首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用铁炭微电解-Fenton联合工艺处理制药废水生化出水,探讨了初始pH对微电解过程COD降解速率、出水中Fe2+和Fe3+变化规律以及后续Fenton氧化效果的影响,为优化联合工艺提出了微电解反应pH过程控制的理论。采用pH过程控制时,微电解对COD降解速率大大提高,降解过程基本符合零级反应动力学,同时可大大提高Fe2+和Fe3+浓度及总铁析出量。试验结果表明:当初始pH=2.5,以3.0L/h连续性投加稀硫酸100 min,曝气微电解反应2 h,出水再投加1.0mL/L的H2O2进行Fenton氧化2 h,出水COD总去除率可达85.6%;采用pH过程控制可将微电解出水ρ(Fe2+)浓度从48.6 mg/L提高至149 mg/L,COD降解速率从10.9 mg/(L·h)提高至23.8 mg/(L·h)。  相似文献   

2.
采用铁碳微电解-Fenton氧化联合工艺处理甲苯硝化废水,探讨了溶液pH值、铁炭投加量、铁炭比例、H2O2投加量和反应时间等因素对微电解-Fenton氧化处理硝化废水的影响规律,获得微电解-Fenton氧化处理硝化废水的最佳工艺条件:废水pH在3左右,铁炭投加量为0.6 g/L,Fe/C质量比为4∶1,反应时间为1.5h,微电解后H2O2投加量为20 ml/L,反应时间为1 h。硝化废水经微电解-Fenton氧化处理后,COD由29 146mg/L降至6 477 mg/L,COD去除率达77.8%,BOD5/COD由0提高到0.37左右,废水可生化性显著增强。  相似文献   

3.
以香精香料生产废水为实验对象,其COD浓度为58421mg/L,采用混凝沉淀-微电解-Fenton组合工艺对该废水进行预处理,研究废水pH、药剂投加量、反应时间等因素对废水COD去除的影响。结果表明:以5%FeCl_3为混凝剂,在p H=7,FeCl_3投加量为10mL/50mL,0.06%PAM投加量为0.25mL/50mL时,废水COD的去除率为20.1%;铁碳微电解-铁碳材料与废水比例为2∶1(w/v),pH为3~4,曝气反应时间150min时,COD的去除率为14.6%; p H为4~5,双氧水投加量0.4mL/100mL,Fenton反应5h时,去除率为36.6%。经过该组合工艺的处理,香精香料废水总COD去除率可达60%。  相似文献   

4.
采用微电解-Fenton氧化法对酸化压裂模拟废水进行处理,有效地降低了废水的COD,试验中考察了微电解反应进水pH值、铁碳质量比、反应时间以及联合Fenton工艺中废水的pH值、H2O2加入量、反应时间对COD去除率的影响。结果表明,微电解法工艺的优化条件:pH2.5左右,反应停留时间120min,铁碳质量比5∶1;Fenton反应的优化条件:微电解出水调pH4.0左右,反应时间75min,H2O(2质量分数为10%)加入量7.5ml/L,最终处理的出水COD去除率达64.8%,联合工艺的COD去除率比单一的微电解法提高了26.3%,为后续的处理创造了有利的条件。  相似文献   

5.
采用Fe/C微电解-Fenton氧化联合工艺处理某固体废弃物处理企业填埋区的垃圾渗滤液,以降低其COD与浊度值,并去除渗滤液中的重金属离子。结果表明:当pH=4~5,铁炭复合材料投加量为30~40 g/L,曝气量为40 L/min,水力停留时间(HRT)为1 h时,微电解方法对垃圾渗滤液中的Ni2+、Cr(Ⅵ)、Pb2+的去除效果较好,其去除率分别达到 96%、97%和96%,垃圾渗滤液色度去除率为92.41%,COD去除率为62.33%,浊度由40.73NTU降至3.09 NTU,COD由579.2 mg/L降至218.16 mg/L。对微电解工艺出水进一步采用Fenton氧化工艺处理,结果表明:当Fe2+浓度为0.007 mol/L,氧化时间为90 min,n(H2O2):n(Fe2+)=1.2:1条件下,COD去除率为67.50%,浊度为53.20%,处理后的出水浊度为1.47 NTU、COD为69.49 mg/L,达到GB 18918-2002《城镇污水处理厂污染物排放标准》的二级排放标准。  相似文献   

