首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of granivores on coastal dune seed reserves may be high, increasing along a landward gradient from the littoral zone as the structural complexity of the habitat increases. Seasonal removal rates of non-native seeds by nocturnal and diurnal vertebrates and ants from experimental seed trays in two habitats within the Alexandria Coastal Dunefield, South Africa, were determined. Overall, seed removal was higher in the dune-field bush-pocket habitat than the landward thicket habitat. Nocturnal vertebrates were the most important seed removers within bush-pockets. The importance of nocturnal vertebrates decreased in the thicket and there was a shift in the dominant seed removers to diurnal vertebrates. Seed removal by ants and diurnal vertebrates did not differ significantly between the bush-pockets and thicket while that of nocturnal vertebrates showed a significant change. This can be ascribed to the abundance of the omnivorous murid rodentGerbillurus paeba exilis in the bush-pockets which is absent from thicket vegetation.  相似文献   

2.
Abstract: Seed dispersal by animals is considered a pivotal ecosystem function that drives plant‐community dynamics in natural habitats and vegetation recovery in human‐altered landscapes. Nevertheless, there is a lack of suitable ecological knowledge to develop basic conservation and management guidelines for this ecosystem service. Essential questions, such as how well the abundance of frugivorous animals predicts seeding function in different ecosystems and how anthropogenic landscape heterogeneity conditions the role of dispersers, remain poorly answered. In three temperate ecosystems, we studied seed dispersal by frugivorous birds in landscape mosaics shaped by human disturbance. By applying a standardized design across systems, we related the frequency of occurrence of bird‐dispersed seeds throughout the landscape to the abundance of birds, the habitat features, and the abundance of fleshy fruits. Abundance of frugivorous birds in itself predicted the occurrence of dispersed seeds throughout the landscape in all ecosystems studied. Even those landscape patches impoverished due to anthropogenic disturbance received some dispersed seeds when visited intensively by birds. Nonetheless, human‐caused landscape degradation largely affected seed‐deposition patterns by decreasing cover of woody vegetation or availability of fruit resources that attracted birds and promoted seed dispersal. The relative role of woody cover and fruit availability in seed dispersal by birds differed among ecosystems. Our results suggest that to manage seed dispersal for temperate ecosystem preservation or restoration one should consider abundance of frugivorous birds as a surrogate of landscape‐scale seed dispersal and an indicator of patch quality for the dispersal function; woody cover and fruit resource availability as key landscape features that drive seedfall patterns; and birds as mobile links that connect landscape patches of different degrees of degradation and habitat quality via seed deposition.  相似文献   

3.
Introduced Birds and the Fate of Hawaiian Rainforests   总被引:3,自引:0,他引:3  
Abstract:  The Hawaiian Islands have lost nearly all their native seed dispersers, but have gained many frugivorous birds and fleshy-fruited plants through introductions. Introduced birds may not only aid invasions of exotic plants but also may be the sole dispersers of native plants. We assessed seed dispersal at the ecotone between native- and exotic-dominated forests and quantified bird diets, seed rain from defecated seeds, and plant distributions. Introduced birds were the primary dispersers of native seeds into exotic-dominated forests, which may have enabled six native understory plant species to become reestablished. Some native plant species are now as common in exotic forest understory as they are in native forest. Introduced birds also dispersed seeds of two exotic plants into native forest, but dispersal was localized or establishment minimal. Seed rain of bird-dispersed seeds was extensive in both forests, totaling 724 seeds of 9 native species and 2 exotics with over 85% of the seeds coming from native plants. Without suitable native dispersers, most common understory plants in Hawaiian rainforests now depend on introduced birds for dispersal, and these introduced species may actually facilitate perpetuation, and perhaps in some cases restoration, of native forests. We emphasize, however, that restoration of native forests by seed dispersal from introduced birds, as seen in this study, depends on the existence of native forests to provide a source of seeds and protection from the effects of ungulates. Our results further suggest that aggressive control of patches of non-native plants within otherwise native-dominated forests may be an important and effective conservation strategy.  相似文献   

