首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formal engagement of indigenous peoples in conservation is increasing globally and leads to multiple benefits to communities while contributing to national and international biodiversity goals and obligations. This and ongoing declines in biodiversity have led to calls to increase opportunities for indigenous people to engage in managing their estates. However, there is no overarching understanding of indigenous peoples’ involvement in conservation, which limits the identification of new opportunities. We amalgamated information across governments and large nongovernmental organizations in the megadiverse country of Australia to quantify the involvement of indigenous people in management of threatened species. We identified 153 Australian‐based projects undertaken by different indigenous groups around the nation in 2015 and 2016 that included explicit funds for management of threatened species or threatened ecosystems. Most were in remote parts of western and northern Australia. Almost one‐quarter of all threatened animals and 2% of threatened plants were the subject of some formal conservation action by indigenous people. Occurrence records for 1574 threatened species showed that 823 (89.2%) of 923 species recorded on indigenous peoples’ lands were not listed in management projects. This gap may represent new opportunities for conservation initiatives. Because at least 59.5% of Australia's threatened species occur on indigenous peoples’ lands, efforts to build appropriate and effective indigenous conservation alliances are vital. However, it is also important to recognize that threatened species are part of complex social, ecological, economic and cultural systems, and to achieve successful outcomes requires consideration of indigenous peoples’ priorities, rights, and obligations and relationships with their traditionally owned land and sea.  相似文献   

2.
Establishing protected areas is the primary goal and tool for preventing irreversible biodiversity loss. However, the effectiveness of protected areas that target specific species has been questioned for some time because targeting key species for conservation may impair the integral regional pool of species diversity and phylogenetic and functional diversity are seldom considered. We assessed the efficacy of protected areas in China for the conservation of phylogenetic diversity based on the ranges and phylogenies of 2279 terrestrial vertebrates. Phylogenetic and taxonomic diversity were strongly and positively correlated, and only 12.1–43.8% of priority conservation areas are currently protected. However, the patterns and coverage of phylogenetic diversity were affected when weighted by species richness. These results indicated that in China, protected areas targeting high species richness protected phylogenetic diversity well overall but failed to do so in some regions with more unique or threatened communities (e.g., coastal areas of eastern China, where severely threatened avian communities were less protected). Our results suggest that the current distribution of protected areas could be improved, although most protected areas protect both taxonomic and phylogenetic diversity.  相似文献   

3.
Stopping declines in biodiversity is critically important, but it is only a first step toward achieving more ambitious conservation goals. The absence of an objective and practical definition of species recovery that is applicable across taxonomic groups leads to inconsistent targets in recovery plans and frustrates reporting and maximization of conservation impact. We devised a framework for comprehensively assessing species recovery and conservation success. We propose a definition of a fully recovered species that emphasizes viability, ecological functionality, and representation; and use counterfactual approaches to quantify degree of recovery. This allowed us to calculate a set of 4 conservation metrics that demonstrate impacts of conservation efforts to date (conservation legacy); identify dependence of a species on conservation actions (conservation dependence); quantify expected gains resulting from conservation action in the medium term (conservation gain); and specify requirements to achieve maximum plausible recovery over the long term (recovery potential). These metrics can incentivize the establishment and achievement of ambitious conservation targets. We illustrate their use by applying the framework to a vertebrate, an invertebrate, and a woody and an herbaceous plant. Our approach is a preliminary framework for an International Union for Conservation of Nature (IUCN) Green List of Species, which was mandated by a resolution of IUCN members in 2012. Although there are several challenges in applying our proposed framework to a wide range of species, we believe its further development, implementation, and integration with the IUCN Red List of Threatened Species will help catalyze a positive and ambitious vision for conservation that will drive sustained conservation action.  相似文献   

