首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Steady state experimental studies with a viscous analog of the aquifer system in central Long Island, New York, have shown there to be significant interaction between surface accretion, stream base flow, well recharge, and the degree of salt water intrusion. Reductions in accretion are found to cause a proportionately larger decrease in stream base flow. The degree of intrusion is found to be related to the distribution of accretion and well recharge between stream base flow and submarine flow to the sea. This interaction poses a conflict between development of the groundwater resource and maintenance of the surface water resource. Well recharge apparently offers a potential solution to the conflict.  相似文献   

2.
ABSTRACT: This study analyzes possible causes of shallow ground water salinization in the coastal area of Yun‐Lin. The local hydro‐geologic setting is determined from geological drilling data and sea floor topography. Three possible causes (sea water intrusion, salt water percolation through wells, and infiltration of salty water from fish ponds) are evaluated. Chloride concentration is used as an index to measure ground water salinization. Sea water intrusion is modeled by the advective/dispersive equation, and salt water infiltration from wells and fish ponds is calculated by estimating the amount of water percolated. The determined local hydrogeologic setting suggests that the shallow aquifer may be connected to the sea water, resulting in salt water intrusion as a large amount of shallow ground water is withdrawn. The percent contributions of sea water intrusion, percolation through wells, and infiltration of water from fish ponds, to the salinization of the shallow aquifer at Ko‐Hu in the Yun‐Lin coastal area are approximately 27 percent, less than 1 percent and 73 percent, respectively. The results suggest that the vertical infiltration of salt water from fish ponds is the major cause of shallow ground water salinization in the coastal area of Yun‐Lin.  相似文献   

3.
ABSTRACT: The unique characteristics of the hydrogeologic system of south Florida (flat topography, sandy soils, high water table, and highly developed canal system) cause significant interactions between ground water and surface water systems. Interaction processes involve infiltration, evapotranspiration (ET), runoff, and exchange of flow (seepage) between streams and aquifers. These interaction processes cannot be accurately simulated by either a surface water model or a ground water model alone because surface water models generally oversimplify ground water movement and ground water models generally oversimplify surface water movement. Estimates of the many components of flow between surface water and ground water (such as recharge and ET) made by the two types of models are often inconsistent. The inconsistencies are the result of differences in the calibration components and the model structures, and can affect the confidence level of the model application. In order to improve model results, a framework for developing a model which integrates a surface water model and a ground water model is presented. Dade County, Florida, is used as an example in developing the concepts of the integrated model. The conceptual model is based on the need to evaluate water supply management options involving the conjunctive use of surface water and groundwater, as well as the evaluation of the impacts of proposed wellfields. The mathematical structure of the integrated model is based on the South Florida Water Management Model (SFWMM) (MacVicar et al., 1984) and A Modular Three-Dimensional Finite-Difference Groundwater Flow Model (MODFLOW) (McDonald and Harbaugh, 1988).  相似文献   

4.
ABSTRACT: Overlapping and adjacent ground water investigations are common in areas where aquifers are threatened by industrial development. In the Indianapolis area in Marion County, Indiana, a patchwork of ground water flow models have been used during the past 20 years to evaluate ground water resources and to determine the effects of local contamination. In every case these ground water models were constructed from scratch. Site specific finite difference grids or finite element meshes inhibit the direct reuse of input data when the area of interest shifts. Because the aquifer is not discretized into a grid or mesh with analytic element models, there are unique opportunities for direct reuse of model input data. In two applications of this principle we illustrate how the newly emerging analytic element method allows a fairly straightforward reuse of model input data from previous models in the same general area. In analytic element models of Central Indiana, streams and their tributaries are represented in different resolutions. Input data items of several modeling studies are stored and cataloged on disk in such a manner that they can be selectively retrieved by a data management program PREPRO. In this manner, a new ground water model can be set up quickly with input data which have been previously defined and tested during model calibration.  相似文献   

5.
Increasing salinity is one of the most significant and widespread forms of groundwater pollution in coastal areas. This paper presents the causes and impacts of saline water intrusion in coastal areas. Various causes of salt water intrusion, and approaches for the determination of its extent and various measures to control the salt water intrusion are described. An aquifer performance test (APT) approach is presented to identify the extent of existing salt water intrusion in the study area located in the southwest coastal region of Gujarat State (India). A resistivity based experimental technique is used to identify the quality of the groundwater available at different depths. A methodology is presented to assess the extent of available fresh and saline groundwater and to find out the limit up to which lower saline groundwater can be withdrawn for industrial purposes without affecting the upper fresh water layer which can be made available for domestic purposes.  相似文献   

