首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
This study investigated the interactions between tree-herb layer diversity and some physico-chemical and eco-physiological characteristics of soil in natural oriental beech stand in western Guilan, Iran. The data were collected from nine research sites (50 m?×?50 m) which were described as a gradient from pure oriental beech (Fagus orientalis Lipsky) stands to mixed stands with up to nine deciduous tree species (n =?27) in Hyrcanian forest. Herbaceous plants were sampled within ten 1 m?×?1 m sub-plots in two plots of 400 m2 which were installed randomly in each research site. Composite soil samples were taken at five positions in each research site. We found that the increase in tree diversity in mature oriental beech stands brought about an increase in microbial biomass carbon, soil carbon content, and the ratio of microbial biomass carbon to the organic carbon (Cmic/Corg). Increased soil organic carbon raised microbial biomass carbon through creating suitable environment for microorganisms. The findings also indicated that the ratio of microbial biomass carbon to the organic carbon (Cmic/Corg) increased as a quantitative indicator of soil carbon dynamics that finally benefits soil fertility of mixed oriental beech stands compared to pure oriental beech stands. The results showed that humus layer and litter thickness were negatively correlated with tree layer richness. Generally, it can be stated that maintaining a mixture of tree layer species in natural oriental beech stands results in an increase in richness and diversity values of herb plants as well as carbon content and microbial biomass carbon of soil.  相似文献   

2.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

3.
Wastewater and soil samples were collected from the industrial area of Ghaziabad City, India from January 2005 to December 2007 and were analyzed for the presence of heavy metals by atomic absorption spectrophotometry. Test samples revealed high levels of Fe, Cr, Cu, Ni, Zn, and Cd as 967.03, 34.63, 27.97, 19.7, 16.70, and 3.20 mg/L of wastewater, respectively. The concentrations of inorganic minerals were higher in the soil samples irrigated with wastewater. Total coliforms were found to be maximum (1,133 × 104 most probable number per 100 mL) during spring and summer followed by winter and postmonsoon in the wastewater samples. The microbial count in soil as well as in wastewater decreases as the metal concentration increases. The concentration 200 μg/mL of nickel and cadmium inhibits majority of the population, while, at some points, it inhibits 100% of the population. The exponential decay model for microbial count at the increasing metal concentrations indicate that asymbiotic N2 fixers were best fitted to the model. In all the seasons, the order of decline in terms of exponential decay of the population of different microbial groups in soil was asymbiotic N2 fixers > actinomycetes > fungi > aerobic heterotrophic bacteria. The different microbial groups that have different values of slope in different seasons indicate that the resistant population of microorganisms was variable with seasons.  相似文献   

4.
不同地质条件下土壤重金属质量评价比较   总被引:4,自引:1,他引:3  
对黎塘研究区不同地质条件下土壤重金属含量进行了分析和评价。结果表明,不同地层土壤以Mn含量最高,其次为Cr,石炭系下统岩关阶和泥盆系中统东岗岭阶土壤重金属含量较高,而白垩系下统小店组和第四系全新统土壤重金属含量较低。泥盆系中统东岗岭阶土壤重金属污染因子为Ni、As、Cr,综合质量级别为中等;石炭系下统岩关阶土壤重金属污染因子为Ni、As、Cr、Cu,综合质量级别为很坏;白垩系下统土壤污染因子为Cr,综合质量级别为警戒级;第四系全新统土壤重金属质量级别均为好,综合质量级别为好。  相似文献   

5.
Nine metals were monitored in the beach sediment in Mumbai from May 2011 to March 2012 to evaluate the spatial and temporal distributions. The average heavy metal concentrations exhibited the following order: Fe > Mn > Cr > Co > Ni > Pb > Zn > Cu > Cd for the four sampling sites. The mean concentrations (± SD) of Fe, Mn, Cr, Co, Ni, Pb, Zn, Cu and Cd were estimated to be 31.15?±?10.02 g kg?1, 535.04?±?76.42, 151.98?±?97.90, 92.76?±?14.18, 67.52?±?11.32, 59.57?±?15.19, 54.65?±?15.01, 32.24?±?8.07 and 18.75?±?1.76 mg kg?1, respectively. The results indicated that the sediments were polluted with Cd, Cr, Co and Pb due to high anthropogenic influences. Spatial variation of metals revealed that most of the metals were high in Dadar beach and low in Aksa beach. Cd was the highest contaminant metal studied with a mean contamination factor of 93.75. The pollution load indices of the studied beaches ranged from 1.63 (Aksa) to 1.91 (Dadar) and indicated that the beach sediments were polluted with heavy metals. The heavy metal contents increased in relation to monsoon, and most of the heavy metals showed significantly high concentrations in November during the post-monsoon. The statistical analysis revealed significant effect of study site on all the metals studied. Further, there was a significant difference on metal accumulation on bimonthly basis in relation to weather pattern in Mumbai beaches.  相似文献   