4.
The Adriatic and Ionian Region is an important area for both strategic maritime development and biodiversity conservation in the European Union (EU). However, given that both EU and non‐EU countries border the sea, multiple legal and regulatory frameworks operate at different scales, which can hinder the coordinated long‐term sustainable development of the region. Transboundary marine spatial planning can help overcome these challenges by building consensus on planning objectives and making the trade‐offs between biodiversity conservation and its influence on economically important sectors more explicit. We address this challenge by developing and testing 4 spatial prioritization strategies with the decision‐support tool Marxan, which meets targets for biodiversity conservation while minimizing impacts to users. We evaluated these strategies in terms of how priority areas shift under different scales of target setting (e.g., regional vs. country level). We also examined the trade‐off between cost‐efficiency and how equally solutions represent countries and maritime industries (n = 14) operating in the region with the protection‐equality metric. We found negligible differences in where priority conservation areas were located when we set targets for biodiversity at the regional versus country scale. Conversely, the prospective impacts on industries, when considered as costs to be minimized, were highly divergent across scenarios and biased the placement of protection toward industries located in isolation or where there were few other industries. We recommend underpinning future marine spatial planning efforts in the region through identification of areas of national significance, transboundary areas requiring cooperation between countries, and areas where impacts on maritime industries require careful consideration of the trade‐off between biodiversity conservation and socioeconomic objectives.  相似文献   

5.
The International Union for Conservation of Nature's Red List of Threatened Species (IUCN Red List) is the world's most comprehensive information source on the global conservation status of species. Governmental agencies and conservation organizations increasingly rely on IUCN Red List assessments to develop conservation policies and priorities. Funding agencies use the assessments as evaluation criteria, and researchers use meta-analysis of red-list data to address fundamental and applied conservation science questions. However, the circa 143,000 IUCN assessments represent a fraction of the world's biodiversity and are biased in regional and organismal coverage. These biases may affect conservation priorities, funding, and uses of these data to understand global patterns. Isolated oceanic islands are characterized by high endemicity, but the unique biodiversity of many islands is experiencing high extinction rates. The archipelago of Hawaii has one of the highest levels of endemism of any floristic region; 90% of its 1367 native vascular plant taxa are classified as endemic. We used the IUCN's assessment of the complete single-island endemic (SIE) vascular plant flora of Kauai, Hawaii, to assess the proportion and drivers of decline of threatened plants in an oceanic island setting. We compared the IUCN assessments with federal, state, and other local assessments of Kauai species or taxa of conservation concern. Finally, we conducted a preliminary assessment for all 1044 native vascular plants of Hawaii based on IUCN criterion B by estimating area of occupancy, extent of occurrence, and number of locations to determine whether the pattern found for the SIE vascular flora of Kauai is comparable to the native vascular flora of the Hawaiian Islands. We compared our results with patterns observed for assessments of other floras. According to IUCN, 256 SIE vascular plant taxa are threatened with extinction and 5% are already extinct. This is the highest extinction risk reported for any flora to date. The preliminary assessment of the native vascular flora of Hawaii showed that 72% (753 taxa) is threatened. The flora of Hawaii may be one of the world's most threatened; thus, increased and novel conservation measures in the state and on other remote oceanic islands are urgently needed.  相似文献   

6.
Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range‐size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red‐list assessments for decades, appropriate spatial scales of AOO for predicting risks of species’ extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale‐sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1–1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer‐scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid‐measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape‐scale threats to species and ecosystems.  相似文献   

7.
To augment mammal conservation in the Eastern Himalayan region, we assessed the resident 255 terrestrial mammal species and identified the 50 most threatened species based on conservation status, endemism, range size, and evolutionary distinctiveness. By using the spatial analysis package letsR and the complementarity core‐area method in the conservation planning software Zonation, we assessed the current efficacy of their protection and identified priority conservation areas by comparing protected areas (PAs), land cover, and global ecoregion 2017 maps at a 100 × 100 m spatial scale. The 50 species that were most threatened, geographically restricted, and evolutionarily distinct faced a greater extinction risk than globally nonthreatened and wide‐ranging species and species with several close relatives. Small, medium‐sized, and data‐deficient species faced extinction from inadequate protection in PAs relative to wide‐ranging charismatic species. There was a mismatch between current PA distribution and priority areas for conservation of the 50 most endangered species. To protect these species, the skewed regional PA distribution would require expansion. Where possible, new PAs and transboundary reserves in the 35 priority areas we identified should be established. There are adequate remaining natural areas in which to expand current Eastern Himalayan PAs. Consolidation and expansion of PAs in the EH requires strengthening national and regional transboundary collaboration, formulating comprehensive regional land‐use plans, diversifying conservation funding, and enhancing information sharing through a consolidated regional database.  相似文献   

