首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Abstract: Assessing conservation strategies requires reliable estimates of abundance. Because detecting all individuals is most often impossible in free‐ranging populations, estimation procedures have to account for a <1 detection probability. Capture–recapture methods allow biologists to cope with this issue of detectability. Nevertheless, capture–recapture models for open populations are built on the assumption that all individuals share the same detection probability, although detection heterogeneity among individuals has led to underestimating abundance of closed populations. We developed multievent capture–recapture models for an open population and proposed an associated estimator of population size that both account for individual detection heterogeneity (IDH). We considered a two‐class mixture model with weakly and highly detectable individuals to account for IDH. In a noninvasive capture–recapture study of wolves we based on genotypes identified in feces and hairs, we found a large underestimation of population size (27% on average) occurred when IDH was ignored.  相似文献   

2.
Recovering small populations of threatened species is an important global conservation strategy. Monitoring the anticipated recovery, however, often relies on uncertain abundance indices rather than on rigorous demographic estimates. To counter the severe threat from poaching of wild tigers (Panthera tigris), the Government of Thailand established an intensive patrolling system in 2005 to protect and recover its largest source population in Huai Kha Khaeng Wildlife Sanctuary. Concurrently, we assessed the dynamics of this tiger population over the next 8 years with rigorous photographic capture‐recapture methods. From 2006 to 2012, we sampled across 624–1026 km2 with 137–200 camera traps. Cameras deployed for 21,359 trap days yielded photographic records of 90 distinct individuals. We used closed model Bayesian spatial capture‐recapture methods to estimate tiger abundances annually. Abundance estimates were integrated with likelihood‐based open model analyses to estimate rates of annual and overall rates of survival, recruitment, and changes in abundance. Estimates of demographic parameters fluctuated widely: annual density ranged from 1.25 to 2.01 tigers/100 km2, abundance from 35 to 58 tigers, survival from 79.6% to 95.5%, and annual recruitment from 0 to 25 tigers. The number of distinct individuals photographed demonstrates the value of photographic capture–recapture methods for assessments of population dynamics in rare and elusive species that are identifiable from natural markings. Possibly because of poaching pressure, overall tiger densities at Huai Kha Khaeng were 82–90% lower than in ecologically comparable sites in India. However, intensified patrolling after 2006 appeared to reduce poaching and was correlated with marginal improvement in tiger survival and recruitment. Our results suggest that population recovery of low‐density tiger populations may be slower than anticipated by current global strategies aimed at doubling the number of wild tigers in a decade.  相似文献   

3.
Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide‐ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3‐month survey and adapted a Bayesian spatially explicit capture‐recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture‐recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km2, and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions.  相似文献   

4.
Abstract: Pheromone‐based monitoring is a promising new method for assessing the conservation status of many threatened insect species. We examined the versatility and usefulness of pheromone‐based monitoring by integrating a pheromone–kairomone trapping system and pitfall trapping system in the monitoring of two saproxylic beetles, the hermit beetle Osmoderma eremita (Coleoptera: Scarabaeidae) and its predator Elater ferrugineus (Coleoptera: Elateridae), which live inside hollow trees. We performed mark–recapture studies of both species with unbaited pitfall traps in oak hollows combined with pheromone‐baited funnel traps suspended from oak branches to intercept dispersing individuals. For O. eremita, the integrated trapping system showed that the population in the study sites may be considerably higher than estimates based on extrapolation from pitfall trapping alone (approximately 3400 vs. 1100 or 1800 individuals, respectively). Recaptures between odor‐baited funnel traps showed that males and females had similar dispersal rates, but estimating the number of dispersing individuals was problematic due to declining recapture probability between subsequent capture events. Our conservative estimate, assuming a linear decrease in capture probability, suggested that around 1900 individuals, or at least half of the O. eremita population, may perform flights from their natal host trees, representing higher dispersal rates than previous estimates. E. ferrugineus was rarely caught in pitfall traps. One hundred thirty‐nine individuals, likely almost exclusively females, were caught in odor‐baited funnel traps with approximately 4% recapture probability. If recapture probability over consecutive capture events follows that of O. eremita, this would correspond to a total population size of 2500–3000 individuals of the predator; similar to its supposed prey O. eremita. Our results demonstrate that pheromone‐based monitoring is a valuable tool in the study of species or life‐history stages that would otherwise be inaccessible.  相似文献   