6.
The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I geo), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16?×?103 mg?kg?1, respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg?kg?1. Though median total metal concentrations are not considered as particularly high, the I geo and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.  相似文献   

7.
The accumulation of heavy metals in agricultural soils has been the subject of great concern because these metals have the potential to be transferred to soil solutions and subsequently accumulate in the food chain. To study the persistence of trace metals in crop and orchard soils, representative surface soil samples were collected from terrace farmland that had been cultivated for various numbers of years (3, 8, 12, 15, and >20 years), terrace orchard land that had been cultivated for various numbers of years (4, 7, 10, 12, 15, 18, 25, and >30 years), and slope farmland with various gradients (3°, 5°, 8°, 12°, 15°, and 25°) and analyzed for heavy metals (As, Cr, Cu, Hg, Ni, and Zn). These samples were collected from Nihegou catchment of Chunhua county in the southern Loess Plateau of China. The six heavy metals demonstrated different trends with time or gradient in the three land-use types. The Cu and Zn contents of the soil were higher than the referee background values of the loessal soil, and the contents of Cr and Ni, and especially those of As and Hg, were lower. Cu was the only heavy metal that just met the Grade III Environmental Quality Standard for Soils of China, while the others reached grade I. Cu and Hg were considered contaminant factors and Hg was a moderate potential ecological risk factor in the catchment. Of the sites investigated, 89.5% fell into the category with a low degree of contamination (C d ) and rest were moderate, while all three land-use types had low potential ecological risk (RI). Changes of C d and RI were consistent with the cultivated time in the terrace farmland and terrace orchard land. Values of RI increased while C d decreased with the increasing of slope gradient in the slope farmland. Evaluating the ecological risk posed by heavy metals using more soil samples in a larger study area is necessary on the Loess Plateau of China.  相似文献   

8.
Occurrence of phthalic acid esters in Gomti River Sediment, India   总被引:2,自引:0,他引:2  
Cadmium and lead are important environmental pollutants with high toxicity to animals and human. Soils, though have considerable metal immobilizing capability, can contaminate food chain via plants grown upon them when their built-up occurs to a large extent. Present experiment was carried out with the objective of quantifying the limits of Pb and Cd loading in soil for the purpose of preventing food chain contamination beyond background concentration levels. Two separate sets of pot experiment were carried out for these two heavy metals with graded levels of application doses of Pb at 0.4–150 mg/kg and Cd at 0.02–20 mg/kg to an acidic light textured alluvial soil. Spinach crop was grown for 50 days on these treated soils after a stabilization period of 2 months. Upper limit of background concentration levels (C ul) of these metals were calculated through statistical approach from the heavy metals concentration values in leaves of spinach crop grown in farmers’ fields. Lead and Cd concentration limits in soil were calculated by dividing C ul with uptake response slope obtained from the pot experiment. Cumulative loading limits (concentration limits in soil minus contents in uncontaminated soil) for the experimental soil were estimated to be 170 kg Pb/ha and 0.8 kg Cd/ha. Based on certain assumptions on application rate and computed cumulative loading limit values, maximum permissible Pb and Cd concentration values in municipal solid waste (MSW) compost were proposed as 170 mg Pb/kg and 0.8 mg Cd/kg, respectively. In view of these limiting values, about 56% and 47% of the MSW compost samples from different cities are found to contain Pb and Cd in the safe range.  相似文献   