8.
Least‐cost implementation of the mitigation hierarchy of impacts on biodiversity minimizes the cost of a given level of biodiversity conservation, at project or ecosystem levels, and requires minimizing costs across and within hierarchy steps. Incentive‐based policy instruments that price biodiversity to alter producer and consumer behavior and decision making are generally the most effective way to achieve least‐cost implementation across and within the different hierarchy steps and across all producers and conservation channels. Nonetheless, there are circumstances that favor direct regulation or intrinsic motivation. Conservatory offsets, introduced within the conservatory first three steps of the mitigation hierarchy, rather than the fourth step to compensate the residual, provide an additional incentive‐based policy instrument. The least‐cost mitigation hierarchy framework, induced through incentive‐based policy instruments, including conservatory offsets, mitigates fisheries bycatch consistent with given targets, the Law of the Sea, and the Convention on Biological Diversity.  相似文献   

9.
Abstract: One of the most important tools in conservation biology is information on the geographic distribution of species and the variables determining those patterns. We used maximum‐entropy niche modeling to run distribution models for 222 amphibian and 371 reptile species (49% endemics and 27% threatened) for which we had 34,619 single geographic records. The planning region is in southeastern Mexico, is 20% of the country's area, includes 80% of the country's herpetofauna, and lacks an adequate protected‐area system. We used probabilistic data to build distribution models of herpetofauna for use in prioritizing conservation areas for three target groups (all species and threatened and endemic species). The accuracy of species‐distribution models was better for endemic and threatened species than it was for all species. Forty‐seven percent of the region has been deforested and additional conservation areas with 13.7% to 88.6% more native vegetation (76% to 96% of the areas are outside the current protected‐area system) are needed. There was overlap in 26 of the main selected areas in the conservation‐area network prioritized to preserve the target groups, and for all three target groups the proportion of vegetation types needed for their conservation was constant: 30% pine and oak forests, 22% tropical evergreen forest, 17% low deciduous forest, and 8% montane cloud forests. The fact that different groups of species require the same proportion of habitat types suggests that the pine and oak forests support the highest proportion of endemic and threatened species and should therefore be given priority over other types of vegetation for inclusion in the protected areas of southeastern Mexico.  相似文献   

10.
Land‐use change is the largest proximate threat to biodiversity yet remains one of the most complex to manage. In British Columbia (BC), where large mammals roam extensive tracts of intact habitat, continued land‐use development is of global concern. Extant mammal diversity in BC is unrivalled in North America owing, in part, to its unique position at the intersection of alpine, boreal, and temperate biomes. Despite high conservation values, understanding of cumulative ecological impacts from human development is limited. Using cumulative‐effects‐assessment (CEA) methods, we assessed the current human footprint over 16 regional ecosystems and 7 large mammal species. Using historical and current range estimates of the mammals, we investigated impacts of human land use on species’ persistence. For ecosystems, we found that bunchgrass, coastal Douglas fir, and ponderosa pine have been subjected to over 50% land‐use conversion, and over 85% of their spatial extent has undergone either direct or estimated indirect impacts. Of the mammals we considered, wolves were the least affected by land conversion, yet all species had reduced ranges compared with historical estimates. We found evidence of a hard trade‐off between development and conservation, most clearly for mammals with large distributions and ecosystems with high levels of conversion. Rather than serve as a platform to monitor species decline, we strongly advocate these data be used to inform land‐use planning and to assess current conservation efforts. More generally, CEAs offer a robust tool to inform wildlife and habitat conservation at scale.  相似文献   

