首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The objectives of this study were to assess the variability in soil properties affecting salinity and alkalinity, and to analyze spatial distribution patterns of salinity (EC) and alkalinity (ESP) in the plain, which was used irrigation agriculture with low quality waters. Soil samples were collected from 0–30cm, 30–60cm, 60–90cm and 90–120cm soil depths at 60 sampling sites. Soil pH had the minimum variability, and hydraulic conductivity (Ks) had the maximum variability at all depths. The mean values of pH, EC, ESP and Ks increased while the mean values of CEC decreased with soil depth. Values pH, EC and ESP were generally high in the east and northeastern sides. Soil properties indicated moderate to strong spatial dependence. ESP and pH were moderately spatially dependent for three of the four depths, EC exhibited moderate spatial dependence for one of the four depths, CEC had a moderate spatial dependence at all depths, and Ks exhibited a strong spatial dependence. EC, CEC, and ESP were considerably variable in small distances. The spatial variability in small distances of EC, CEC, pH and ESP generally increased with depth. All geostatistical range values were greater than 1230m. It was inferred that the strong spatial dependency of soil properties would be resulted in extrinsic factors such as ground water level, drainage, irrigation systems and microtopography.  相似文献   

2.
This study was carried out to investigate possible seawater intrusion into groundwater along the coastal lines of the Bafra Plain and salinity–alkalinity problems over land areas irrigated with water exposed to seawater intrusion were evaluated. For this purpose, 32 groundwater wells were selected over the plain, water samples were taken from these wells between October 2007 and September 2008, and chemical analyses were performed over these samples. Soil samples were taken from the fields irrigated with this water at 32 different locations at the end of the irrigation season in September 2008 from 0–30, 30–60, 60–90, and 90–120 cm soil depths and textures. EC, pH, Na, Ca, Mg, and K analyses were performed over these samples. Excessive seawater intrusion was observed in some parts of the plain and impacts of seawater intrusion decreased with the distance from the coastal line. It was determined that groundwater quality was significantly affected from seawater intrusion. Salinity and especially alkalinity problems were observed in land areas irrigated with this water and alkalinity increased with the rate of intrusion.  相似文献   

3.
Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. Drainage water from tile-drained, irrigated agricultural land is degraded water that is often in large supply, but the long-term impact and sustainability of its reuse on soil is unknown. Similarly, nothing is known of the ramifications of terminating drainage water reuse. The objective of this study is (i) to monitor the long-term impact on soil chemical properties and thereby the sustainability of drainage water reuse on a marginally productive, saline-sodic, 32.4 ha field located on the west side of California's productive San Joaquin Valley and (ii) to assess spatially what happens to soil when drainage water reuse is terminated. The monitoring and assessment were based on spatial chemical data for soil collected during 10 years of irrigation with drainage water followed by 2 years of no applied irrigation water (only rainfall). Geo-referenced measurements of apparent soil electrical conductivity (EC(a)) were used to direct the soil sampling design to characterize spatial variability of impacted soil properties. Chemical analyses of soil samples were used (i) to characterize the spatial variability of salinity, Na, B, and Mo, which were previously identified as critical to the yield and quality of Bermuda grass (Cynodon dactylon (l.) Pers.) grown for livestock consumption and (ii) to monitor their change during the 12 year study. Soil samples were taken at 0.3 m increments to a depth of 1.2 m at each of 40 sample sites on five occasions: August 1999, April 2002, November 2004, August 2009, and May 2011. Drainage water varying in salinity (1.8-16.3 dS m(-1)), SAR (5.2-52.4), Mo (80-400 μg L(-1)), and B (0.4-15.1 mg L(-1)) was applied from July 2000 to June 2009. Results indicate that salts, Na, Mo, and B were leached from the root zone causing a significant improvement in soil quality from 1999 to 2009. Salinity and SAR returned to original levels or higher in less than two years after termination of irrigation. Boron and Mo showed significant increases. Long-term sustainability of drainage water reuse was supported by the results, but once application of irrigation water was terminated, the field quickly returned to its original saline-sodic condition.  相似文献   

