首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Abstract:  Wide variation in reproductive success is common among amphibians that breed in seasonal ponds, but persistence of adults can buffer against these fluctuations, particularly for long-lived species. We hypothesized that the frequent episodes of catastrophic failure of the marbled salamander ( Ambystoma opacum ) enhance the importance of high terrestrial survival. At Rainbow Bay in South Carolina reproductive success was poor (<1 metamorph/breeding female) in nearly half of the 22 years that the species bred. Complete failure occurred in 6 of 22 years. To study catastrophic failure, we adapted an age-structured, individual-based model with density-dependent growth and survival of larvae. The model was based on extensive data from local field studies and experiments. With consistently good survival in the pond stages, the simulated population required survival probabilities in the upland stages (juveniles and adults) near 0.5/year to persist and near 0.8/year to achieve the increases observed. Catastrophic failure, occurring randomly with probability 0.5/year, created additional fluctuations in the population, raised the thresholds of survival required for persistence, and caused extinction under conditions that were otherwise favorable. The marbled salamander at Rainbow Bay is not at great risk of extinction because of catastrophic failure, but the risk increases dramatically if life span is decreased or frequency of failure is increased. Any reduction in terrestrial survival will have deleterious consequences by reducing the breeding populations at equilibrium, even if it does not jeopardize persistence. Our model provides assessments of risk that can be applied to poorly studied species with similar life histories, such as the endangered flatwoods salamander ( A. cingulatum ).  相似文献   

2.
Simultaneous estimation of survival, reproduction, and movement is essential to understanding how species maximize lifetime reproduction in environments that vary across space and time. We conducted a four-year, capture-recapture study of three populations of eastern tiger salamanders (Ambystoma tigrinum tigrinum) and used multistate mark-recapture statistical methods to estimate the manner in which movement, survival, and breeding probabilities vary under different environmental conditions across years and among populations and habitats. We inferred how individuals may mitigate risks of mortality and reproductive failure by deferring breeding or by moving among populations. Movement probabilities among populations were extremely low despite high spatiotemporal variation in reproductive success and survival, suggesting possible costs to movements among breeding ponds. Breeding probabilities varied between wet and dry years and according to whether or not breeding was attempted in the previous year. Estimates of survival in the nonbreeding, forest habitat varied among populations but were consistent across time. Survival in breeding ponds was generally high in years with average or high precipitation, except for males in an especially ephemeral pond. A drought year incurred severe survival costs in all ponds to animals that attempted breeding. Female salamanders appear to defer these episodic survival costs of breeding by choosing not to breed in years when the risk of adult mortality is high. Using stochastic simulations of survival and breeding under historical climate conditions, we found that an interaction between breeding probabilities and mortality limits the probability of multiple breeding attempts differently between the sexes and among populations.  相似文献   

3.
The hawksbill marine turtle (Eretmochelys imbricata) is listed on the IUCN Red List as critically endangered but little is known about its demography to support robust diagnosis of population trends. Moreover, adult female hawksbills do not nest each year due to environmentally mediated physiological constraints and this skipped breeding behaviour presents a major challenge in data collection and for estimating demographic parameters from such data sets. We estimated demographic parameters such as survival and breeding probabilities for a major Indo-Pacific nesting hawksbill population using a capture-mark-recapture (CMR) study and a multistate open robust design statistical modelling approach, which accounts for breeding omission and the staggered arrival and departure of nesters during each season. Our study used CMR histories for 413 nesting hawksbills tagged on Varanus Island (Western Australia) over a 4-month sampling period each year for 20 austral summer nesting seasons between 1987 and 2007. The estimated annual survival probability for these nesting hawksbills was constant over the 20 years at ca. 0.947 (95% CI: 0.91–0.97), which is encouragingly high for a population associated with industry. The estimated annual conditional nesting (breeding) probability for female hawksbills that had skipped the previous nesting season was time-specific ranging from 0.07 to 0.29 (mean = 0.18, CV = 41.3%), which presumably reflects the interaction between turtle physiology and in-water habitat quality. The mean conditional probability of breeding again having skipped 2 prior consecutive nesting seasons was ca. 0.83 (95% CI: 0.73–0.89), indicating a high frequency of breeding season omission. The annual nesting probability for females that had nested the previous season was 0, reflecting known obligate skipped breeding (reproductive omission) that is characteristic of hawksbill populations in response to high energy demands of vitellogenesis and breeding migration. These are the first estimates of annual survival and state-dependent breeding probabilities for any Indo-Pacific hawksbill stock that provide a basis for developing a better understanding of regional population dynamics for this critically endangered species.  相似文献   