5.
Freshwater protected areas are rare even though freshwater ecosystems are among the most imperiled in the world. Conservation actions within terrestrial protected areas (TPAs) such as development or resource extraction regulations may spill over to benefit freshwater ecosystems within their boundaries. Using data from 175 lakes across Ontario, Canada, we compared common indicators of fish‐assemblage status (i.e., species richness, Shannon diversity index, catch per unit effort, and normalized‐length size spectrum slopes) to evaluate whether TPAs benefit lake fish assemblages. Nearest neighbor cluster analysis was used to generate pairs of lakes: inside versus outside, inside versus bordering, and bordering versus outside TPAs based on lake characteristics. The diversity and abundance indicators did not differ significantly across comparisons, but normalized‐length size spectrum slopes (NLSS) were significantly steeper in lakes outside parks. The latter indicated assemblage differences (greater abundances of small‐bodied species) and less‐efficient energy transfer through the trophic levels of assemblages outside parks. Although not significantly different, pollution‐ and turbidity‐tolerant species were more abundant outside parks, whereas 3 of the 4 pollution‐intolerant species were more abundant within parks. Twenty‐one percent of the difference in slopes was related to higher total dissolved solids concentrations and angling pressure. Our results support the hypothesis that TPAs benefit lake fish assemblages and suggest that NLSS slopes are informative indicators for aquatic protected area evaluations because they represent compositional and functional aspects of communities.  相似文献   

6.
Designing agroecosystems that are compatible with the conservation of biodiversity is a top conservation priority. However, the social variables that drive native biodiversity conservation in these systems are poorly understood. We devised a new approach to identify social–ecological linkages that affect conservation outcomes in agroecosystems and in social‐ecological systems more broadly. We focused on coastal agroforests in Fiji, which, like agroforests across other small Pacific Islands, are critical to food security, contain much of the country's remaining lowland forests, and have rapidly declining levels of native biodiversity. We tested the relationships among social variables and native tree species richness in agroforests with structural equation models. The models were built with data from ecological and social surveys in 100 agroforests and associated households. The agroforests hosted 95 native tree species of which almost one‐third were endemic. Fifty‐eight percent of farms had at least one species considered threatened at the national or international level. The best‐fit structural equation model (R2 = 47.8%) showed that social variables important for community resilience—local ecological knowledge, social network connectivity, and livelihood diversity—had direct and indirect positive effects on native tree species richness. Cash‐crop intensification, a driver of biodiversity loss elsewhere, did not negatively affect native tree richness within parcels. Joining efforts to build community resilience, specifically by increasing livelihood diversity, local ecological knowledge, and social network connectivity, may help conservation agencies conserve the rapidly declining biodiversity in the region.  相似文献   

7.
Abstract: Assessment of abundance, survival, recruitment rates, and density (i.e., population assessment) is especially challenging for elusive species most in need of protection (e.g., rare carnivores). Individual identification methods, such as DNA sampling, provide ways of studying such species efficiently and noninvasively. Additionally, statistical methods that correct for undetected animals and account for locations where animals are captured are available to efficiently estimate density and other demographic parameters. We collected hair samples of European wildcat (Felis silvestris) from cheek‐rub lure sticks, extracted DNA from the samples, and identified each animals’ genotype. To estimate the density of wildcats, we used Bayesian inference in a spatial capture‐recapture model. We used WinBUGS to fit a model that accounted for differences in detection probability among individuals and seasons and between two lure arrays. We detected 21 individual wildcats (including possible hybrids) 47 times. Wildcat density was estimated at 0.29/km2 (SE 0.06), and 95% of the activity of wildcats was estimated to occur within 1.83 km from their home‐range center. Lures located systematically were associated with a greater number of detections than lures placed in a cell on the basis of expert opinion. Detection probability of individual cats was greatest in late March. Our model is a generalized linear mixed model; hence, it can be easily extended, for instance, to incorporate trap‐ and individual‐level covariates. We believe that the combined use of noninvasive sampling techniques and spatial capture‐recapture models will improve population assessments, especially for rare and elusive animals.  相似文献   