4.
Irrigation with municipal effluent was evaluated during 25 months in Southern Iran from 2003 to 2005 in which 14 tree species were irrigated with effluent and borehole water at an annual supply rate of 3,940 and 5,395 m(3) ha(-1), respectively. To mitigate the environmental effects, a drip irrigation system was designed and the amount of applied water based on pan evaporation was measured by flow meters and soil properties were monitored. The statistical results showed that the applied effluent had no adverse effect on soil properties. The soil salinity was reduced from 8.2, 6.8 and 7.0 dSm(-1) to 1.07, 1.12 and 3.5 dSm(-1 )in the soil layers 0-30, 30-60 and 60-90 cm, respectively. The SAR decreased significantly, while soil pH increased by 0.8 and 0.6 units in the layers 0-30 and 30-60 cm. A total application of 9,335 m(3)ha(-1 )of effluent with a nitrogen and phosphorus concentration of 7.9 and 10.3 mg l(-1), added 73 and 101 kg ha(-1) of nitrogen and phosphorus to the soil. Organic carbon also increased significantly. Twenty-five months irrigation with effluent caused a slight increase in soil bulk density and a slight decrease in mean permeability. Because of an efficient filtration and high discharge rate of bubblers (drippers), no considerable sign of clogging was observed.  相似文献   

5.
The objectives of this study were to explore the spatial variability of soil salinity in coastal saline soil at macro, meso and micro scales in the Yellow River delta, China. Soil electrical conductivities (ECs) were measured at 0–15, 15–30, 30–45 and 45–60 cm soil depths at 49 sampling sites during November 9 to 11, 2013. Soil salinity was converted from soil ECs based on laboratory analyses. Our results indicated that at the macro scale, soil salinity was high with strong variability in each soil layer, and the content increased and the variability weakened with increasing soil depth. From east to west in the region, the farther away from the sea, the lower the soil salinity was. The degrees of soil salinization in three deeper soil layers are 1.14, 1.24 and 1.40 times higher than that in the surface soil. At the meso scale, the sequence of soil salinity in different topographies, soil texture and vegetation decreased, respectively, as follows: depression >flatland >hillock >batture; sandy loam >light loam >medium loam >heavy loam >clay; bare land >suaeda salsa >reed >cogongrass >cotton >paddy >winter wheat. At the micro scale, soil salinity changed with elevation in natural micro-topography and with anthropogenic activities in cultivated land. As the study area narrowed down to different scales, the spatial variability of soil salinity weakened gradually in cultivated land and salt wasteland except the bare land.  相似文献   

6.
The Harran Plain is located in the southeastern part of Turkey and has recently been developed for irrigation agriculture. It already faces soil salinity problems causing major yield losses. Management of the problem is hindered by the lack of information on the extent and geography of the salinization problem. A survey was carried out to delineate the spatial distribution of salt-affected areas by randomly selecting 140 locations that were sampled at two depths (0 to 30 and 30 to 60 cm) and analyzed for soil salinity variables: soil electrical conductivity (EC), soluble cations (Ca2+, Mg2+, Na+, and K+), soluble anions (SO 4 2? , Cl?), exchangeable Na+ (me 100 g?1) and exchangeable sodium percentage. Terrain attributes (slope, topographical wetness index) were extracted from the digital elevation model of the study area. Variogram analyses after log transformation and ordinary kriging (OK) were applied to map spatial patterns of soil salinity variables. Multivariate geostatistical methods—regression kriging (RK) and kriging with external drift (KED)—were used using elevation and soil electrical conductivity data as covariates. Performances of the three estimation methods (OK, RK, and KED) were compared using independent validation samples randomly selected from the main dataset. Soils were categorized into salinity classes using disjunctive kriging (DK) and ArcGIS, and classification accuracy was tested using the kappa statistic. Results showed that soil salinity variables all have skewed distribution and are poorly correlated with terrain indices but have strong correlations among each other. Up to 65 % improvement was obtained in the estimations of soil salinity variables using hybrid methods over OK with the best estimations obtained with RK using EC0–30 as covariate. DK–ArcGIS successfully classified soil samples into different salinity groups with overall accuracy of 75 % and kappa of 0.55 (p?<?0.001).  相似文献   

