去除率和可生化性(B/C)为考察指标,单独工艺正交实验结果表明pH为3、反应时间为90 min、铁碳体积比为1.5∶1和pH为4、反应时间为80 min、H2O2投加量为4 mL/L分别是微电解与Fenton反应的最优条件,各可获得48.1%和44.9%的COD去除率。在最优条件下进行微电解-Fenton联合运行实验,连续61 h内COD去除率均稳定在65%以上,B/C由0.158上升到0.3以上,有利于后续生化处理的运行。  相似文献   

18.
对使用微电解联合物化法处理维生素B12难降解废水进行了分析。通过实验研究了微电解联合物化法处理维生素B12废水的最佳工艺条件。在最佳工艺条件下,维生素B12废水色度去除达88.46%,COD去除率达到71.06%。该处理方法最后将污染物质直接吸附于改性膨润土上,不产生浓缩废水、酸碱废水等更加难以处理的废水,并且不带入有毒有害物质,可以有效降低水中污染物含量,减少后续生物处理设备的污染负荷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号