4.
Enright NJ  Mosner E  Miller BP  Johnson N  Lamont BB 《Ecology》2007,88(9):2292-2304
The fire-prone shrublands of southwestern Australia are renowned for their high plant species diversity and prominence of canopy seed storage (serotiny). We compared species richness, abundance, and life history attributes for soil and canopy seed banks in relation to extant vegetation among four sites with different substrate conditions and high species turnover (50-80%) to identify whether this unusual community-level organization of seed storage might contribute to maintenance of high species richness. Soil seed bank (SSB) densities were low to moderate (233-1435 seeds/m2) compared with densities for other Mediterranean-type vegetation and were lowest for sites with highest canopy seed bank (CSB) species richness and lowest nutrient availability, but not richness or abundance of resprouters. Annuals were infrequent in the lowest nutrient sites, but there was no evidence that small SSB size was due to low seed inputs or a trade-off between seed production/storage and seed size in response to low nutrient availability. Sorensen's similarity between SSB and extant vegetation was 26-43% but increased to 54-57% when the CSB was included, representing levels higher than reported for most other ecosystems. Resprouting species were well represented in both the SSB and CSB, and there was no evidence for lower seed production in resprouters than in non-sprouters overall. The SSB and CSB held no species in common and were characterized by markedly different seed dispersal attributes, with winged or small seeds in the CSB and seeds dispersed by ants, birds, and wind (though none with wings) in the SSB. There was no evidence of spatial differentiation in the distribution of seeds of SSB species between vegetated and open microsites that might facilitate species coexistence, but most woody non-sprouters showed aggregation at scales of 1-2 m, implying limited seed dispersal. High similarity between overall seed bank (SSB + CSB) and extant species composition, high number of resprouting species, and seed dispersal processes before (SSB) and after fire (CSB) leading to differential spatial aggregation of post-fire recruits from the two seed bank types may buffer species composition against rapid change and provide a mechanism for maintaining species coexistence at the local scale.  相似文献   

5.
The initial recovery of vegetation after a wildfire in a coastal dune area in NW Jutland, Denmark, was studied over a 5-yr period by means of permanent plots representing various dune communities along a topographical gradient. The impact of the fire varied with the position of the plots. Fens and south-facing dunes were little affected while dune heath plots were severely affected including loss of the O-horizon. Post-fire conditions included presence of remaining soil organic matter, a soil seed bank and surviving below-ground plant parts. The soil surface remained stable during the study period. The initial five years of recovery comprised of an initial three-year recruitment phase during which cover and number of species increased and the quantitative species composition changed markedly, followed by two years of a declining rate of change. 38 species of vascular plants were recorded, 35 are regular components in dune, dune heath and heath fen and were recruited from the seed bank, from locally dispersed seeds and/or by sprouting from surviving vegetative parts. The remaining three species were ‘aliens’, dispersed from sources outside the area. Crustose lichens had an important role in the initial recovery by stabilizing the surface and probably inhibiting seed germination, whereas mosses mostly had a subordinate role. The seral position of the plots, as well as the expected time needed for full recovery of pre-fire vegetation, vary with topography and initial soil conditions. Five years after the fire the fen and the south-facing dune probably need less than a decade for full recovery. The remaining plots are judged to be relatively early seral; their full recovery into mature dry or moist dune heath vegetation and O-horizon is expected to need several centuries.  相似文献   

6.
Previous research suggests that in highly fragmented forest landscapes ecological succession can be arrested by lack of seeds, but that seed deposition abundance and diversity of bird-dispersed plants can be enhanced by bird-attracting structures such as snags. Consequently, bird perches remain a potential tool for accelerating ecological succession and reforesting disturbed land. Consequently, in order to determine the effectiveness of bird perches in reclaiming forested landscapes, seed dispersal, seedbank storage, and recruitment of bird-dispersed plants was studied on a central Florida mined site with clay-rich soil undergoing primary succession over a seven-year period. Data collection included 20 continuous months of seed dispersal data, an analysis of the total and germinable seedbanks, and plant recruitment at one and two years after a fire destroyed perches and burnt vegetation. Seed dispersal to perches reached a peak seedfall by weight in August, which was attributable to nonmigratory birds. Myrica cerifera, the most abundant species dispersed to the sites, was the only species dispersed during the winter and spring months, and it may be a keystone species for the frugivorous bird guild in central Florida. Seedfall beneath perches had a higher diversity of seed genera, and seed numbers (340 seeds m−2 yr−1) were 150 times greater than in sites without perches. Seeds of bird-dispersed plants in the seedbank under perches numbered 77 ± 33 (m−2) in total and 17 ± 5 for the viable seedbank. The population density of bird-dispersed plants was 1.4 and 2.0 plants m−2 at one and two years afler the fire. Less than 0.06% of the dispersed seeds survived to become seedlings. Species composition shifted from seedfall to seedlings, with small-seeded, early-successional (r-selected) shrubs and herbs becoming relatively more common than the desired large-seeded, late-successional (K-selected) tree species. Perches attracted birds and associated seeds, but the physically harsh conditions created by primary succession and/or high predation on seeds appeared to reduce the success of the desired late-successional plant species. Nonetheless, there was a higher abundance and diversity of bird-dispersed plants under perches, suggesting that perch structures have a limited ability to enhance plant diversity under conditions of primary succession.  相似文献   