7.
Information on the potential risk for soil salinity buildup can be very helpful for soil salinity management in irrigated areas. We evaluated the spatial and temporal variability of groundwater salinity (GWS) and groundwater depth (GWD), which are two of the most important indicators of soil salinity, by indicator kriging technique in a large irrigated area in northern Turkey. GWS and GWD were measured on a monthly basis from irrigation season (August 2003) to rainy season (April 2004) at 60 observation wells in the 8,187-ha irrigated area. Five indicator thresholds were used for GWS and GWD. The semivariogram for each of the thresholds for both variables was analyzed then used together with experimental data to interpolate and map the corresponding conditional cumulative distribution functions (CCDF). Risk for soil salinity buildup was greater in the irrigation season compared to that in the rainy season. The greatest risk for soil salinity buildup occurred in the eastern part of the study area, suffering from poor drainage problem due to malfunctioning drainage infrastructure, as indicated by the CCDF of GWS and GWD obtained in both seasons. It was concluded that a combination of mechanical and cultural measures should be taken in high-risk locations to avoid further salinity problems.  相似文献   

8.
The purpose of this study was to determine and evaluate the spatial changes in soil salinity by using geostatistical methods. The study focused on the suburb area of Beijing, where urban development led to water shortage and accelerated wastewater reuse to farm irrigation for more than 30 years. The data were then processed by GIS using three different interpolation techniques of ordinary kriging (OK), disjunctive kriging (DK), and universal kriging (UK). The normality test and overall trend analysis were applied for each interpolation technique to select the best fitted model for soil parameters. Results showed that OK was suitable for soil sodium adsorption ratio (SAR) and Na+ interpolation; UK was suitable for soil Cl? and pH; DK was suitable for soil Ca2+. The nugget-to-sill ratio was applied to evaluate the effects of structural and stochastic factors. The maps showed that the areas of non-saline soil and slight salinity soil accounted for 6.39 and 93.61 %, respectively. The spatial distribution and accumulation of soil salt were significantly affected by the irrigation probabilities and drainage situation under long-term wastewater irrigation.  相似文献   

9.
The largest uncertainties are associated with estimating the soil organic carbon (SOC) stock because of natural soil variability and data scarcity. Thus, a local spatial geostatistical hybrid approach, the geographically weighted regression kriging (GWRK), was used in the present study to overcome some of these uncertainties. This study was designed to estimate the SOC stock (kg C m(-2)) for the surface 0 to 15 cm depth using the state of Pennsylvania as the study region. A total of 920 soil profiles were extracted from the National Soil Survey Center database and were divided into calibration (80%) and validation (20%) periods. Some soil parameters that include clay content, bulk density (ρ(b)), total nitrogen (TN) content, pH, Ca(2+), Na(+), extractable acidity (EXACID), and cation exchange capacity (CEC) were used as covariates for estimating the SOC stock. These covariates exhibited spatial autocorrelation (Moran's Index, I = 0.62 to 0.89). Further, residuals of geographically weighted regression were spatially autocorrelated, and hence support the use of the GWRK approach. Validation results concluded that the performance of the GWRK approach was the best with the lowest values of root mean square error, mean estimation error and mean absolute estimation error. The estimated SOC stock for the surface 0 to 15 cm depth ranged from 1.41 to 3.94 kg m(-2). Results from this study show that the GWRK captures spatial dependent relationships, and addresses spatial non-stationarity issues, hence this approach improves the estimations of SOC stock.  相似文献   

10.
土壤盐渍化已成为影响图木舒克地区农业生产与生态环境的重要因素。本文以0~150 cm深度范围内土壤和地下水为研究对象,利用实际野外调查与数据统计分析的方法,研究得出:①强盐渍化主要分布于距离河流与渠道较远的地下水浅埋深区域,在纵向上表层聚盐现象明显,盐渍土类型随着土壤层深度加大从亚氯-亚硫酸盐渍土变为亚硫酸盐渍土。②土壤易溶盐含量与地下水化学类型在平面分布上吻合程度较高、与潜水矿化度呈正的高度相关性、与潜水埋藏深度呈负的中度相关性、沿潜水径流方向各层土壤盐渍化减弱。③当地下水埋深较浅时,潜水通过毛细管将易溶盐带入土壤表层,形成表层土壤盐渍化;地下水埋藏较深时,易溶盐分会随着降水淋滤和灌溉冲洗不断降低,地表盐渍化减弱。中、轻度盐渍化区域应控制灌溉用水矿化度,重度盐渍化及盐土区域可在建立排水系统的基础上采用泡田洗盐法。  相似文献   

