首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
火焰原子吸收法测定水样铅含量的不确定度评定   总被引:1,自引:0,他引:1  
实验室认可和资质认定都要求检测实验室具备评定测量不确定度的能力,现依据JJF1059-1999《测量不确定度评定与表示》,对火焰原子吸收法测定水样中铅含量进行不确定度评估,分析测定过程中不确定度来源,量化不确定度分量,求出合成不确定度和扩展不确定度,给出测定结果的表示式。  相似文献   

2.
采用实验测定和误差分析的方法,对TOC分析仪测定水质中总氮含量的不确定度进行了分析,测量过程中不确定度的来源有样品重复性测量、标准曲线拟合、标准溶液配制、测量仪器本身等,量化估算了不确定度的各分量。结果表明,标准曲线拟合是影响水质中总氮测定不确定度的主要因素,其次为标准溶液配制所产生的不确定度,样品重复性测量和测量仪器本身所产生的不确定度也不容忽视。同时提出了在测定过程中减小不确定度的有效途径。  相似文献   

3.
准确测定大气颗粒物中水溶性组份对分析污染物来源及身体健康具有重要意义。本文采用离子色谱法测定PM2.5中硫酸根离子含量,并对测定的不确定度进行分析。分析过程不确定度来源是样品重复性测量引入不确定度,样品测量准确性引入不确定度和标准曲线的不确定度。应用不确定度评定理论,计算硫酸根离子的合成不确定度。结果表明,滤膜中硫酸根离子本底浓度高低与剪裁滤膜环节是不确定度的主要来源。为了提高分析的准确性,建议使用本底低的滤膜,并取整张滤膜进行分析。  相似文献   

4.
氢化物发生原子荧光光度法测定水中锑的不确定度评定   总被引:1,自引:0,他引:1  
介绍了原子荧光光度法测定水中锑的不确定度评定方法,分析和识别在测定过程中的不确定度来源,较为全面地评定了测量不确定度,最后计算出测定结果的合成标准不确定度和扩展不确定度.结果表明,标准溶液配制过程和标准曲线拟合引起的不确定度是原子荧光光度法测定水中锑含量不确定度的主要来源.  相似文献   

5.
用波长色散X射线荧光光谱测定土壤中铬的不确定度   总被引:1,自引:1,他引:0  
运用测量不确定度评定与表示的理论,分析了波长色散X射线荧光光谱仪测定土壤中铬的不确定度,得出测定铬的不确定度为1.0mg/kg.  相似文献   

6.
根据《测量不确定度评定与评定表示指南》(JJF 1059-1999)建立了石墨炉原子吸收光谱法测定全血中铅不确定度的数学模型,分析了测试过程中不确定度的来源,并对各不确定度分量进行量化。本次测量的合成相对不确定度值为0.047 3,其中最大的分量是样品消化前处理重复测定引入的,其不确定度分量值为0.04。本次全血中铅测定结果为(130.7±12.4)μg/L,k=2,即测定结果置信水平为95%。  相似文献   

7.
通过对气相色谱-质谱联用法测定土壤中多溴联苯和多溴联苯醚类化合物含量的不确定度进行评定,分析了测量过程中引入的不确定度来源,求出各不确定度分量,最后合成标准不确定度并计算相对扩展不确定度。结果表明,各化合物最大的不确定度分量是方法回收率,约占50%~90%,方法相对扩展不确定度为0.12~0.20。  相似文献   

8.
根据《测量不确定度评定与表示》(JJF1059—1999),建立了原子荧光度法测定污泥泥质中砷不确定度的数学模型,分析了测试过程中不确定度的来源,并对各不确定度分量进行评定及合成,并计算得出合成不确定度和扩展不确定度。本次测量的合成相对不确定度值为0.023,其中由消化样浓度引起的相对合成不确定度为0.021;最大的不确定度分量是样品消化重复测定的不确定度,分量值为O.0152。本次测定结果为19.97±0.92mg/kg,k=2(置信水平约为95%)。  相似文献   

9.
石墨炉原子吸收分光光度法测定土壤中镉的不确定度分析   总被引:6,自引:0,他引:6  
探讨了石墨护原子吸收分光光度法测定土壤中隔的不确定度评价方法.根据测量不确定度的评定理论,以石墨炉原子吸收测定土壤中镉为例,分析了整个测试过程的不确定来源,通过推导计算,给出了扩展不确定度,并为石墨炉原子吸收光度法测量重金属元素的不确定度评价提供一定的参考价值.  相似文献   

10.
土壤中有机磷农药分析过程中的不确定度主要来源于样品采集、运输和保存、前处理及分析这四个环节。以土壤中马拉硫磷的测定为例,分别评定了各个环节产生不确定度的大小。结果表明,样品前处理产生的不确定度对总不确定度的贡献最大。  相似文献   