4.
Kendall BE  Fox GA  Fujiwara M  Nogeire TM 《Ecology》2011,92(10):1985-1993
Demographic heterogeneity--variation among individuals in survival and reproduction--is ubiquitous in natural populations. Structured population models address heterogeneity due to age, size, or major developmental stages. However, other important sources of demographic heterogeneity, such as genetic variation, spatial heterogeneity in the environment, maternal effects, and differential exposure to stressors, are often not easily measured and hence are modeled as stochasticity. Recent research has elucidated the role of demographic heterogeneity in changing the magnitude of demographic stochasticity in small populations. Here we demonstrate a previously unrecognized effect: heterogeneous survival in long-lived species can increase the long-term growth rate in populations of any size. We illustrate this result using simple models in which each individual's annual survival rate is independent of age but survival may differ among individuals within a cohort. Similar models, but with nonoverlapping generations, have been extensively studied by demographers, who showed that, because the more "frail" individuals are more likely to die at a young age, the average survival rate of the cohort increases with age. Within ecology and evolution, this phenomenon of "cohort selection" is increasingly appreciated as a confounding factor in studies of senescence. We show that, when placed in a population model with overlapping generations, this heterogeneity also causes the asymptotic population growth rate lambda to increase, relative to a homogeneous population with the same mean survival rate at birth. The increase occurs because, even integrating over all the cohorts in the population, the population becomes increasingly dominated by the more robust individuals. The growth rate increases monotonically with the variance in survival rates, and the effect can be substantial, easily doubling the growth rate of slow-growing populations. Correlations between parent and offspring phenotype change the magnitude of the increase in lambda, but the increase occurs even for negative parent-offspring correlations. The effect of heterogeneity in reproductive rate on lambda is quite different: growth rate increases with reproductive heterogeneity for positive parent-offspring correlation but decreases for negative parent-offspring correlation. These effects of demographic heterogeneity on lambda have important implications for population dynamics, population viability analysis, and evolution.  相似文献   

5.
Female mammals can increase their lifetime fitness through modification of investment potential and by providing better rearing environments with improved breeding experience. We examined the relationships between reproductive fitness and the behavioural decisions that female southern elephant seals (Mirounga leonina) made during the breeding season. We examined whether mother age and breeding experience influenced reproductive success (measured as 1st-year survival probability), and whether there was a change in the choice of harem size with increasing age. Pups produced by young mothers had lower 1st-year survival probability than pups produced by older mothers. A significant increase in mean female mass with age required an analysis of both these effects on offspring survival. There was a significant positive effect of both female age and mass, and the interaction between the two, on 1st-year pup survival. The proportion of young mothers (<5 years old) decreased and the proportion of older mothers (>6 years old) increased with increasing harem size (harems surveyed from 1997 to 2001). Females chose larger harems in which to breed as they aged. Females demonstrated fidelity to breeding areas among successive breeding seasons, with older females displaying greater breeding-site fidelity than younger females. The mean number of previous breeding attempts per female within a harem (breeding experience) increased significantly with increasing harem size. Breeding females returned to breed later in the breeding season as they aged—we hypothesize that young, subordinate females gain a priority advantage by returning earlier. These results lend support to the hypothesis that there are fitness advantages, in terms of offspring survival, that are conferred to females that breed in successively larger harems with age. Potential mechanisms that select for females to improve their breeding conditions include improved mate selection and the avoidance of conspecific harassment in harems.Communicated by F. Trillmich  相似文献   