6.
Abstract: Few studies exist that evaluate or apply pesticide transport models based on measured parent and metabolite concentrations in fields with subsurface drainage. Furthermore, recent research suggests pesticide transport through exceedingly efficient direct connections, which occur when macropores are hydrologically connected to subsurface drains, but this connectivity has been simulated at only one field site in Allen County, Indiana. This research evaluates the Root Zone Water Quality Model (RZWQM) in simulating the transport of a parent compound and its metabolite at two subsurface drained field sites. Previous research used one of the field sites to test the original modification of the RZWQM to simulate directly connected macropores for bromide and the parent compound, but not for the metabolite. This research will evaluate RZWQM for parent/metabolite transformation and transport at this first field site, along with evaluating the model at an additional field site to evaluate whether the parameters for direct connectivity are transferable and whether model performance is consistent for the two field sites with unique soil, hydrologic, and environmental conditions. Isoxaflutole, the active ingredient in BALANCE® herbicide, was applied to both fields. Isoxaflutole rapidly degrades into a metabolite (RPA 202248). This research used calibrated RZWQM models for each field based on observed subsurface drain flow and/or edge of field conservative tracer concentrations in subsurface flow. The calibrated models for both field sites required a portion (approximately 2% but this fraction may require calibration) of the available water and chemical in macropore flow to be routed directly into the subsurface drains to simulate peak concentrations in edge of field subsurface drain flow shortly after chemical applications. Confirming the results from the first field site, the existing modification for directly connected macropores continually failed to predict pesticide concentrations on the recession limbs of drainage hydrographs, suggesting that the current strategy only partially accounts for direct connectivity. Thirty‐year distributions of annual mass (drainage) loss of parent and metabolite in terms of percent of isoxaflutole applied suggested annual simulated percent losses of parent and metabolite (3.04 and 1.31%) no greater in drainage than losses in runoff on nondrained fields as reported in the literature.  相似文献   

7.
从综合治理,合理利用采出污水的长远利益出发,针对东部油田高含水阶段的新特点,提出地面高效处理,地下控水稳油相结合的治理策略,探讨了相关的技术和方法,并讨论了采出污水回注利用中应加强研究的几个问题。  相似文献   

8.
ABSTRACT. Over the last few years, several studies sponsored by both government and interested national engineering associations have evaluated the relative merits of pressure sewer systems. Surprisingly little data has been forthcoming, however, with regard to the effects of pressure sewers on both the economics of land development and the country's water resources. The intention of our paper is to detail the salutary effects of pressure sewers on water supply resources, the indirect effect on other resources by decreasing the contribution of sanitary sewage to their pollution, and to illustrate where, in some locations of the country, pressure sewers would benefit the economics of land development. As engineers from a large industrial firm that has built hardware that will allow the concepts stated above to become realities, we will present data to enforce our convictions. Some effects on municipal treatment plants, and emplacement costs of the system are described. Since the main thrust of our paper is to treat the effect of pressure sanitary sewers on the water resources of the country, specific peripheral data is not presented at length. The pressure sewer effects on lowering water usage in homes and the decrease in groundwater contamination by replacing septic tanks with pressure sewers in selected locations is presented. Advanced technology concepts such as energy assisted sewer systems should be considered as a favorable economic manner in which to preserve selected water resources. During the 1965 drought that affected the Northeastern section of the U.S., a federal government document reported that there was really no shortage of water, but that present water resources lacked management. Pressure sewers may be a water resources management tool and an effective one if not promulgated as a cure-all for the water pollution problems facing this nation.  相似文献   

9.
ABSTRACT: In projects involving ground water problems, dependence on the mathematical modeling of the ground water flow phenomena is inescapable. At present, two dimensional flow models, which require tremendous amounts of computer time and storage, are generally used. When such bulky models are used for planning purposes, the two requirements (computer time and storage) can severely limit the number of alternatives that can be considered. A simple quantity and quality simulation model is developed here which requires considerably less computer time and storage and gives reasonably accurate results. The model was applied to simulate a ground water basin in San Luis Rey River in Southern California. The results were compared with those obtained by a USGS model. It was found that the simple model gave results which were consistentaly within five percent of the USGS model results, while the requirements on computer time and storage were drastically reduced.  相似文献   