7.
8.
Russo SE  Portnoy S  Augspurger CK 《Ecology》2006,87(12):3160-3174
Seed dispersal fundamentally influences plant population and community dynamics but is difficult to quantify directly. Consequently, models are frequently used to describe the seed shadow (the seed deposition pattern of a plant population). For vertebrate-dispersed plants, animal behavior is known to influence seed shadows but is poorly integrated in seed dispersal models. Here, we illustrate a modeling approach that incorporates animal behavior and develop a stochastic, spatially explicit simulation model that predicts the seed shadow for a primate-dispersed tree species (Virola calophylla, Myristicaceae) at the forest stand scale. The model was parameterized from field-collected data on fruit production and seed dispersal, behaviors and movement patterns of the key disperser, the spider monkey (Ateles paniscus), densities of dispersed and non-dispersed seeds, and direct estimates of seed dispersal distances. Our model demonstrated that the spatial scale of dispersal for this V. calophylla population was large, as spider monkeys routinely dispersed seeds >100 m, a commonly used threshold for long-distance dispersal. The simulated seed shadow was heterogeneous, with high spatial variance in seed density resulting largely from behaviors and movement patterns of spider monkeys that aggregated seeds (dispersal at their sleeping sites) and that scattered seeds (dispersal during diurnal foraging and resting). The single-distribution dispersal kernels frequently used to model dispersal substantially underestimated this variance and poorly fit the simulated seed-dispersal curve, primarily because of its multimodality, and a mixture distribution always fit the simulated dispersal curve better. Both seed shadow heterogeneity and dispersal curve multimodality arose directly from these different dispersal processes generated by spider monkeys. Compared to models that did not account for disperser behavior, our modeling approach improved prediction of the seed shadow of this V. calophylla population. An important function of seed dispersal models is to use the seed shadows they predict to estimate components of plant demography, particularly seedling population dynamics and distributions. Our model demonstrated that improved seed shadow prediction for animal-dispersed plants can be accomplished by incorporating spatially explicit information on disperser behavior and movements, using scales large enough to capture routine long-distance dispersal, and using dispersal kernels, such as mixture distributions, that account for spatially aggregated dispersal.  相似文献   

9.
Paine CE  Beck H 《Ecology》2007,88(12):3076-3087
Seed dispersal and seedling recruitment (the transition of seeds to seedlings) set the spatiotemporal distribution of new individuals in plant communities. Many terrestrial rain forest mammals consume post-dispersal seeds and seedlings, often inflicting density-dependent mortality. In part because of density-dependent mortality, diversity often increases during seedling recruitment, making it a critical stage for species coexistence. We determined how mammalian predators, adult tree abundance, and seed mass interact to affect seedling recruitment in a western Amazonian rain forest. We used exclosures that were selectively permeable to three size classes of mammals: mice and spiny rats (weighing <1 kg), medium-sized rodents (1-12 kg), and large mammals (20-200 kg). Into each exclosure, we placed seeds of 13 tree species and one canopy liana, which varied by an order of magnitude in adult abundance and seed mass. We followed the fates of the seeds and resulting seedlings for at least 17 months. We assessed the effect of each mammalian size class on seed survival, seedling survival and growth, and the density and diversity of the seedlings that survived to the end of the experiment. Surprisingly, large mammals had no detectable effect at any stage of seedling recruitment. In contrast, small- and medium-sized mammals significantly reduced seed survival, seedling survival, and seedling density. Furthermore, predation by small mammals increased species richness on a per-stem basis. This increase in diversity resulted from their disproportionately intense predation on common species and large-seeded species. Small mammals thereby generated a rare-species advantage in seedling recruitment, the critical ingredient for frequency dependence. Predation by small (and to a lesser extent, medium-sized) mammals on seeds and seedlings significantly increases tree species diversity in tropical forests. This is the first long-term study to dissect the effects of various mammalian predators on the recruitment of a diverse set of tree species.  相似文献   