11.
The objectives of this study were to use both parametric and probabilistic approaches to analyze water column concentrations of both salinity (24,845 measurements) and boron (13,028 measurements) from numerous investigations conducted in the San Joaquin River watershed from 1985 to 2002 to assess spatial and temporal trends and determine the probability of exceeding regulatory targets during both the irrigation and non-irrigation season. Salinity and boron concentrations from 26 mainstem and tributary sites were highly correlated based on this 17 yr data set. Generally, salinity and boron concentrations were higher in winter/spring and lower in summer/fall; higher concentrations of both constituents were reported in tributary sites when compared with the mainstem San Joaquin River. Approximately half the sites showed showed a negative correlation between flow and both constituents. Concentrations of both salinity and boron were somewhat variable with flow conditions for the other sites. Both linear and curvilinear trends were inconsistent over time. The salinity 90th centiles for the 26 sites ranged from 143 to 7,559 micros cm(-1) with the highest 90th centiles in tributary sites. Probabilistic analysis of salinity 90th centiles by year for five sites with extensive data showed a significant decrease over time at two sites and no significant trend for the other three sites. The probability of exceeding the salinity targets during either the irrigation (700 microm cm(-1)) or non-irrigation (1,000 micros cm(-1)) season was greater than 19% for all but three sites. The boron 90th centiles for the 26 sites ranged from 0.41 to 13.6 mg L(-1) with the highest 90th centiles from tributary sites. Probabilistic analysis of the boron 90th centile values by year for the five sites with the most extensive data showed a significant decrease over time at two sites and no significant trend for the other three sites. The probability of exceeding the boron target during the irrigation season (0.80 mg L(-1)) and non-irrigation (1.0 mg L(-1)) season was greater that 18% for all but three sites. Results from this analysis have important regulatory implications as targets for both salinity and boron are frequently exceeded at various sites in the San Joaquin River watershed.  相似文献   

12.
The groundwater quality for drinking, domestic and irrigation in the village Lutfullapur Nawada, Loni, district Ghaziabad, U.P., India, has been assessed. Groundwater samples were collected, processed and analyzed for temperature, pH, conductivity, salinity, total alkalinity, carbonate alkalinity, bicarbonate alkalinity, total hardness, calcium hardness, magnesium hardness, total solids, total dissolved solids, total suspended solids, nitrate-nitrogen, chloride, fluoride, sulfate, phosphate, silica, sodium, potassium, calcium, magnesium, total chromium, cadmium, copper, iron, nickel, lead and zinc. A number of groundwater samples showed levels of electrical conductivity (EC), alkalinity, chloride, calcium, sodium, potassium and iron exceeding their permissible limits. Except iron, the other metals (Cr, Cd, Cu, Ni, Pb, and Zn) were analyzed below the permissible limits. The correlation matrices for 28 variables were performed. EC, salinity, TS and TDS had significant positive correlations among themselves and also with NO (3) (-) , Cl(-), alkalinity, Na(+), K(+), and Ca(2+). Fluoride was not significantly correlated with any of the parameters. NO (3) (-) was significantly positively correlated with Cl(-), alkalinity, Na(+), K(+) and Ca(2+). Chloride also correlated significantly with alkalinity, Na(+), K(+) and Ca(2+). Sodium showed a strong and positive correlation with K(+) and Ca(2+). pH was negatively correlated with most of the physicochemical parameters. This groundwater is classified as a normal sulfate and chloride type. Base-exchange indices classified 73% of the groundwater sources as the Na(+)-SO (4) (2-) type. The meteoric genesis indices demonstrated that 67% of groundwater sources belong to a deep meteoric water percolation type. Hydrochemical groundwater evaluations revealed that most of the groundwaters belong to the Na(+)-K(+)-Cl(-)-SO (4) (2-) type followed by Na(+)-K(+)-HCO (3) (-) type. Salinity, chlorinity and SAR indices indicated that majority of groundwater samples can be considered suitable for irrigation purposes.  相似文献   