11.
Designing agroecosystems that are compatible with the conservation of biodiversity is a top conservation priority. However, the social variables that drive native biodiversity conservation in these systems are poorly understood. We devised a new approach to identify social–ecological linkages that affect conservation outcomes in agroecosystems and in social‐ecological systems more broadly. We focused on coastal agroforests in Fiji, which, like agroforests across other small Pacific Islands, are critical to food security, contain much of the country's remaining lowland forests, and have rapidly declining levels of native biodiversity. We tested the relationships among social variables and native tree species richness in agroforests with structural equation models. The models were built with data from ecological and social surveys in 100 agroforests and associated households. The agroforests hosted 95 native tree species of which almost one‐third were endemic. Fifty‐eight percent of farms had at least one species considered threatened at the national or international level. The best‐fit structural equation model (R2 = 47.8%) showed that social variables important for community resilience—local ecological knowledge, social network connectivity, and livelihood diversity—had direct and indirect positive effects on native tree species richness. Cash‐crop intensification, a driver of biodiversity loss elsewhere, did not negatively affect native tree richness within parcels. Joining efforts to build community resilience, specifically by increasing livelihood diversity, local ecological knowledge, and social network connectivity, may help conservation agencies conserve the rapidly declining biodiversity in the region.  相似文献   

12.
Biodiversity is highly valuable and critically threatened by anthropogenic degradation of the natural environment. In response, governments have pledged enhanced protected‐area coverage, which requires scarce biological data to identify conservation priorities. To assist this effort, we mapped conservation priorities in Kenya based on maximizing alpha (species richness) and beta diversity (species turnover) of plant communities while minimizing economic costs. We used plant‐cover percentages from vegetation surveys of over 2000 plots to build separate models for each type of diversity. Opportunity and management costs were based on literature data and interviews with conservation organizations. Species richness was predicted to be highest in a belt from Lake Turkana through Mount Kenya and in a belt parallel to the coast, and species turnover was predicted to be highest in western Kenya and along the coast. Our results suggest the expanding reserve network should focus on the coast and northeastern provinces of Kenya, where new biological surveys would also fill biological data gaps. Meeting the Convention on Biological Diversity target of 17% terrestrial coverage by 2020 would increase representation of Kenya's plant communities by 75%. However, this would require about 50 times more funds than Kenya has received thus far from the Global Environment Facility.  相似文献   

13.
Human‐induced habitat changes may lead to the breakdown of reproductive barriers between distantly related species. This phenomenon may result in fertile first‐generation hybrids (F1) that exclude the genome of one parental species during gametogenesis, thus disabling introgression. The species extinction risk associated with hybridization with genome exclusion is largely underappreciated because the phenomenon produces only F1 hybrid phenotype, leading to the misconception that hybrids are sterile and potentially of minor conservation concern. We used a simulation model that integrates the main genetic, demographic, and ecological processes to examine the dynamics of hybridization with genome exclusion. We showed that this mode of hybridization may lead to extremely rapid extinction when the process of genome exclusion is unbalanced between the interbreeding species and when the hybridization rate is not negligible. The coexistence of parental species was possible in some cases of asymmetrical genome exclusion, but show this equilibrium was highly vulnerable to environmental variation. Expanding the exclusive habitat of the species at risk allowed its persistence. Our results highlight the extent of possible extinction risk due to hybridization with genome exclusion and suggest habitat management as a promising conservation strategy. In anticipation of serious threats to biodiversity due to hybridization with genome exclusion, we recommend a detailed assessment of the reproductive status of hybrids in conservation programs. We suggest such assessments include the inspection of genetic content in hybrid gametes.  相似文献   

14.
Assessing temporal changes in species extinction risk is necessary for measuring conservation success or failure and for directing conservation resources toward species or regions that would benefit most. Yet, there is no long‐term picture of genuine change that allows one to associate species extinction risk trends with drivers of change or conservation actions. Through a review of 40 years of IUCN‐related literature sources on species conservation status (e.g., action plans, red‐data books), we assigned retrospective red‐list categories to the world's carnivores and ungulates (2 groups with relatively long generation times) to examine how their extinction risk has changed since the 1970s. We then aggregated species’ categories to calculate a global trend in their extinction risk over time. A decline in the conservation status of carnivores and ungulates was underway 40 years ago and has since accelerated. One quarter of all species (n = 498) moved one or more categories closer to extinction globally, while almost half of the species moved closer to extinction in Southeast Asia. The conservation status of some species improved (toward less threatened categories), but for each species that improved in status 8 deteriorated. The status of large‐bodied species, particularly those above 100 kg (including many iconic taxa), deteriorated significantly more than small‐bodied species (below 10 kg). The trends we found are likely related to geopolitical events (such as the collapse of Soviet Union), international regulations (such as CITES), shifting cultural values, and natural resource exploitation (e.g., in Southeast Asia). Retrospective assessments of global species extinction risk reduce the risk of a shifting baseline syndrome, which can affect decisions on the desirable conservation status of species. Such assessments can help conservationists identify which conservation policies and strategies are or are not helping safeguard biodiversity and thus can improve future strategies. Una Evaluación Retrospectiva de la Declinación Global de Carnívoros y Ungulados  相似文献   