11.
研究依据测定不确定度的基本理论和ISO 21748:2017《采用重复性、再现性和正确度评估测量不确定度的导则》,提出了基于中国环境监测分析方法标准多家实验室验证中已获得的数据计算合成标准不确定度的方法,将方法标准中规定的重复性、再现性等指标与合成标准不确定度进行了衔接。分析了近年发布的6项水质监测分析方法标准中钴、铬、钼、钛等4种金属元素的相对合成标准不确定度,结果表明:被测量的浓度是影响方法标准测量不确定度的重要因素。对于火焰原子吸收分光光度法(FAAS)和石墨炉原子吸收分光光度法(GAAS),样品浓度为方法标准测定下限3倍左右时,测定结果的相对标准不确定度可保持在15%以下;对于电感耦合等离子体发射光谱法(ICP-AES),样品浓度为方法标准测定下限3~5倍时,测定结果的相对标准不确定度为12%~17%;对于电感耦合等离子体质谱法(ICP-MS),钛元素浓度为测定下限3倍左右时,相对标准不确定度在15%以下,而钴、铬、钼的浓度在测定下限40~100倍以上时,相对标准不确定度在15%以下。6项方法标准可分别用于《地表水环境质量标准》(GB 3838—2002)以及22项水污染物排放标准钴、铬、钼、钛的达标监测。  相似文献   

12.
测量不确定度评估是实验室检测能力的体现,能力验证是实验室质量控制的有效方法,对环境监测领域实验室采用能力验证数据进行测量结果不确定度评估方法进行了研究。依据Nordtest准则,根据实验室内再现性标准差和测量偏倚,评估了重铬酸钾法测定水中质量浓度为100 mg/L的化学需氧量测量结果的相对不确定度为6.00%。该评估方法避免了ISO GUM评定方法自下而上不确定度评估过程的繁琐,还充分考虑了实验室内外误差的来源,能够促进环境监测结果不确定度评定的一致性。  相似文献   

13.
空气质量自动监测二氧化硫不确定度分析   总被引:1,自引:0,他引:1  
不确定度是反映某一测量方法,在一定置信概率条件下测量所产生的不确定量。根据测量原理建立数学模型,分析各种不确定度分量的来源,评定标准不确定度,确定合成不确定度和扩展不确定度,通过不确定影响分量的分析,找出影响测量结果的最大不确定度分量,重点控制其分量,保证测量的准确性和精度,同时也可通过重新评估显著性不确定分量,找出方法存在的不足和问题,提出逐步控制不确定分量的步骤和方法,改善测量方法和手段提高测量准确性和精度,不断减少测量的不确定量。  相似文献   

14.
原子荧光法测定水中砷含量的不确定度评定   总被引:2,自引:0,他引:2  
以氢化物-原子荧光法测定水中砷含量为例,应用不确定度理论,从测试过程和计算方法的角度分析了测量不确定度的各种影响因素:标准物质、溶液稀释情况、工作曲线的非线性以及原子荧光光度计的测量性能等,对各测量不确定度分量进行计算和评定。结果表明:原子荧光法测定水中砷含量的测量不确定度的主要影响因素是工作曲线的非线性和原子荧光光度计的测量性能,其次是标准储备液的逐级稀释,当水样稀释倍数非常低时,因水样稀释引入的不确定度可忽略不计。砷含量的扩展不确定度为1.2μg/L,置信水平为95%。  相似文献   

15.
分析了背景噪声测量不确定性以及背景修正对噪声监测结果的影响,提出,在实际噪声测量工作中,当测量值与背景值的差值≥3 dB且测量值修正结果与排放限值非常接近时,以及当测量值与背景值的差值3 dB且测量值与排放限值的差值≤4 dB时,对背景噪声进行重复测量,计算背景噪声测量不确定性,利用公式法进行定量背景修正的建议,并在噪声测量和数据处理过程中降低背景噪声测量不确定性,从而减少背景修正对噪声测量结果的影响,更加客观地反映噪声的真实情况。  相似文献   

16.
The (109)Cd K-shell X-ray fluorescence (XRF) technique was used to measure in vivo tibia lead concentrations of 34 young adults living in the state of Vermont (USA) and the province of New Brunswick (Canada). The subjects ranged in age from 18 to 35 years, and had no known history of elevated lead exposure. Measurement parameters were varied, using the same XRF system for both populations. Tibia lead concentrations were low for both groups, with mean values of 0.7 microg lead g(-1) bone mineral (Vermont) and 0.5 microg g(-1)(New Brunswick). No individual measurement exceeded 7 microg g(-1). Mean uncertainty values obtained for the Vermont and New Brunswick subjects were 4.1 microg g(-1) and 2.6 microg g(-1), respectively. Improved measurement uncertainty in the New Brunswick group was attributed to the use of a reduced source-to-skin distance (approximately 5 mm) and a longer measurement time (3600 seconds) using a weaker radioisotope source (< or =0.42 GBq). Measurement uncertainty tended to increase with body mass index. For a given body mass index, female subjects returned a measurement uncertainty approximately 1 microg g(-1) greater than males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号