6.
Understanding how population density influences mating systems may lead to important insights into the plasticity of breeding behavior, but few natural systems allow for such studies. Antarctic fur seals (Arctocephalus gazella) provide an interesting model system because they breed in colonies of varying densities. Previous studies have largely focused on a high-density site at Bird Island, South Georgia. Here, 13 highly polymorphic microsatellite loci were used to conduct a genetic analysis of a low-density breeding colony of this species at Livingston Island, approximately 1,600 km south of South Georgia. The majority of adults seen ashore (n?=?54) were sampled together with every pup born (n?=?97) over four consecutive years. Paternities were confidently assigned for 34 out of the 97 pups. Two out of 23 sampled males accounted for the paternity of 28 % of all pups sampled during the study and 82 % of the pups with an assigned father. Moreover, a full likelihood pedigree inference method assigned a further eight paternities to a single unsampled male seal that is inferred to have held a territory during the season before the study began. The most successful males in our study easily surpassed the previous record for the total number of pups sired per male seal for the species. Furthermore, we identified two triads of full siblings implying that their parents remated in three consecutive years. These findings suggest that territorial male fur seals may achieve greater success in monopolizing access to breeding females when population density is relatively low.  相似文献   

7.
Abstract: We examined the demographic consequences of road mortality in the cooperatively breeding Florida Scrub-Jay (Aphelocoma coerulescens ), a threatened species restricted to the oak scrub of peninsular Florida. Between May 1986 and July 1995 we monitored the survival and reproductive success of a color-banded population of jays along a two-lane highway at Archbold Biological Station. Annual mortality of breeding adults was 0.38 on road territories, significantly higher than the rate of 0.23 for breeders on nonroad territories. High mortality on road territories appeared to be a direct result of automobile traffic per se and not a consequence of road-induced changes in habitat characteristics. Mortality was especially high for immigrants without previous experience living along the road: in their first two years as breeders on road territories, naive immigrants experienced annual mortality of 0.50 and 0.45. From year 3 onward, however, annual mortality dropped to 0.29, not significantly different from the rate for birds on nonroad territories. This experience-dependent decline in road mortality could be caused either by surviving jays learning to avoid automobiles or by selective mortality operating through time (demographic heterogeneity). Proximity to the road had no effect on nesting success beyond its indirect effects on breeder experience and group size. Because the mortality of 30- to 90-day-old fledglings was significantly higher on road territories than on nonroad territories, however, breeder mortality greatly exceeded production of yearlings on road territories. Roadside territories therefore are sinks that can maintain populations of Florida Scrub-Jays only via immigration. Because Florida Scrub-Jays do not avoid roadside habitats and may even be attracted to them, road mortality presents a difficult challenge for the management and conservation of this threatened and declining species.  相似文献   