10.
鼎湖山锥栗种子扩散过程中死亡因素分析   总被引:2,自引:0,他引:2  
研究了锥栗(Castanopsischinensis)种子扩散过程中死亡的主要因素。实验分为无处理组、鸟类取食组、排除鸟类取食组、排除哺乳动物组和种子袋法。结果表明,扩散前种子主要受栗实象甲(Curculiodavidi)取食和病原体感染,其取食率在鼎湖山3种林型之间显示了较大差异。排除实验的研究表明,锥栗种子在扩散后承受啮齿类、鸟类等动物取食和病原体感染致死的巨大压力,其中无覆盖处理实验组的种子取食平均比例高达93.3%,鸟类对种子取食率约为80%,排除鸟类实验组中的种子平均取食率为92.4%,非哺乳动物对种子的取食在3个林型有差异,但不是显著性的。因此,巨大的种子死亡或丧失是锥栗自然更新率非常低的主要原因。  相似文献   

11.
Habitat loss and fragmentation alter the composition of bird assemblages in rainforest. Because birds are major seed dispersers in rainforests, fragmentation‐induced changes to frugivorous bird assemblages are also likely to alter the ecological processes of seed dispersal and forest regeneration, but the specific nature of these changes is poorly understood. We assessed the influence of fragment size and landscape forest cover on the abundance, species composition, and functional properties of the avian seed disperser community in an extensively cleared, former rainforest landscape of subtropical Australia. Bird surveys of fixed time and area in 25 rainforest fragments (1–139 ha in size across a 1800 km2 region) provided bird assemblage data which were coupled with prior knowledge of bird species’ particular roles in seed dispersal to give measurements of seven different attributes of the seed disperser assemblage. We used multimodel regression to assess how patch size and surrounding forest cover (within 200 m, 1000 m, and 5000 m radii) influenced variation in the abundance of individual bird species and of functional groups based on bird species’ responses to fragmentation and their roles in seed dispersal. Surrounding forest cover, specifically rainforest cover, generally had a greater effect on frugivorous bird assemblages than fragment size. Amount of rainforest cover within 200 m of fragments was the main factor positively associated with abundances of frugivorous birds that are both fragmentation sensitive and important seed dispersers. Our results suggest a high proportion of local rainforest cover is required for the persistence of seed‐dispersing birds and the maintenance of seed dispersal processes. Thus, even small rainforest fragments can function as important parts of habitat networks for seed‐dispersing birds, whether or not they are physically connected by vegetation. Respuestas de Aves Dispersoras de Semillas al Incremento de Selvas en el Paisaje Alrededor de Fragmentos  相似文献   

12.
Morales JM  Rivarola MD  Amico G  Carlo TA 《Ecology》2012,93(4):741-748
The outcome of the dispersal process in zoochorous plants is largely determined by the behavior of frugivorous animals. Recent simulation studies have found that fruit removal rates and mean dispersal distances are strongly affected by fruiting plant neighborhoods. We empirically tested the effects of conspecific fruiting plant neighborhoods, crop sizes, and plant accessibility on fruit removal rates and seed dispersal distances of a mistletoe species exclusively dispersed by an arboreal marsupial in Northern Patagonia. Moreover, in this study, we overcome technical limitations in the empirical estimation of seed dispersal by using a novel 15N stable isotope enrichment technique together with Bayesian mixing models that allowed us to identify dispersed seeds from focal plants without the need of extensive genotyping. We found that, as predicted by theory, plants in denser neighborhoods had greater fruit removal and shorter mean dispersal distances than more isolated plants. Furthermore, the probability of dispersing seeds farther away decreased with neighborhood density. Larger crop sizes resulted in larger fruit removal rates and smaller probabilities of longer distance dispersal. The interplay between frugivore behavioral decisions and the spatial distribution of plants could have important consequences for plant spatial dynamics.  相似文献   