10.
ABSTRACT: Genetic algorithms (GA) and simulated annealing (SA), two global search techniques, are coupled with MODFLOW, a commonly used groundwater flow simulation code, for optimal management of ground water resources under general conditions. The coupled simulation-optimization models allow for multiple management periods in which optimal pumping rates vary with time to reflect the changing flow conditions. The objective functions of the management models are of a very general nature, incorporating multiple cost terms such as the drilling cost, the installation cost, and the pumping cost. The models are first applied to two-dimensional maximum yield and minimum cost water supply problems with a single management period, and then to a multiple management period problem. The strengths and limitations of the GA and SA based models are evaluated by comparing the results with those obtained using linear programming, nonlinear programming, and differential dynamic programming. For the three example problems examined in this study, the GA and SA based models yield nearly identical or better solutions than the various programming methods. While SA tends to outperform GA in terms of the number of forward simulations needed, it uses more empirical control parameters which have significant impact on solution efficiency but are difficult to determine.  相似文献   

11.
ABSTRACT: Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri‐County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley.  相似文献   

12.
ABSTRACT. Evaluation of lakes as they are related to groundwater flow systems is of special concern prior to efficient development and planning operations. Both naturally occurring and artificially created lakes are being developed rapidly as recreational and residential areas. Simultaneously, field verification of theoretical groundwater flow system behavior has progressed to the point where hydrogeologists trained to understand basic concepts of flow-system analysis can begin to broaden their research and service base, and to work closer with planners, developers, and engineers. It is suggested that particular efforts be directed toward a greater evaluation of physical, chemical, and biological aspects of potentially developable lake sites to aid in selecting use patterns in accord with these factors. Many lake developments are not in harmony with the physical environment. The resulting misuse of resources is often expressed as accelerated eutrophication of lakes, or by quality degradation of shallow groundwater flow systems contiguous to them. Lakes can no longer be considered as separate entities. Methodology for investigating the interchange of surface and near-surface water is adequate however, the application of known interchange relationships is inadequate. .  相似文献   

13.
The method of flow analysis, which is similar to economic input-output analysis, is presented as a means of making flow models of ecological systems more useful to environmental managers. This paper considers as an illustration the extent to which nitrogen fertilizer added toSpartina salt marsh sediments can enhance shellfish growth. Nitrogen flow models of both the Barataria Bay salt marsh complex of coastal Louisiana and the Sippewissett Marsh of western Cape Cod are analyzed. The analysis shows the transfer of added nitrogen to shellfish growth viaSpartina growth, decomposition, and detrital feeding to be considerably less efficient than its transfer toSpartina growth itself. These results are similar for both marsh systems, despite their great physical differences and despite the inclusion of considerably more microbial processing of nitrogen in the Barataria Bay model than in the Sippewissett models. The results suggest that the most efficient mechanism by which added nitrogen could enhance shellfish growth in salt marshes may have to bypass the route through theSpartina life cycle.  相似文献   

14.
ABSTRACT. This paper deals with the subject of applying different types of systems analysis tools to water quantity studies of multireservoir networks of increasing degrees of complexity. The object is to show how each tool can be used, modified and combined with other tools to solve specific problems and to indicate the degrees of complexity at which more sophisticated tools should be applied. Firstly, several applications and limitations of linear programming and dynamic programming are discussed. Secondly, it is shown that mass curve analysis is useful, can be extended to serve in computing reservoir rules for conventional multireservoir simulation models, and can be applied in conjunction with either historic or generated sequences of hydrologic input data. Thirdly, extended and limiting features of conventional time-interval-by-time-interval multireservoir simulation models are analyzed. And fourthly, a two-model series for problems which defy analysis by more basic tools is described in detail, the first model using network analysis (Out-of-Kilter Algorithm) for all space and time arcs simultaneously and providing data for the second general-purpose model using network analysis each time interval. The importance of efficient computer procedures is stressed. The background for the paper includes systems analysis of water availability and hydro-thermal power studies carried out during the past six years in that part of Canada lying between the Great Lakes and the Rocky Mountain Divide.  相似文献   