8.
Partial migration is thought to be a critical step in the evolution of avian migration, but data on the life history correlates of alternative migratory strategies are extremely limited. We have studied a partially migratory population of American Dippers since 1999. This population is composed of sedentary individuals (residents) that maintain the same territory year round and altitudinal migrants that share winter grounds with residents, but move to higher elevations to breed. We used seven years of data on individually marked birds to (1) determine if individuals consistently use the same migratory strategy, (2) determine if offspring have the same strategy as their parents, and (3) estimate reproductive and survival rates of the two migratory strategies. We evaluate hypotheses for the persistence of partial migration and discuss their implication for the evolution of migration in sedentary populations. Individual American Dippers rarely switched migratory strategy (4/169 monitored more than one year). An individual's strategy, however, was not always that of its parents, indicating that, while migratory behavior may have a genetic component, environmental or social conditions probably influence the migratory strategy that an individual adopts. Sedentary dippers consistently had higher annual productivity (approximately 1.4 more fledglings/year) than migratory dippers, but mark-recapture models suggested that migratory dippers may have slightly higher survival than residents (approximately 3.4%). Migrants were estimated to have lower lifetime reproductive success than residents because their higher survival was insufficient to offset their lower productivity. Our data suggest that alternative migratory strategies in American Dippers are unlikely to be a fixed genetic dimorphism that persists because the two strategies have equal fitness, or because the relative fitness of the two strategies fluctuates over time. Migratory strategies in American Dippers are more likely to be condition dependent, and the two strategies persist because migrants "make the best of a bad job" by moving to higher elevations to breed. Because migrants obtained no fitness benefits by moving to seasonal breeding territories, our data are consistent with the hypothesis that migration could evolve in sedentary populations if competition for limited resources forces some individuals to seek breeding opportunities outside their initial range.  相似文献   

9.
Loss of genetic variability in isolated populations is an important issue for conservation biology. Most studies involve only a single population of a given species and a single method of estimating rate of loss. Here we present analyses for three different Red-cockaded Woodpecker ( Picoides borealis ) populations from different geographic regions. We compare two different models for estimating the expected rate of loss of genetic variability, and test their sensitivity to model parameters. We found that the simpler model (Reed et al. 1988) consistently estimated a greater rate of loss of genetic variability from a population than did the Emigh and Pollak (1979) model. The ratio of effective population size (which describes the expected rate of loss of genetic variability) to breeder population size varied widely among Red-cockaded Woodpecker populations due to geographic variation in demography. For this species, estimates of effective size were extremely sensitive to survival parameters, but not to the probability of breeding or reproductive success. Sensitivity was sufficient that error in estimating survival rates in the field could easily mask true population differences in effective size. Our results indicate that accurate and precise demographic data are prerequisites to determining effective population size for this species using genetic models, and that a single estimate of rate of loss of genetic variability is not valid across populations.  相似文献   

10.
《Ecological modelling》2005,181(2-3):203-213
Assessment of population dynamics is central to population dynamics and conservation. In structured populations, matrix population models based on demographic data have been widely used to assess such dynamics. Although highlighted in several studies, the influence of heterogeneity among individuals in demographic parameters and of the possible correlation among these parameters has usually been ignored, mostly because of difficulties in estimating such individual-specific parameters. In the kittiwake (Rissa tridactyla), a long-lived seabird species, differences in survival and breeding probabilities among individual birds are well documented. Several approaches have been used in the animal ecology literature to establish the association between survival and breeding rates. However, most are based on observed heterogeneity between groups of individuals, an approach that seldom accounts for individual heterogeneity. Few attempts have been made to build models permitting estimation of the correlation between vital rates. For example, survival and breeding probability of individual birds were jointly modelled using logistic random effects models by [Cam, E., Link, W.A., Cooch, E.G., Monnat, J., Danchin, E., 2002. Individual covariation in life-history traits: seeing the trees despite the forest. Am. Naturalist, 159, in press]. This is the only example in wildlife animal populations we are aware of. Here we adopt the survival analysis approaches from epidemiology. We model the survival and the breeding probability jointly using a normally distributed random effect (frailty). Conditionally on this random effect, the survival time is modelled assuming a lognormal distribution, and breeding is modelled with a logistic model. Since the deaths are observed in year-intervals, we also take into account that the data are interval censored. The joint model is estimated using classic frequentist methods and also MCMC techniques in Winbugs. The association between survival and breeding attempt is quantified using the standard deviation of the random frailty parameters. We apply our joint model on a large data set of 862 birds, that was followed from 1984 to 1995 in Brittany (France). Survival is positively correlated with breeding indicating that birds with greater inclination to breed also had higher survival.  相似文献   