6.
铁碳微电解/Fenton试剂联合处理垃圾渗滤液研究   总被引:1,自引:0,他引:1  
垃圾渗滤液水量、水质波动大,污染强度高,处理困难且费用较高,以扬州市某垃圾填埋场渗滤液为研究对象,采用两种微电解-Fenton组合工艺对垃圾渗滤液进行处理.重点考察了反应时间、H2O2投加量和pH值等因素对渗滤液的处理效果.结果表明:(1)微电解-Fenton组合Ⅰ:当pH值为4.0,H2O2投加量为3 mi/L,反应时间为90 min时,COD去除率达到64.3%,氨氮的去除率为65.9%;(2)微电解-Fenton组合Ⅱ:当pH值为4.0,H2O2投加量为1.0 mL/L,反应时间为90 min时,COD去除率达到71.3%,氨氮的去除率为83.9%.  相似文献   

7.
纳米Fe_3O_4强化混凝-Fenton氧化预处理垃圾渗滤液   总被引:1,自引:1,他引:0       下载免费PDF全文
采用纳米Fe_3O_4与Fe Cl3制备复合混凝剂,利用混凝沉淀-Fenton氧化工艺预处理垃圾渗滤液原水,研究其处理效果。结果表明:在纳米Fe_3O_4投加量为2 g/L,Fe Cl3投加量为1.4 g/L时制备的复合混凝剂,在p H值为6.5,转速为300 r/min下快速搅拌1 min,转速为100 r/min下慢速搅拌30 min,沉淀时间为30 min的条件下,COD去除率为56.8%,ρ(COD)可由5 240 mg/L降低到2 264 mg/L;利用Fenton氧化处理混凝处理出水,在H_2O_2的投加量为5.5 g/L,n(H_2O_2)∶n(Fe2+)=4,p H值为6,反应时间为80 min,反应温度为25℃的最佳条件下,COD和氨氮的去除率分别为55.7%和40.1%,最终出水ρ(COD)和ρ(氨氮)分别为1 003 mg/L和670 mg/L;该组合工艺对垃圾渗滤液有较好的处理效果,COD、色度和氨氮的去除率分别为80.8%、59.5%和76.2%。  相似文献   

8.
铁炭耦合Fenton试剂-混凝沉淀法预处理DMAC废水   总被引:6,自引:1,他引:5  
N,N-二甲基乙酰胺(DMAC)危害大,是化纤废水中的主要污染物之一. 采用铁炭微电解-Fenton试剂-混凝沉淀工艺预处理DMAC废水. 结果表明:在海绵铁投加量为30 g/L,铁炭体积比为1,pH为2,微电解反应1 h,H2O2投加量为5 mL/L,pH为3,Fenton试剂反应2.0 h,混凝沉淀pH为9.0,沉淀40 min的最佳工艺条件下,CODCr的去除率可稳定在70%以上;紫外可见分光光计测定证明,经微电解反应后DMAC的助色基团—CH3和CO被破坏,经过Fenton 氧化后,—NH—基团才能被破坏,废水中的大分子物质被破坏,最终转变成小分子物质,为后续处理奠定了基础.   相似文献   

9.
采用铁碳微电解/Fenton试剂组合工艺对炼油碱渣废水混凝沉淀处理后出水,进行降解研究。实验结果表明:pH值为3,废水与铁碳填料的体积比为2∶1,微电解反应时间2 h,曝气的条件下,废水的处理效果最好,COD的去除率超过42.5%。Fenton试剂处理微电解反应出水的最佳操作条件是:pH值在2~3之间、反应时间2.5 h、Fe2+浓度为800 mg/L左右、H2O2浓度为0.25 mol/L,在此条件下,Fenton试剂处理微电解处理后的炼油碱渣废水COD平均去除率为63.8%以上,微电解/Fenton工艺对COD的总去除率在79.2%左右,可生化性由0.16提高到0.56。  相似文献   

10.
针对PCB络合废水络合铜浓度高、COD难达标、可生化性差等特点,在研究铜对铁碳微电解和Fenton氧化的催化作用的基础上,采用催化铁内电解-Fenton催化氧化联合自催化氧化还原技术对PCB络合废水进行处理,并通过混凝实验进一步去除废水中污染物。零价铁可置换出络合铜中的铜,单质铜与零价铁可形成Fe-Cu催化还原体系,对Fenton氧化也具有催化作用,可有效提高废水的处理效果。通过单因素实验确定各工艺最佳反应条件,实验结果表明,催化铁内电解最佳工艺条件为:p H=2,反应时间为60 min,铁屑投加量为5 g/L;Fenton催化氧化最佳工艺条件为:p H=3,反应时间为60 min,H2O2投加量为15 m L/L;混凝实验PAM最佳投加量为10 mg/L。最佳工艺条件下废水COD和总铜去除率分别可达到94.5%和98.8%,B/C由0.12提高到0.32,废水可生化性得到显著提高,为后续处理创造了条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号