13.
To characterize the spatial distribution of groundwater level (GWL) and its chemistry characteristics in the low plain around the Bohai Sea, shallow groundwater depth of 130 wells were determined. Water soluble ions composition, total dissolved solid (TDS), electric conductivity (EC), total hardness (TH), total alkalinity (TA), and total salt content (TS) of 128 representative groundwater samples were also measured. Classical statistics, geostatistical method combined with GIS technique were then used to analyze the spatial variability and distribution of GWL and groundwater chemical properties. Results show that GWL, TDS, EC, TH, TA, and TS all presented a lognormal distribution and could be fitted by different semivariogram models (spherical, exponential, and Gaussian). Spatial structure of GWL, TDS, EC, TH, TA, and TS changed obviously. GWL decreased from west inland plain to the east coastal plain, however, TDS, EC, and TS increased from west to east, TH and TA were higher in the middle and coastal plain area. Groundwater chemical type in the coastal plain was SO42−·Cl—Na+ while chemical types in the inland plain were SO42−·Cl—Ca2+·Mg2+ and HCO3—Ca2+·Mg2+.  相似文献   

14.
Because of past mining activities, the floodplains of the River Geul are polluted with heavy metals. The continuous supply of fresh sediments during floods has caused the floodplain soils to exhibit large quality variations in time. By measurements of 137Cs deposition rates in part of the floodplain area were determined at 0.4 to 2.7 cm yr–1. Analysis of soil metal concentrations at various depths at 65 locations, revealed that the upper 40 cm of the soil profile deposited during the past 30–45 yr, exhibit the highest metal levels. The geostatistical interpolation technique kriging was used to map actual and past pollution patterns. It was shown that, as a result of variable deposition rates, the spatial correlation structure of soil metal concentrations becomes less clear with increasing depth/age. Kriged maps of average metal concentrations in the upper 100 cm of the soil profile provided the basis for the calculation of the mass storage of heavy metals.  相似文献   

15.
Medium (i.e. 15 years) and long-term (i.e. 20 years) impact of irrigation using secondary-treated municipal wastewater (TWW) was assessed on two agricultural soil samples, denoted by E and G, respectively, in the vicinity of El Hajeb region (Southern Tunisia). Soil pH, electrical conductivity particle size grading, potential risk of salinity, water holding capacity and chemical composition, as well as organic matter content, pathogenic microorganisms and heavy metal concentrations in the TWW-irrigated (E and G) and rainwater-irrigated (T) soils at various depths, were monitored and compared during a 5-year experiment. Our study showed that bacterial abundance is higher in sandy–clayey soil, which has an enhanced ability to retain moisture and nutrients. The high level of bacterial flora in TWW-irrigated soils was significantly (p?<?0.05) correlated (r?=?~0.5) with the high level of OM. Avoidance assays have been used to assess toxic effects generated by hazards in soils. The earthworms gradually avoided the soils from the surface (20 cm) to the depth (60 cm) of the G transect and then the E transect, preferring the T transect. The same behaviour was observed for springtails, but they seem to be less sensitive to the living conditions in transects G and E than the earthworms. The avoidance response test of Eisenia andrei was statistically correlated with soil layers at the sampling sites. However, the avoidance response test of Folsomia candida was positively correlated with silt-clay content (+0.744*) and was negatively correlated with sand content (?0.744*).  相似文献   

16.
The effects of tobacco waste (TW) application to the soil surface on the accumulation of Tobacco mosaic virus (TMV) in clay and loamy sand textural soils at various depths were investigated in two different fields. The tobacco waste had been found to be infected with TMV. Eighteen months after TW application to the soil surface, soils were sampled at 20 cm intervals through to 80 cm depth. The DAS-ELISA method was performed to determine infection of soil with TMV. The viruses persisted in clay soil for a long period compared with loamy sand soil. There was no accumulation of TMV at any depth of loamy sand soil in Experimental Field 2. TMV adsorption to soil particles in 0-60 cm depth of clay soil was determined in all TW treatments in Experimental Field 1. The highest ELISA Absorbance (A405) values in all treatments were determined in the 20-40 cm soil depth that had the highest clay content. ELISA A405 values of TMV at different depths of clay soil gave significant correlations with clay content (r = 0.793**), EC values (r = 0.421**) and soil pH (r = -0.405**). Adsorption of TMV to net negatively charged clay particle surfaces increased with increasing EC values of soil solution. Decreasing soil pH and infiltration rate increased adsorption of TMV to clay particles. Higher infiltration rate and lower clay content in loamy sand soil caused leaching of TMV from the soil profile.  相似文献   