11.
Sex- and age-class-specific survival of a loggerhead turtle population resident in southern Great Barrier Reef waters was estimated using a long-term capture-mark-recapture (CMR) study and the Cormack-Jolly-Seber modelling approach. The CMR history profiles for 271 loggerheads tagged over 9 years (1984-1992) were classified into two age classes (adult, immature) based on somatic growth and reproductive traits. The sex and maturity status of each turtle was determined from visual examination of reproductive organs using laparoscopy. A reduced-parameter model accounting for constant survival with sex- and time-specific recapture was adequate for estimating age-class-specific survival probabilities, but inclusion of time-specific transient behaviour was informative for the immature age class. The annual fluctuations in the estimated proportion of transient immatures was not a function of sampling effort, but could be due to anomalous oceanographic conditions affecting dispersal of the immature class. There was no sex-specific difference in survival probabilities for either age class, but females were more likely to be recaptured than males, which might be related to behavioural differences such as sex-biased dispersal. The expected annual survival probability for adults was 0.875 (95% CI: 0.84-0.91). The expected annual survival probability for immatures was 0.859 (95% CI: 0.83-0.89), but when the transients were accounted for, the expected annual survival for the resident immature loggerheads was 0.918 (95% CI: 0.88-0.96). These are the first substantive estimates of annual survival probabilities for any loggerhead sea-turtle stock and provide a basis for developing a better understanding of loggerhead population dynamics.  相似文献   

12.
Structured population models are increasingly used in decision making, but typically have many entries that are unknown or highly uncertain. We present an approach for the systematic analysis of the effect of uncertainties on long-term population growth or decay. Many decisions for threatened and endangered species are made with poor or no information. We can still make decisions under these circumstances in a manner that is highly defensible, even without making assumptions about the distribution of uncertainty, or limiting ourselves to discussions of single, infinitesimally small changes in the parameters. Suppose that the model (determined by the data) for the population in question predicts long-term growth. Our goal is to determine how uncertain the data can be before the model loses this property. Some uncertainties will maintain long-term growth, and some will lead to long-term decay. The uncertainties are typically structured, and can be described by several parameters. We show how to determine which parameters maintain long-term growth. We illustrate the advantages of the method by applying it to a Peregrine Falcon population. The U.S. Fish and Wildlife Service recently decided to allow minimal harvesting of Peregrine Falcons after their recent removal from the Endangered Species List. Based on published demographic rates, we find that an asymptotic growth rate lambda > 1 is guaranteed with 5% harvest rate up to 3% error in adult survival if no two-year-olds breed, and up to 11% error if all two-year-olds breed. If a population growth rate of 3% or greater is desired, the acceptable error in adult survival decreases to between 1% and 6% depending of the proportion of two-year-olds that breed. These results clearly show the interactions between uncertainties in different parameters, and suggest that a harvest decision at this stage may be premature without solid data on adult survival and the frequency of breeding by young adults.  相似文献   

13.
In most cooperatively breeding species, reproduction is monopolised by a subset of group members. However, in some species most or all individuals breed. The factors that affect reproductive success in such species are vital to understanding why multiple females breed. A key issue is whether or not the presence of other breeders is costly to an individual’s reproductive success. This study examines the factors that affect the post-parturition component of reproductive success in groups of communal-breeding banded mongoose (Mungos mungo), where up to ten females breed together. Per-litter reproductive success was low (only 18% of pups survived from birth to independence). Whilst singular breeding was wholly unsuccessful, there were costs associated with breeding in the presence of increasing numbers of other females and in large groups. Synchronisation of parturition increased litter success, probably because it minimises the opportunity for infanticide or decreases competitive asymmetry between pups born to different females. There was no evidence of inbreeding depression, and reproductive success was generally higher in litters where females only had access to related males within their group. I conclude that communal breeding in female banded mongooses represents a compromise between the benefits of group-living and communal pup care on the one hand, and competition between females to maximise their personal reproductive success on the other. Such conflicts are likely to occur in most communal breeding species. Whilst communal breeding systems are generally considered egalitarian, negative effects of co-breeders on individual reproductive success is still an issue.  相似文献   