8.
As ecosystems come under increasing anthropogenic pressure, rare species face the highest risk of extinction. Paradoxically, data necessary to evaluate the conservation status of rare species are often lacking because of the challenges of detecting species with low abundance. One group of fishes subject to this undersampling bias are those with cryptic body patterns. Twenty‐one percent of cryptic fish species assessed for their extinction risk (International Union for Conservation of Nature [IUCN]) are data deficient. We developed a nondestructive method for surveying cryptically patterned marine fishes based on the presence of biofluorescence (underwater biofluorescence census, UBC). Blue LED torches were used to investigate how widespread biofluorescence was in cryptic reef fishes in the Coral Triangle region. The effectiveness of UBC to generate abundance data was tested on a data‐deficient pygmy seahorse species (Hippocampus bargibanti) and compared with data obtained from standard underwater visual census (UVC) surveys. We recorded 95 reef fish species displaying biofluorescence, 73 of which had not been previously described as biofluorescent. Of those fish with cryptic patterns, 87% were biofluorescent compared with 9% for noncryptic fishes. The probability of species displaying biofluorescence was 70.9 times greater for cryptic species than for noncryptic species. Almost twice the number of H. bargibanti was counted using the UBC compared with UVC. For 2 triplefin species (Ucla xenogrammus, Enneapterygius tutuilae), the abundance detected with UBC was triple that detected with UVC. The UBC method was effective at finding cryptic species that would otherwise be difficult to detect and thus will reduce interobserver variability inherent to UVC surveys. Biofluorescence is ubiquitous in cryptic fishes, making this method applicable across a wide range of species. Data collected using UBC could be used with multiple IUCN criteria to assess the extinction risk of cryptic species. Adopting this technique will enhance researchers’ ability to survey cryptic species and facilitate management and conservation of cryptic marine species.  相似文献   

9.
For species at risk of decline or extinction in source–sink systems, sources are an obvious target for habitat protection actions. However, the way in which source habitats are identified and prioritized can reduce the effectiveness of conservation actions. Although sources and sinks are conceptually defined using both demographic and movement criteria, simplifications are often required in systems with limited data. To assess the conservation outcomes of alternative source metrics and resulting prioritizations, we simulated population dynamics and extinction risk for 3 endangered species. Using empirically based habitat population models, we linked habitat maps with measured site‐ or habitat‐specific demographic conditions, movement abilities, and behaviors. We calculated source–sink metrics over a range of periods of data collection and prioritized consistently high‐output sources for conservation. We then tested whether prioritized patches identified the habitats that most affected persistence by removing them and measuring the population response. Conservation decisions based on different source–sink metrics and durations of data collection affected species persistence. Shorter time series obscured the ability of metrics to identify influential habitats, particularly in temporally variable and slowly declining populations. Data‐rich source–sink metrics that included both demography and movement information did not always identify the habitats with the greatest influence on extinction risk. In some declining populations, patch abundance better predicted influential habitats for short‐term regional persistence. Because source–sink metrics (i.e., births minus deaths; births and immigrations minus deaths and emigration) describe net population conditions and cancel out gross population counts, they may not adequately identify influential habitats in declining populations. For many nonequilibrium populations, new metrics that maintain the counts of individual births, deaths, and movement may provide additional insight into habitats that most influence persistence.  相似文献   