15.
Effective conservation management interventions must combat threats and deliver benefits at costs that can be achieved within limited budgets. Considerable effort has focused on measuring the potential benefits of conservation interventions, but explicit quantification of the financial costs of implementation is rare. Even when costs have been quantified, haphazard and inconsistent reporting means published values are difficult to interpret. This reporting deficiency hinders progress toward a collective understanding of the financial costs of management interventions across projects and thus limits the ability to identify efficient solutions to conservation problems or attract adequate funding. We devised a standardized approach to describing financial costs reported for conservation interventions. The standards call for researchers and practitioners to describe the objective and outcome, context and methods, and scale of costed interventions, and to state which categories of costs are included and the currency and date for reported costs. These standards aim to provide enough contextual information that readers and future users can interpret the cost data appropriately. We suggest these standards be adopted by major conservation organizations, conservation science institutions, and journals so that cost reporting is comparable among studies. This would support shared learning and enhance the ability to identify and perform cost‐effective conservation.  相似文献   

16.
Finding sustainable ways to increase the amount of private land protected for biodiversity is challenging for many conservation organizations. In some countries, organizations use revolving‐fund programs, whereby land is purchased and then sold to conservation‐minded owners under condition they enter into a conservation covenant or easement. The sale proceeds are used to purchase, protect, and sell additional properties, incrementally increasing the amount of protected private land. Because the effectiveness of this approach relies on selecting appropriate properties, we explored factors currently considered by practitioners and how these are integrated into decision making. We conducted exploratory, semistructured interviews with managers from each of the 5 major revolving funds in Australia. Responses indicated although conservation factors are important, financial and social factors are also highly influential. A major determinant was whether the property could be resold within a reasonable period at a price that replenishes the fund. To facilitate resale, often selected properties include the potential for the construction of a dwelling. Practitioners face with clear trade‐offs between conservation, financial, amenity, and other factors in selecting properties and 3 main challenges: recovering the costs of acquisition, protection, and resale; reselling the property; and meeting conservation goals. Our findings suggest the complexity of these decisions may constrain revolving‐fund effectiveness. Drawing from participant responses, we identified potential strategies to mitigate these risks, such as providing adequate recreational space without jeopardizing ecological assets. We suggest managers could benefit from a shared‐learning and adaptive approach to property selection given the commonalities between programs. Understanding how practitioners deal with complex decisions in the implementation of revolving funds helps identify future research to improve the performance of this conservation tool.  相似文献   

17.
We assessed the current status of plant conservation translocation efforts in China, a topic poorly reported in recent scientific literature. We identified 222 conservation translocation cases involving 154 species, of these 87 were Chinese endemic species and 101 (78%) were listed as threatened on the Chinese Species Red List. We categorized the life form of each species and, when possible, determined for each case the translocation type, propagule source, propagule type, and survival and reproductive parameters. A surprisingly large proportion (26%) of the conservation translocations in China were conservation introductions, largely implemented in response to large‐scale habitat destruction caused by the Three‐Gorge Dam and another hydropower project. Documentation and management of the translocations varied greatly. Less than half the cases had plant survival records. Statistical analyses showed that survival percentages were significantly correlated with plant life form and the type of planting materials. Thirty percent of the cases had records on whether or not individuals flowered or fruited. Results of information theoretic model selection indicated that plant life form, translocation type, propagule type, propagule source, and time since planting significantly influenced the likelihood of flowering and fruiting on the project level. We suggest that the scientific‐based application of species conservation translocations should be promoted as part of a commitment to species recovery management. In addition, we recommend that the common practice of within and out of range introductions in nature reserves to be regulated more carefully due to its potential ecological risks. We recommend the establishment of a national office and database to coordinate conservation translocations in China. Our review effort is timely considering the need for a comprehensive national guideline for the newly announced nation‐wide conservation program on species with extremely small populations, which is expected to stimulate conservation translocations for many species in the near future.  相似文献   