9.
Because of past mining activities, the floodplains of the River Geul are polluted with heavy metals. The continuous supply of fresh sediments during floods has caused the floodplain soils to exhibit large quality variations in time. By measurements of 137Cs deposition rates in part of the floodplain area were determined at 0.4 to 2.7 cm yr–1. Analysis of soil metal concentrations at various depths at 65 locations, revealed that the upper 40 cm of the soil profile deposited during the past 30–45 yr, exhibit the highest metal levels. The geostatistical interpolation technique kriging was used to map actual and past pollution patterns. It was shown that, as a result of variable deposition rates, the spatial correlation structure of soil metal concentrations becomes less clear with increasing depth/age. Kriged maps of average metal concentrations in the upper 100 cm of the soil profile provided the basis for the calculation of the mass storage of heavy metals.  相似文献   

10.
Studies of heavy metal contamination and ecological risk in estuaries are an important emerging area of environmental science. However, there have been few detailed studies of heavy metal contamination that concern the spatial variation of heavy metal levels in water, sediment, and oyster tissue. Because of the effective uptake of heavy metals, cultured oysters are a cheap and effective subject for study. This study, conducts an experiment in the Er-Ren river to examine the biological uptake of heavy metals in farmed, cultured oysters. The distribution of copper, zinc, lead, cadmium, and arsenic concentrations in water, sediment, and oysters from the Er-Ren river is also evaluated. By sequential extraction of the sediments, the following order of mobilities is found for heavy metals Pb?>?Cd?>?As?>?Zn?>?Cu. The highest percentages of heavy metals are found in the residual phase. The mean uptake rates for young oysters are 7.24 mg kg?1 day?1 for Cu and 94.52 mg kg?1 day?1 for Zn, but that for adult oyster is 10.79 mg kg?1 day?1 for Cu and 137.24 mg kg?1 day?1 for Zn. With good policies and management, the establishment of cultured oyster frames in these contaminated tributaries and near shore environments is a potential method for removing Cu and Zn and protecting the coast.  相似文献   

11.
Mixtures of polycyclic aromatic hydrocarbons (PAHs) and heavy metals are of major concern in contaminated soil. Biodegradation of PAHs in metal-contaminated soils is complicated because metals are toxic and cannot be degraded by biological processes. This investigation considered the effects of Zn and Cu (50, 100, 500 and 1,000 mg/kg) on 14C-phenanthrene biodegradation in soil over 60-day contact time. The presence of Zn at all concentrations and low concentrations of Cu (50 and 100 mg/kg) had no significant effect (p?>?0.05) on the development of phenanthrene catabolism; however, at higher Cu concentrations, the development of phenanthrene catabolism and bacterial cell numbers were significantly reduced (p?<?0.05). This suggests that Cu is more toxic than Zn to soil microbial PAH catabolic activity. Metal/PAH-contaminated soils represent one of the most difficult remedial challenges and insights into PAH biodegradation in the presence of metals is necessary in order to assess the potential for bioremediation.  相似文献   

12.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

13.
The objectives of this study were to investigate competitive sorption behaviour of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) under different management practices and identify soil characteristics that can be correlated with the retention and mobility of heavy metals using 65 calcareous soil samples. The lowest sorption was found for Mn and Ni in competition with the other metals, indicating the high mobility of these two cations. The Freundlich equation adequately described heavy metals adsorption. On the basis of Freundlich distribution coefficient, the selectivity sequence of the metal adsorption was Cu?>?Pb?>?Cd?>?Zn?>?Ni?>?Mn. The mean value of the joint distribution coefficient (K dΣsp) was 182.1, 364.1, 414.7, 250.1, 277.7, 459.9 and 344.8 l kg?1 for garden, garlic, pasture, potato, vegetables, wheat and polluted soils, respectively. The lowest observed K dΣsp in garden soil samples was due to the lower cation exchange capacity and lower carbonate content. The results of the geochemical modelling under low and high metal addition indicated that Cd, Ni, Mn and Zn were mainly retained via adsorption, while Pb and Cu were retained via adsorption and precipitation. Stepwise forward regression analysis showed that clay, organic matter and CaCO3 were the most important soil properties influencing competitive adsorption of Cd, Mn, Ni and Zn. The results in this study point to a relatively easy way to estimate distribution coefficient values.  相似文献   