10.
Abstract: Sport‐fish introductions are now recognized as an important cause of amphibian decline, but few researchers have quantified the demographic responses of amphibians to current options in fisheries management designed to minimize effects on sensitive amphibians. Demographic analyses with mark–recapture data allow researchers to assess the relative importance of survival, local recruitment, and migration to changes in population densities. I conducted a 4‐year, replicated whole‐lake experiment in the Klamath Mountains of northern California (U.S.A.) to quantify changes in population density, survival, population growth rate, and recruitment of the Cascades frog (Rana cascadae) in response to manipulations of non‐native fish populations. I compared responses of the frogs in lakes where fish were removed, in lakes in their naturally fish‐free state, and in lakes where fish remained that were either stocked annually or no longer being stocked. Within 3 years of fish removals from 3 lakes, frog densities increased by a factor of 13.6. The survival of young adult frogs increased from 59% to 94%, and realized population growth and recruitment rates at the fish‐removal lakes were more than twice as high as the rates for fish‐free reference lakes and lakes that contained fish. Population growth in the fish‐removal lakes was likely due to better on‐site recruitment of frogs to later life stages rather than increased immigration. The effects on R. cascadae of suspending stocking were ambiguous and suggested no direct benefit to amphibians. With amphibians declining worldwide, these results show that active restoration can slow or reverse the decline of species affected by fish stocking within a short time frame.  相似文献   

11.
Land‐use change is the largest proximate threat to biodiversity yet remains one of the most complex to manage. In British Columbia (BC), where large mammals roam extensive tracts of intact habitat, continued land‐use development is of global concern. Extant mammal diversity in BC is unrivalled in North America owing, in part, to its unique position at the intersection of alpine, boreal, and temperate biomes. Despite high conservation values, understanding of cumulative ecological impacts from human development is limited. Using cumulative‐effects‐assessment (CEA) methods, we assessed the current human footprint over 16 regional ecosystems and 7 large mammal species. Using historical and current range estimates of the mammals, we investigated impacts of human land use on species’ persistence. For ecosystems, we found that bunchgrass, coastal Douglas fir, and ponderosa pine have been subjected to over 50% land‐use conversion, and over 85% of their spatial extent has undergone either direct or estimated indirect impacts. Of the mammals we considered, wolves were the least affected by land conversion, yet all species had reduced ranges compared with historical estimates. We found evidence of a hard trade‐off between development and conservation, most clearly for mammals with large distributions and ecosystems with high levels of conversion. Rather than serve as a platform to monitor species decline, we strongly advocate these data be used to inform land‐use planning and to assess current conservation efforts. More generally, CEAs offer a robust tool to inform wildlife and habitat conservation at scale.  相似文献   

12.
Most examples that support the substitution‐habitat hypothesis (human‐made habitats act as substitutes of original habitat) deal with birds and mammals. We tested this hypothesis in 14 amphibians by using percentage occupancy as a proxy of habitat quality (i.e., higher occupancy percentages indicate higher quality). We classified water body types as original habitat (no or little human influence) depending on anatomical, behavioral, or physiological adaptations of each amphibian species. Ten species had relatively high probabilities (0.16–0.28) of occurrence in original habitat, moderate probability of occurrence in substitution habitats (0.11–0.14), and low probability of occurrence in refuge habitats (0.05–0.08). Thus, the substitution–habitat hypothesis only partially applies to amphibians because the low occupancy of refuges could be due to the negligible human persecution of this group (indicating good conservation status). However, low occupancy of refuges could also be due to low tolerance of refuge conditions, which could have led to selective extinction or colonization problems due to poor dispersal capabilities. That original habitats had the highest probabilities of occupancy suggests amphibians have a good conservation status in the region. They also appeared highly adaptable to anthropogenic substitution habitats.  相似文献   

13.
Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range‐size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red‐list assessments for decades, appropriate spatial scales of AOO for predicting risks of species’ extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale‐sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1–1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer‐scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid‐measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape‐scale threats to species and ecosystems.  相似文献   