18.
Extinction‐risk assessments aim to identify biological diversity features threatened with extinction. Although largely developed at the species level, these assessments have recently been applied at the ecosystem level. In South Africa, national legislation provides for the listing and protection of threatened ecosystems. We assessed how land‐cover mapping and the detail of ecosystem classification affected the results of risk assessments that were based on extent of habitat loss. We tested 3 ecosystem classifications and 4 land‐cover data sets of the Little Karoo region, South Africa. Degraded land (in particular, overgrazed areas) was successfully mapped in just one of the land‐cover data sets. From <3% to 25% of the Little Karoo was classified as threatened, depending on the land‐cover data set and ecosystem classification applied. The full suite of threatened ecosystems on a fine‐scale map was never completely represented within the spatial boundaries of a coarse‐scale map of threatened ecosystems. Our assessments highlight the importance of land‐degradation mapping for the listing of threatened ecosystems. On the basis of our results, we recommend that when budgets are constrained priority be given to generating more‐detailed land‐cover data sets rather than more‐detailed ecosystem classifications for the assessment of threatened ecosystems. El Efecto de la Cobertura Terrestre y el Mapeo de Ecosistemas en la Valoración de Riesgos en los Ecosistemas en Little Karoo, Sudáfrica  相似文献   

19.
Although marine protected areas can simultaneously contribute to biodiversity conservation and fisheries management, the global network is biased toward particular ecosystem types because they have been established primarily in an ad hoc fashion. The optimization of trade‐offs between biodiversity benefits and socioeconomic values increases success of protected areas and minimizes enforcement costs in the long run, but it is often neglected in marine spatial planning (MSP). Although the acquisition of spatially explicit socioeconomic data is perceived as a costly or secondary step in MSP, it is critical to account for lost opportunities by people whose activities will be restricted, especially fishers. We developed an easily reproduced habitat‐based approach to estimate the spatial distribution of opportunity cost to fishers in data‐poor regions. We assumed the most accessible areas have higher economic and conservation values than less accessible areas and their designation as no‐take zones represents a loss of fishing opportunities. We estimated potential distribution of fishing resources from bathymetric ranges and benthic habitat distribution and the relative importance of the different resources for each port of total catches, revenues, and stakeholder perception. In our model, we combined different cost layers to produce a comprehensive cost layer so that we could evaluate of trade‐offs. Our approach directly supports conservation planning, can be applied generally, and is expected to facilitate stakeholder input and community acceptance of conservation.  相似文献   

20.
Abstract: The International Union for Conservation of Nature (IUCN) Red List of Threatened Species was increasingly used during the 1980s to assess the conservation status of species for policy and planning purposes. This use stimulated the development of a new set of quantitative criteria for listing species in the categories of threat: critically endangered, endangered, and vulnerable. These criteria, which were intended to be applicable to all species except microorganisms, were part of a broader system for classifying threatened species and were fully implemented by IUCN in 2000. The system and the criteria have been widely used by conservation practitioners and scientists and now underpin one indicator being used to assess the Convention on Biological Diversity 2010 biodiversity target. We describe the process and the technical background to the IUCN Red List system. The criteria refer to fundamental biological processes underlying population decline and extinction. But given major differences between species, the threatening processes affecting them, and the paucity of knowledge relating to most species, the IUCN system had to be both broad and flexible to be applicable to the majority of described species. The system was designed to measure the symptoms of extinction risk, and uses 5 independent criteria relating to aspects of population loss and decline of range size. A species is assigned to a threat category if it meets the quantitative threshold for at least one criterion. The criteria and the accompanying rules and guidelines used by IUCN are intended to increase the consistency, transparency, and validity of its categorization system, but it necessitates some compromises that affect the applicability of the system and the species lists that result. In particular, choices were made over the assessment of uncertainty, poorly known species, depleted species, population decline, restricted ranges, and rarity; all of these affect the way red lists should be viewed and used. Processes related to priority setting and the development of national red lists need to take account of some assumptions in the formulation of the criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号