13.
Vander Wall SB 《Ecology》2008,89(7):1837-1849
Selective pressures that influence the form of seed dispersal syndromes are poorly understood. Morphology of plant propagules is often used to infer the means of dispersal, but morphology can be misleading. Several species of pines, for example, have winged seeds adapted for wind dispersal but owe much of their establishment to scatter-hoarding animals. Here the relative importance of wind vs. animal dispersal is assessed for four species of pines of the eastern Sierra Nevada that have winged seeds but differed in seed size: lodgepole pine (Pinus contorta murrayana, 8 mg); ponderosa pine (Pinus ponderosa ponderosa, 56 mg); Jeffrey pine (Pinus jeffreyi, 160 mg); and sugar pine (Pinus lambertiana, 231 mg). Pre-dispersal seed mortality eliminated much of the ponderosa pine seed crop (66%), but had much less effect on Jeffrey pine (32% of seeds destroyed), lodgepole pine (29%), and sugar pine (7%). When cones opened most filled seeds were dispersed by wind. Animals removed > 99% of wind-dispersed Jeffrey and sugar pine seeds from the ground within 60 days, but animals gathered only 93% of lodgepole pine seeds and 38% of ponderosa pine seeds during the same period. Animals gathered and scatter hoarded radioactively labeled ponderosa, Jeffrey, and sugar pine seeds, making a total of 2103 caches over three years of study. Only three lodgepole pine caches were found. Caches typically contained 1-4 seeds buried 5-20 mm deep, depths suitable for seedling emergence. Although Jeffrey and sugar pine seeds are initially wind dispersed, nearly all seedlings arise from animal caches. Lodgepole pine is almost exclusively wind dispersed, with animals acting as seed predators. Animals treated ponderosa pine in an intermediate fashion. Two-phased dispersal of large, winged pine seeds appears adaptive; initial wind dispersal helps to minimize pre-dispersal seed mortality whereas scatter hoarding by animals places seeds in sites with a higher probability of seedling establishment.  相似文献   

14.
McConkey KR  Brockelman WY 《Ecology》2011,92(7):1492-1502
Plant species with generalized dispersal mutualisms are considered to be robust to local frugivore extinctions because of redundancy between dispersal agents. However, real redundancy can only occur if frugivores have similar foraging and ranging patterns and if fruit is a limiting resource. We evaluated the quantitative and qualitative contributions of seed dispersers for an endochorus mast-fruiting species, Prunus javanica (Rosaceae) in Khao Yai National Park, Thailand, to evaluate the potential redundancy of dispersers. Data were collected from tree watches, seed/fruit traps, and seed transects under and away from fruiting trees, feeding and seed deposition by gibbons (Hylobates lar), and evaluations of seed and first-year seedling survival. We identified three clusters of dispersers within the network. Most (>80%) frugivore species observed were small birds and squirrels that were not functional dispersers, dropping most seeds under or very near the tree crown, where seedling survival was ultimately nil. Monkeys (Macaca leonina) were low-quality, short-range dispersers, but they dispersed large numbers of seeds and were responsible for 67% of surviving first-year seedlings. Gibbons and Oriental Pied Hornbills (Anthracoceros albirostris) handled few fruits, but they provided the highest quality service by carrying most seeds away from the canopy to medium and long distances, respectively. Although there was overlap in the deposition patterns of the functional dispersers, they displayed complementary, rather than redundant, roles in seed dispersal. Satiation of all functional dispersers further limited their capacity to "replace" one another. Redundancy must be evaluated at the community level because each type of disperser may shift to different species in the non-masting years of P. javanica. Our results underscore the need for research on broader spatial and temporal scales, which combines studies of dispersal and plant recruitment, to better understand mechanisms that maintain network stability.  相似文献   