15.
Abstract: For over 10 years, several species of salmon have been identified as either threatened or endangered in the Snake River Basin of Idaho. The United States Bureau of Reclamation, in cooperation with the National Marine Fisheries Service, has proposed a variety of plans to increase stream flows in the Snake River Basin to facilitate movement by juvenile salmon smolts to the ocean. This research examines two of the flow augmentation plans proposed by the Bureau of Reclamation as well as two alternative plans, one founded purely on existing priority‐based water rights and another geared toward minimizing the effects of flow augmentations on farms profitability. Results from a basin‐wide model of agricultural production in the Snake River Basin, the Snake River Agricultural Model, present evidence that (1) older water rights are used towards production of less valuable crops, (2) flow augmentation scenarios have unequal effects on farms profitability across agricultural regions within the basin, and (3) irrigation water is valued from US$4 to US$59 an acre‐foot.  相似文献   

16.
ABSTRACT: Water resources professionals should be engaged actively in revisiting state water rights law. During the past four years, sponsored by the American Society of Civil Engineers with cooperation of other water resources organizations, over a hundred engineers, hydrologists, geographers, lawyers, administrators, educators, water users, and other persons interested in water law have been preparing a Model State Water Rights Code. Preliminary drafts of the Model Code have been considered in four states, and its provisions will be disseminated nationally to state legislators and other policy makers upon formal publication in September 1994. The Model Code gathers the best provisions from state water laws into comprehensive regulated riparian and prior appropriation provisions, includes commentaries explaining how its textual sections address water resources planning and management issues, and references similar language in current state water statutes. The goal of the Code Project is to provide materials which will assist legislators so they can enact effective, efficient, and equitable water laws. In the future, the Code drafting group will expand its efforts to develop legal guidelines for allocating shared transboundary water resources, water quality law, federal water statutes, and other water resources legal issues.  相似文献   

17.
REALM (REsource ALlocation Model) is a generalised computer simulation package that models harvesting and bulk distribution of water resources within a water supply system. It is a modeling tool, which can be applied to develop specific water allocation models. Like other water resource simulation software tools, REALM uses mass-balance accounting at nodes, while the movement of water within carriers is subject to capacity constraints. It uses a fast network linear programming algorithm to optimise the water allocation within the network during each simulation time step, in accordance with user-defined operating rules. This paper describes the main features of REALM and provides potential users with an appreciation of its capabilities. In particular, it describes two case studies covering major urban and rural water supply systems. These case studies illustrate REALM's capabilities in the use of stochastically generated data in water supply planning and management, modelling of environmental flows, and assessing security of supply issues.  相似文献   

18.
Agricultural water management (AWM) is an interdisciplinary concern, cutting across traditional domains such as agronomy, climatology, geology, economics, and sociology. Each of these disciplines has developed numerous process‐based and empirical models for AWM. However, models that simulate all major hydrologic, water quality, and crop growth processes in agricultural systems are still lacking. As computers become more powerful, more researchers are choosing to integrate existing models to account for these major processes rather than building new cross‐disciplinary models. Model integration carries the hope that, as in a real system, the sum of the model will be greater than the parts. However, models based upon simplified and unrealistic assumptions of physical or empirical processes can generate misleading results which are not useful for informing policy. In this article, we use literature and case studies from the High Plains Aquifer and Southeastern United States regions to elucidate the challenges and opportunities associated with integrated modeling for AWM and recommend conditions in which to use integrated models. Additionally, we examine the potential contributions of integrated modeling to AWM — the actual practice of conserving water while maximizing productivity. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

19.
对水敏感性的机理与影响因素的研究   总被引:1,自引:0,他引:1  
通过对咸淡水界面水敏感性机理与影响因素的研究,表明在非反应性微粒的释放迁移、反应性微粒的膨胀和絮凝作用与胶体吸附架桥作用下多孔介质中微粒物质的释放、膨胀、迁移、重沉积等引起的孔喉阻塞是导致水敏感性的机理所在;临界盐浓度、临界盐浓度变化率、临界离子强度、一临界流速和pH值是水敏感性的主要影响因素;指出水敏感性的研究对防止海水入侵具有重要的理论意义和实用价值。  相似文献   

20.
ABSTRACT: In coastal confined aquifers, the extent of the salt-water wedge due to natural ground-water flow can be determined by available methods. If water is pumped by a discharge well, the quality of the water depends upon the rate and duration of pumping as well as the location of the well. A study has been made to find the extent of the progress of salt-water intrusion due to the operation of one discharge well taking into account various conditions of aquifer properties, pump capacities, natural flows, time effects, and well locations. Dimension-less solutions for specific conditions have been obtained by means of a simple computer program. Range of most common conditions is discussed. One of the main findings of this study was that salt water may be pumped out of a well even if it is located in an initially totally fresh-water zone beyond the natural salt/fresh-water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号