14.
Bet hedging in a guild of desert annuals   总被引:3,自引:0,他引:3  
Venable DL 《Ecology》2007,88(5):1086-1090
Evolutionary bet hedging encapsulates the counterintuitive idea that organisms evolve traits that reduce short-term reproductive success in favor of longer-term risk reduction. It has been widely investigated theoretically, and many putative examples have been cited including practical ones such as the dormancy involved in microbe and weed persistence. However, long-term data on demographic variation from the actual evolutionarily relevant environments have been unavailable to test for its mechanistic relationship to alleged bet hedging traits. I report an association between delayed germination (a bet hedging trait) and risk using a 22-year data set on demographic variation for 10 species of desert annual plants. Species with greater variation in reproductive success (per capita survival from germination to reproduction x per capita fecundity of survivors) were found to have lower average germination fractions. This provides a definitive test using realistic data on demographic variance that confirms the life history prediction for bet hedging. I also showed that the species with greater long-term demographic variation tended to be the ones with greater sensitivity of reproductive success to variation among years in growing-season precipitation.  相似文献   

15.
Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (lambda(s)) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on lambda(s). The magnitude of variation in the proportion of gravid females and its effect on lambda(s) was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on lambda(s) was 4 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life-history traits in the two ecotypes, which, in turn, affect population dynamics. M-slow populations have evolved life-history traits that buffer fitness against direct effects of variation in reproduction and that spread lifetime reproduction across a greater number of reproductive bouts. These results highlight the importance of long-term demographic and environmental monitoring and of incorporating temporal dynamics into empirical studies of life-history evolution.  相似文献   

16.
Populations of landbirds (bird species that occupy terrestrial habitats for most of their life cycle) are declining throughout North America (north of Mexico) and Europe, yet little is known about how demography is driving this trend. A recent model of 5 geographically separated populations of Cerulean Warblers (Dendroica cerulea) that was based on within-season sampling of nest survival and fledgling success shows that all populations are sinks (annual reproduction is consistently less than annual adult mortality). I tested this indirect model by directly measuring fecundity (number of female fledglings/female) during the breeding season for 2 years in a Cerulean Warbler population occupying a mature forest in southwestern Michigan (U.S.A.) I determined territories of male birds on the basis of male plumage characters and phases of the nesting cycle (2007) and on uniquely color-banded males (2008). I transferred locations of identified males to topographic maps. I counted all fledglings in territories from May to July each year. The model I tested may apply only to single-brooded species; therefore, I searched the literature to estimate the percentage of single-brooded species in North America. The breeding season of Cerulean Warblers was short- nearly all nests were initiated from mid-May to late June. Nest predation and brood parasitism were primary and rare causes of nest failure, respectively. Significantly fewer Cerulean Warblers fledged from parasitized than from nonparasitized nests. Fledgling survival required to maintain the population size was well above previously published values for Neotropical migrants. Single-brooded species comprise 62% of North American breeding bird species for which the number of broods per year is known; I believe my results may apply to these species. The consistency between identification of populations as sources or sinks on the basis of either model estimates or direct measurements suggests that a demographic model relying on within-season sampling of fecundity is adequate to determine population status of single-brooded avian populations. In addition, on the basis of results of previous studies, annual adult survival rate of the Cerulean Warbler is typical of parulid warblers that are not declining. Thus, low fecundity, here determined with different quantitative methods, can drive status of landbird species with high-observed survival.  相似文献   