15.
Effect of Edge Structure on the Flux of Species into Forest Interiors   总被引:13,自引:0,他引:13  
Abstract: A key goal of conservation biology is to prevent the spread of exotic species. Previous work on exotic invasion has two limitations: (1) the lack of a spatially explicit approach and (2) a primary focus on the net effect of invasion by examining invasive species already present in the community. We address these limitations by focusing on the arrival of a potential invader into a community and use a spatially explicit approach to quantify the flow of seeds from the surrounding landscape into the interior of a forest. We hypothesize that the structure of forest-edge vegetation influences how the edge mediates seed flux. To test our hypothesis, we experimentally altered vegetation structure within 20 m of the edge to create two edge treatments: thinned and intact. We quantified the flux of seeds moving into the forest interior across the two treatments. We used seed traps randomly arrayed on transects from 5 to 50 m into the forest. More seeds crossed the thinned treatment than crossed the intact treatment to reach the forest interior. In addition, seeds that crossed the thinned treatment dispersed farther into the forest than those that crossed the intact treatment. These results were consistent throughout the period of maximum autumn dispersal, including periods before and after leaf drop. Our results show that the structure of vegetation on the edge interacts with the flux of wind-dispersed seed across the edge. We demonstrated that an edge with intact vegetation can function as a physical barrier to seed dispersal. Therefore, the structure of vegetation on edges can influence the function of edges as barriers to seed flux into the forest interior.  相似文献   

16.
Abstract: Bats are abundant and effective seed dispersers inside the forest, but what happens when a forest is fragmented and transformed into pasture? The landscape at Los Tuxtlas, Mexico, originally rainforest, is greatly fragmented and covered with pastures. We analyzed the seed rains produced by frugivorous bats and birds under isolated trees in pastures in the fragmented landscape and the contribution of this process to vegetational recovery. We surveyed bats and obtained fecal samples under isolated trees in pastures. We also collected seed rain below the canopy of 10 isolated Ficus trees, separating nocturnally dispersed seeds from diurnally dispersed seeds. We caught 652 bats of 20 species; 83% of captures were frugivores. The most abundant species were Sturnira lilium (48%), Artibeus jamaicensis (18%), Carollia perspicillata (12%), and Dermanura tolteca (11%). Fecal samples contained seeds of 19 species in several families: Piperaceae (50%), Moraceae (25%), Solanaceae (12%), Cecropiaceae (10%), and others (3%). Sturnira lilium was the most important disperser bat in pastures. Seed rain was dominated by zoochorous species (89%). We found seed diversity between day and night seed captures to be comparable, but we found a significant interaction of disperser type (  bird or bat) with season. Seven plant species accounted for 79% of the seed rain: Piper auritum (23%), Ficus (  hemiepiphytic-strangler tree) spp. (17%), Cecropia obtusifolia (10%), P. amalago (10%), Ficus (  free-standing tree) spp. (8%), P. yzabalanum (6%), and Solanum rudepanum (5%). Bats and birds are important seed dispersers in pastures because they disperse seeds of pioneer and primary species (trees, shrubs, herbs, and epiphytes), connect forest fragments, and maintain plant diversity. Consequently, they might contribute to the recovery of woody vegetation in disturbed areas in tropical humid forests.  相似文献   

17.
Dispersal Can Limit Local Plant Distribution   总被引:21,自引:0,他引:21  
The ability of species to establish new populations at unoccupied sites is a critical feature in the maintenance of biological diversity, and it has taken on new importance as a result of global climate change and expected changes in species distribution. To examine the dispersal potential of plant species, seeds of four annual plant species were experimentally dispersed 40 to 600 m from existing populations in Massachusetts (U.S.A.) to 34 nearby unoccupied but apparently suitable sites. At three of these sites new populations were established that persisted for four generations and expanded slowly in area. At seven sites, a small initial population eventually died out. At the 24 other sites, new populations did not become established, indicating that the sites were in some way unsuitable, that not enough seeds arrived, or that conditions suitable for seed germination do not occur every year. These results suggest that some species may be unable to disperse naturally out of their existing ranges in response to global climate change, particularly if habitat fragmentation creates barriers to dispersal. These species may have to be assisted to reach suitable sites nearby to prevent their extinction in the wild.  相似文献   