14.
The water level fluctuation zone (WLFZ) in the Three Gorges Reservoir is located in the intersection of terrestrial and aquatic ecosystems, and assessing heavy metal pollution in the drown zone is critical for ecological remediation and water conservation. In this study, soils were collected in June and September 2009 in natural recovery area and revegetation area of the WLFZ, and geochemical approaches including geoaccumulation index (I geo) and factor analysis and soil microbial community structure were applied to assess the spatial variability and evaluate the influence of revegetation on metals in the WLFZ. Geochemical approaches demonstrated the moderate pollutant of Cd, the slight pollutant of Hg, and four types of pollutant sources including industrial and domestic wastewater, natural rock weathering, traffic exhaust, and crustal materials in the WLFZ. Our results also demonstrated significantly lower concentrations for elements of As, Cd, Pb, Zn, and Mn in the revegetation area. Moreover, soil microbial community structure failed to monitor the heavy metal pollution in such a relatively clean area. Our results suggest that revegetation plays an important role in controlling heavy metal pollution in the WLFZ of the Three Gorges Reservoir, China.  相似文献   

15.
16.
In regions with high livestock densities, the usage of antibiotics and metals for veterinary purposes or as growth promoters poses a risk in manured soils. We investigated to which degree the concentrations and depth distributions of Cu, Zn, Cr and As could be used as a tracer to discover contaminations with sulfonamides, tetracyclines and fluoroquinolones. Besides, we estimated the potential vertical translocation of antibiotics and compared the results to measured data. In the peri-urban region of Beijing, China, soil was sampled from agricultural fields and a dry riverbed contaminated by organic waste disposal. The antibiotic concentrations reached 110 μg kg?1 sulfamethazine, 111 μg kg?1 chlortetracycline and 62 μg kg?1 enrofloxacin in the topsoil of agricultural fields. Intriguingly, total concentrations of Cu, Zn, Cr and As were smaller than 65, 130, 36 and 10 mg kg?1 in surface soil, respectively, therewith fulfilling Chinese quality standards. Correlations between sulfamethazine concentrations and Cu or Zn suggest that in regions with high manure applications, one might use the frequently existing monitoring data for metals to identify potential pollution hotspots for antibiotics in topsoils. In the subsoils, we found sulfamethazine down to ≥2 m depth on agricultural sites and down to ≥4 m depth in the riverbed. As no translocation of metals was observed, subsoil antibiotic contamination could not be predicted from metal data. Nevertheless, sulfonamide stocks in the subsoil could be estimated with an accuracy of 35–200 % from fertilisation data and potential leaching rates. While this may not be sufficient for precise prediction of antibiotic exposure, it may very well be useful for the pre-identification of risk hotspots for subsequent in-depth assessment studies.  相似文献   

17.
以重庆市某工业园区表层土壤为研究对象,探讨了土壤重金属在不同季节的污染特征,利用污染指数法、健康风险模型和主成分/绝对主成分得分受体模型进行风险评价和源分析。结果表明:不同季节土壤样品间各重金属含量差异显著。35.5%的样品中汞含量超出土壤污染风险筛选值,其他元素未超标。与土壤背景值相比,各元素表现出不同程度的富集,汞超标约110~1300倍。内梅罗指数显示土壤整体和汞元素处于轻度污染及以下,其他元素为安全。潜在生态危害指数显示,土壤整体和汞属于极强污染,镉属于轻微~强污染,其他元素为轻微污染。土壤重金属总致癌风险为2.6×10-7~1.0×10-5,总非致癌风险熵均小于1,砷存在致癌风险,主要通过经口摄入暴露。秋季中,汞、六价铬、铅、镍、砷和铜来自工业源,镉主要来源于自然成因。春季中,镉和铅来自交通、冶金和燃煤等排放,镍、砷和铜源于冶炼和金属表面处理等排放,汞主要来自化工生产和燃料燃烧。交通运输、工业生产和燃料燃烧等污染的排放是土壤重金属的主要来源,今后应加强园区内汞、砷和镉的源头减排和治理。  相似文献   