17.
In order to evaluate the impact of intensive horticulture on the water resources of the Fucino Plain, one of the most important agricultural settlements of Central Italy, the mobility and persistence in the soil of five commonly used pesticides was investigated by means of multi-lysimeter experiments. The fate of simazine, carbaryl, dicloran, linuron and procymidone was evaluated in the laboratory under experimental conditions simulating as closely as possible both pesticide application and irrigation practices required by the local crops. An efficient extraction procedure followed by chromatographic analysis, allowing the simultaneous determination of the applied chemicals, was used to monitor the pesticide residues in the soil columns as a function of time from application and depth. The experiment, carried out for about 60 days, revealed that soil contamination apparently involves only the surface layer since none of the investigated pesticides was detected at depths greater than 20-30 cm. However, the five pollutants exhibit a quite different behaviour that can be related to their physico-chemical properties.  相似文献   

18.
The extent of carbon (C) stored in soils depends on a number of factors including soil characteristics, climatic and other environmental conditions, and management practices. Such information, however, is lacking for silvopastoral systems in Spain. This study quantified the amounts of soil C stored at various depths (0-25, 25-50, 50-75, and 75-100 cm) under a Dehesa cork oak (Quercus suber L.) silvopasture at varying distances (2, 5, and 15 m) to trees. Soil C in the whole soil and three soil fractions (<53, 53-250, and 250-2000 μm) was determined. Results showed soil depth to be a significant factor in soil C stocks in all soil particle sizes. Distance to tree was a significant factor determining soil C stocks in the whole soil and the 250-2000 μm soil fraction. To 1 m depth, mean total C storage at 2, 5, and 15 m from cork oak was 50.2, 37, and 26.5 Mg ha(-1), respectively. Taking into account proportions of land surface area containing these C stocks at varying distances to trees to 1 m depth, with a tree density of 35 stems ha(-1), estimated landscape soil C is 29.9 Mg ha(-1). Greater soil C stocks directly underneath the tree canopy suggest that maintaining or increasing tree cover, where lost from disease or management, may increase long term storage of soil C in Mediterranean silvopastoral systems. The results also demonstrate the use of soil aggregate characteristics as better indicators of soil C sequestration potential and thus a tool for environmental monitoring.  相似文献   

19.
以1 m×0.8 m网格布点采集的土壤样为研究对象,从统计特征值、半方差函数和等直线图几个方面,对比分析3个时期土壤硝态氮养分的空间和时间变异特性。结果表明,各时期的变异系数受棉花的生长、田间作业影响较大。播前和收获期土壤硝态氮的空间结构符合球状模型,初花期则为线性模型,表明硝态氮含量变异是结构性与随机性共同作用的结果。硝态氮的空间变异性播前主要受结构因素影响;初花期主要受随机因素影响;收获后硝态氮含量的空间异质性变化人为因素大于结构因素。  相似文献   

20.
Modeling spatio-temporal variation of soil moisture with depth in the soil profile plays an important role for semi-arid crop production from an agro-hydrological perspective. This study was performed in Guvenc Catchment. Two soil series that were called Tabyabayir (TaS) and Kervanpinari (KeS) and classified as Leptosol and Vertisol Soil Groups were used in this research. The TeS has a much shallower (0–34 cm) than the KeS (0–134 cm). At every sampling time, a total of geo-referenced 100 soil moisture samples were taken based on horizon depths. The results indicated that soil moisture content changed spatially and temporally with soil texture and profile depth significantly. In addition, land use was to be important factor when soil was shallow. When the soil conditions were towards to dry, higher values for the coefficient of variation (CV) were observed for TaS (58 and 43 % for A and C horizons, respectively); however, the profile CV values were rather stable at the KeS. Spatial variability range of TaS was always higher at both dry and wet soil conditions when compared to that of KeS. Excessive drying of soil prevented to describe any spatial model for surface horizon, additionally resulting in a high nugget variance in the subsurface horizon for the TaS. On the contrary to TaS, distribution maps were formed all horizons for the KeS at any measurement times. These maps, depicting both dry and wet soil conditions through the profile depth, are highly expected to reduce the uncertainty associated with spatially and temporally determining the hydraulic responses of the catchment soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号