18.
From 1988 to 1991, we studied the postfledging dispersal of 31 radio-tagged White-crowned Pigeons ( Columba leucocephala ) from three natal keys in Florida Bay. Immature birds dispersed from the natal keys at 26–45 days after batching, and most young dispersed more than 20 km during the first 10 days postdispersal. Dispersing birds flew either north to the Florida mainland or east to northeast to the mainline Florida Keys. On the mainland, immature birds fed nearly exclusively within Everglades National Park or an adjacent state wildlife management area. On the mainline keys, White-crowned Pigeons selectively used 5.01–20 ha forest fragments (p < 0.10) during the first 72 hours postdispersal. After this period, dispersing birds showed no preference among fragment size classes but used deciduous seasonal forests more frequently than suburban habitat(p < 0.10). The spatial pattern of dispersal on the mainline keys suggests that, during the first 72 hours postdispersal. White-crowned Pigeons are not able to reach northern Key Largo, where 69% of the deciduous seasonal forests are protected in state or federal ownership. Protection of large forest fragments, especially on southern Key Largo, should be a priority for maintaining populations of White-crowned Pigeons. These forests provide a series of "stepping stones" that enable dispersing immature White-crowned Pigeons to fly to more distant areas where habitat availability is less restricted. This species is threatened in Florida and may play an important role in maintaining plant species diversity in the seasonal deciduous forests of south Florida by dispersing seeds of at least 37 species of trees and shrubs. Protection of sufficient habitat to allow successful postfledging dispersal of this important seed disperser will also protect the ecosystem's biodiversity.  相似文献   

19.
Abstract: Habitat fragmentation increases seed dispersal limitation across the landscape and may also affect subsequent demographic stages such as seedling establishment. Thus, the development of adequate plans for forest restoration requires an understanding of mechanisms by which fragmentation hampers seed delivery to deforested areas and knowledge of how fragmentation affects the relationship between seed‐deposition patterns and seedling establishment. We evaluated the dispersal and recruitment of two bird‐dispersed, fleshy‐fruited tree species (Crataegus monogyna and Ilex aquifolium) in fragmented secondary forests of northern Spain. Forest fragmentation reduced the probability of seed deposition for both trees because of decreased availability of woody perches and fruit‐rich neighborhoods for seed dispersers, rather than because of reductions in tree cover by itself. The effects of fragmentation went beyond effects on the dispersal stage in Crataegus because seedling establishment was proportional to the quantities of bird‐dispersed seeds arriving at microsites. In contrast, postdispersal mortality in Ilex was so high that it obscured the seed‐to‐seedling transition. These results suggest that the effects of fragmentation are not necessarily consistent across stages of recruitment across species. Habitat management seeking to overcome barriers to forest recovery must include the preservation, and even the planting, of fleshy‐fruited trees in the unforested matrix as a measure to encourage frugivorous birds to enter into open and degraded areas. An integrative management strategy should also explicitly consider seed‐survival expectancies at microhabitats to preserve plant‐population dynamics and community structure in fragmented landscapes.  相似文献   

20.
Summary. Three chemical viability tests were evaluated in the seed dispersal system of Rubia fruticosa, in which three main groups of dispersers participate: reptiles, birds and mammals. Tetrazolium chloride (TTC) and indigo carmine (IC) indicated a lower viability of seeds from droppings of introduced rabbits (Oryctolagus cuniculus) than of those from control plants and the native dispersers, lizards and gulls. In the rabbit seed treatment, significant differences were observed between results obtained with TTC and IC tests. Interpretation of these data, due to the presence of doubtful embryo staining, was more difficult using the IC test. Furthermore, some seeds that were clearly dead had been underestimated. In contrast with results obtained from the two staining methods, the EC test did not confirm that viability of control seeds and those seeds consumed by native dispersers were clearly higher than in seeds ingested by O. cuniculus. Further, compared to the other two tests, the EC method requires more careful handling of the embryo during the extraction process to avoid errors in viability estimation, since this method measures concentration of electrolytes that are released through cellular membranes. Thus, TTC was the most reliable test to assess seed viability in the seed dispersal system of R. fruticosa, and these results agree with those obtained in previous germination experiments made on the same set of seeds given the same treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号