18.
There is worldwide concern over the increase use of nanoparticles (NPs) and their ecotoxicological effect. It is not known if the annual production of tons of industrial nanoparticles (NPs) has the potential to impact terrestrial microbial communities, which are so necessary for ecosystem functioning. Here, we have examined the consequences of adding the NPs particularly the metal oxide (CuO, ZnO) on CH4 oxidation activity in vertisol and the abundance of heterotrophs, methane oxidizers, and ammonium oxidizers. Soil samples collected from the agricultural field located at Madhya Pradesh, India, were incubated with either CuO and ZnO NPs or ionic heavy metals (CuCl2, ZnCl2) separately at 0, 10, and 20 μg g?1 soil. CH4 oxidation activity in the soil samples was estimated at 60 and 100 % moisture holding capacity (MHC) in order to link soil moisture regime with impact of NPs. NPs amended to soil were highly toxic for the microbial-mediated CH4 oxidation, compared with the ionic form. The trend of inhibition was Zn 20?>?Zn 10?>?Cu 20?>?Cu 10. NPs delayed the lag phase of CH4 oxidation to a maximum of 4-fold and also decreased the apparent rate constant k up to 50 % over control. ANOVA and Pearson correlation analysis (α?=?0.01) revealed significant impact of NPs on the CH4 oxidation activity and microbial abundance (p?<?0.0001, and high F statistics). Principal component analysis (PCA) revealed that PC1 (metal concentration) rendered 76.06 % of the total variance, while 18.17 % of variance accounted by second component (MHC). Biplot indicated negative impact of NPs on CH4 oxidation and microbial abundance. Our result also confirmed that higher soil moisture regime alleviates toxicity of NPs and opens new avenues of research to manage ecotoxicity and environmental hazard of NPs.  相似文献   

19.
The ambient PM10 and background soil samples were collected and analyzed with ICP-AES in eight cities around China to investigate the levels of ten heavy metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb). The mean concentrations of ten heavy metals in PM10 of the eight cities of China followed the order of Zn?>?Pb?>?Mn?>?Cu?>?Ni?>?Cr?>?Co?>?V. The metals in the ambient PM10 and soil were compared in each city to evaluate the heavy metal mass fraction from anthropogenic sources in ambient air. The CD values in these cities were all above 0.2, indicating that the ingredients spectrums of PM10 and soil vary markedly. Most heavy metals were enriched in PM10, except Fe and Ti. The results showed that almost all the cities suffer important heavy metal pollution from anthropogenic sources. The eight cities were also grouped according to their similarity in heavy metals of ambient PM10 by cluster analysis to investigate the relationship between the heavy metals and the pollution sources of each city. The conclusion was that the eight cities were divided into three clusters which had similar industrial type and economy scale: the first cluster consisted of Shenzhen, Wuxi, and Guiyang; followed by Jinan and Zhengzhou as the second grouping; and the third group had Taiyuan, Urumqi, and Luoyang.  相似文献   

20.
Risk assessment of metal-contaminated soil depends on how precisely one can predict the solubility of metals in soils. Responses of plants and soil organisms to metal toxicity are explained by the variation in free metal ion activity in soil pore water. This study was undertaken to predict the free ion activity of Zn, Cu, Ni, Cd, and Pb in metal-contaminated soil as a function of pH, soil organic carbon, and extractable metal content. For this purpose, 21 surface soil samples (0–15 cm) were collected from agricultural lands of various locations receiving sewage sludge and industrial effluents for a long period. One soil sample was also collected from agricultural land which has been under intensive cropping and receiving irrigation through tube well water. Soil samples were varied widely in respect of physicochemical properties including metal content. Total Zn, Cu, Ni, Cd, and Pb in experimental soils were 2,015?±?3,373, 236?±?286, 103?±?192, 29.8?±?6.04, and 141?±?270 mg kg?1, respectively. Free metal ion activity, viz., pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+, as estimated by the Baker soil test was 9.37?±?1.89, 13.1?±?1.96, 12.8?±?1.89, 11.9?±?2.00, and 11.6?±?1.52, respectively. Free metal ion activity was predicted by pH-dependent Freundlich equation (solubility model) as a function of pH, organic carbon, and extractable metal. Results indicate that solubility model as a function of pH, Walkley–Black carbon (WBC), and ethylenediaminetetraacetic acid (EDTA)-extractable metals could explain the variation in pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+ to the extent of 59, 56, 46, 52, and 51 %, respectively. Predictability of the solubility model based on pH, KMnO4-oxidizable carbon, and diethylenetriaminepentaacetic acid-extractable or CaCl2-extractable metal was inferior compared to that based on EDTA-extractable metals and WBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号