14.
Conservation operates within complex systems with incomplete knowledge of the system and the interventions utilized. This frequently results in the inability to find generally applicable methods to alleviate threats to Earth's vanishing wildlife. One approach used in medicine and the social sciences has been to develop a deeper understanding of positive outliers. Where such outliers share similar characteristics, they may be considered exceptional responders. We devised a 4‐step framework for identifying exceptional responders in conservation: identification of the study system, identification of the response structure, identification of the threshold for exceptionalism, and identification of commonalities among outliers. Evaluation of exceptional responders provides additional information that is often ignored in randomized controlled trials and before–after control‐intervention experiments. Interrogating the contextual factors that contribute to an exceptional outcome allow exceptional responders to become valuable pieces of information leading to unexpected discoveries and novel hypotheses.  相似文献   

15.
Abstract: Chytridiomycosis is linked to the worldwide decline of amphibians, yet little is known about the demographic effects of the disease. We collected capture–recapture data on three populations of boreal toads (Bufo boreas [Bufo = Anaxyrus]) in the Rocky Mountains (U.S.A.). Two of the populations were infected with chytridiomycosis and one was not. We examined the effect of the presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]; the agent of chytridiomycosis) on survival probability and population growth rate. Toads that were infected with Bd had lower average annual survival probability than uninfected individuals at sites where Bd was detected, which suggests chytridiomycosis may reduce survival by 31–42% in wild boreal toads. Toads that were negative for Bd at infected sites had survival probabilities comparable to toads at the uninfected site. Evidence that environmental covariates (particularly cold temperatures during the breeding season) influenced toad survival was weak. The number of individuals in diseased populations declined by 5–7%/year over the 6 years of the study, whereas the uninfected population had comparatively stable population growth. Our data suggest that the presence of Bd in these toad populations is not causing rapid population declines. Rather, chytridiomycosis appears to be functioning as a low‐level, chronic disease whereby some infected individuals survive but the overall population effects are still negative. Our results show that some amphibian populations may be coexisting with Bd and highlight the importance of quantitative assessments of survival in diseased animal populations.  相似文献   

16.
Least‐cost implementation of the mitigation hierarchy of impacts on biodiversity minimizes the cost of a given level of biodiversity conservation, at project or ecosystem levels, and requires minimizing costs across and within hierarchy steps. Incentive‐based policy instruments that price biodiversity to alter producer and consumer behavior and decision making are generally the most effective way to achieve least‐cost implementation across and within the different hierarchy steps and across all producers and conservation channels. Nonetheless, there are circumstances that favor direct regulation or intrinsic motivation. Conservatory offsets, introduced within the conservatory first three steps of the mitigation hierarchy, rather than the fourth step to compensate the residual, provide an additional incentive‐based policy instrument. The least‐cost mitigation hierarchy framework, induced through incentive‐based policy instruments, including conservatory offsets, mitigates fisheries bycatch consistent with given targets, the Law of the Sea, and the Convention on Biological Diversity.  相似文献   

17.
The Global Strategy for Plant Conservation (GSPC) set an ambitious target to achieve a conservation assessment for all known plant species by 2020. We consolidated digitally available plant conservation assessments and reconciled their scientific names and assessment status to predefined standards to provide a quantitative measure of progress toward this target. The 241,919 plant conservation assessments generated represent 111,824 accepted land plant species (vascular plants and bryophytes, not algae). At least 73,081 and up to 90,321 species have been assessed at the global scale, representing 21–26% of known plant species. Of these plant species, at least 27,148 and up to 32,542 are threatened. Eighty plant families, including some of the largest, such as Asteraceae, Orchidaceae, and Rubiaceae, are underassessed and should be the focus of assessment effort if the GSPC target is to be met by 2020. Our data set is accessible online (ThreatSearch) and is a baseline that can be used to directly support other GSPC targets and plant conservation action. Although around one‐quarter of a million plant assessments have been compiled, the majority of plants are still unassessed. The challenge now is to build on this progress and redouble efforts to document conservation status of unassessed plants to better inform conservation decisions and conserve the most threatened species.  相似文献   