17.
Understanding how inbreeding affects endangered species in conservation breeding programs is essential for their recovery. The Hawaiian Crow (‘Alalā) (Corvus hawaiiensis) is one of the world's most endangered birds. It went extinct in the wild in 2002, and, until recent release efforts starting in 2016, nearly all of the population remained under human care for conservation breeding. Using pedigree inbreeding coefficients (F), we evaluated the effects of inbreeding on Hawaiian Crow offspring survival and reproductive success. We used regression tree analysis to identify the level of inbreeding (i.e., inbreeding threshold) that explains a substantial decrease in ‘Alalā offspring survival to recruitment. Similar to a previous study of inbreeding in ‘Alalā, we found that inbreeding had a negative impact on offspring survival but that parental (vs. artificial) egg incubation improved offspring survival to recruitment. Furthermore, we found that inbreeding did not substantially affect offspring reproductive success, based on the assumption that offspring that survive to adulthood breed with distantly related mates. Our novel application of regression tree analysis showed that offspring with inbreeding levels exceeding F = 0.098 were 69% less likely to survive to recruitment than more outbred offspring, providing a specific threshold value for ongoing population management. Our results emphasize the importance of assessing inbreeding depression across all life history stages, confirm the importance of prioritizing parental over artificial egg incubation in avian conservation breeding programs, and demonstrate the utility of regression tree analysis as a tool for identifying inbreeding thresholds, if present, in any pedigree-managed population.  相似文献   

18.
Ruf T  Fietz J  Schlund W  Bieber C 《Ecology》2006,87(2):372-381
Edible dormice (Glis glis) reproduce in years with beech mast seeding, but entire populations may skip reproduction in years when tree seeds, a major food resource of this small hibernator, are absent. We tested the hypothesis that the year-to-year variability in reproductive effort caused by this breeding strategy should lead to detectable differences in yearly survival rates. Therefore, we analyzed capture-recapture data from animals occupying nest boxes, collected over nine years at two study sites in Germany. Among fully grown adults (aged two years or older), survival probabilities were significantly lower (0.32 +/- 0.04) after reproductive years (n = 5) compared to years (n = 4) with absent or below-average reproduction (0.58 +/- 0.07) on both study sites. This trade-off between reproduction and subsequent survival was observed in both females and males and appears to be a relatively rare case in which costs of reproduction in terms of longevity are detectable at the population level. Effects of reproduction on survival were less pronounced when yearlings (with a generally lower reproductive effort) were included and were more distinct in a suboptimal habitat. Of those females breeding in nest boxes, 96.5% had only one or two litters within the study period. Considering these and previously published results, including a report of extremely high mean longevities (9-12 years) of dormice in a habitat with infrequent mast seeding, we conclude that edible dormice flexibly adjust life history tactics to local mast patterns. Long stretches of mast failures can in fact lead to relative semelparity, i.e., a strategy in which dormice "sit tight" for several years until environmental conditions are favorable for reproduction.  相似文献   

19.
Salmonids are known for the occurrence in sympatry of two life-history forms, one that undergoes migration to sea before returning to freshwater to reproduce (anadromous) and one that inhabits freshwater without a migration phase (resident). Whereas one breeding population is often suggested by population genetic studies, mating patterns have rarely been directly assessed, especially when both sexes are found within each life-history form. By using highly polymorphic microsatellite loci and parentage analysis in a natural population of sympatric anadromous and resident brook charr (Salvelinus fontinalis), we found that gene flow occurred between the two forms and was mediated by resident males mating with both resident and anadromous females. Determinants of reproductive success, estimated by the number of surviving juveniles (ages 1 and 2 years), differed between the sexes. No strong evidence of the influence of size on individual reproductive success was found for males, whereas larger females (and hence most likely to be anadromous) were more successful. The higher individual reproductive success of anadromous fish compared to residents was mainly explained by this higher reproductive success of anadromous females. We suggest that resident males adopt a “sneaking” reproductive tactic as a way of increasing their reproductive success by mating with females of all sizes in all habitats. The persistence of the resident tactic among females may be linked to their advantage in accessing spatially constrained spawning areas in small tributary streams unavailable to larger females.  相似文献   

20.
Karanth KU  Nichols JD  Kumar NS  Hines JE 《Ecology》2006,87(11):2925-2937
Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号