18.
Limited knowledge of dispersal for most organisms hampers effective connectivity conservation in fragmented landscapes. In forest ecosystems, deadwood‐dependent organisms (i.e., saproxylics) are negatively affected by forest management and degradation globally. We reviewed empirically established dispersal ecology of saproxylic insects and fungi. We focused on direct studies (e.g., mark‐recapture, radiotelemetry), field experiments, and population genetic analyses. We found 2 somewhat opposite results. Based on direct methods and experiments, dispersal is limited to within a few kilometers, whereas genetic studies showed little genetic structure over tens of kilometers, which indicates long‐distance dispersal. The extent of direct dispersal studies and field experiments was small and thus these studies could not have detected long‐distance dispersal. Particularly for fungi, more studies at management‐relevant scales (1–10 km) are needed. Genetic researchers used outdated markers, investigated few loci, and faced the inherent difficulties of inferring dispersal from genetic population structure. Although there were systematic and species‐specific differences in dispersal ability (fungi are better dispersers than insects), it seems that for both groups colonization and establishment, not dispersal per se, are limiting their occurrence at management‐relevant scales. Because most studies were on forest landscapes in Europe, particularly the boreal region, more data are needed from nonforested landscapes in which fragmentation effects are likely to be more pronounced. Given the potential for long‐distance dispersal and the logical necessity of habitat area being a more fundamental landscape attribute than the spatial arrangement of habitat patches (i.e., connectivity sensu strict), retaining high‐quality deadwood habitat is more important for saproxylic insects and fungi than explicit connectivity conservation in many cases.  相似文献   

19.
Failure carries undeniable stigma and is difficult to confront for individuals, teams, and organizations. Disciplines such as commercial and military aviation, medicine, and business have long histories of grappling with it, beginning with the recognition that failure is inevitable in every human endeavor. Although conservation may arguably be more complex, conservation professionals can draw on the research and experience of these other disciplines to institutionalize activities and attitudes that foster learning from failure, whether they are minor setbacks or major disasters. Understanding the role of individual cognitive biases, team psychological safety, and organizational willingness to support critical self‐examination all contribute to creating a cultural shift in conservation to one that is open to the learning opportunity that failure provides. This new approach to managing failure is a necessary next step in the evolution of conservation effectiveness.  相似文献   

20.
Human land use is fragmenting habitats worldwide and inhibiting dispersal among previously connected populations of organisms, often leading to inbreeding depression and reduced evolutionary potential in the face of rapid environmental change. To combat this augmentation of isolated populations with immigrants is sometimes used to facilitate demographic and genetic rescue. Augmentation with immigrants that are genetically and adaptively similar to the target population effectively increases population fitness, but if immigrants are very genetically or adaptively divergent, augmentation can lead to outbreeding depression. Despite well‐cited guidelines for the best practice selection of immigrant sources, often only highly divergent populations remain, and experimental tests of these riskier augmentation scenarios are essentially nonexistent. We conducted a mesocosm experiment with Trinidadian guppies (Poecilia reticulata) to test the multigenerational demographic and genetic effects of augmenting 2 target populations with 3 types of divergent immigrants. We found no evidence of demographic rescue, but we did observe genetic rescue in one population. Divergent immigrant treatments tended to maintain greater genetic diversity, abundance, and hybrid fitness than controls that received immigrants from the source used to seed the mesocosms. In the second population, divergent immigrants had a slightly negative effect in one treatment, and the benefits of augmentation were less apparent overall, likely because this population started with higher genetic diversity and a lower reproductive rate that limited genetic admixture. Our results add to a growing consensus that gene flow can increase population fitness even when immigrants are more highly divergent and may help reduce uncertainty about the use of augmentation in conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号