首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 931 毫秒
1.
Natural disturbances along with human interference make the tropical estuaries amongst the most disturbed areas globally. In spite of this, information on the seasonal variability of macrofauna from tropical estuaries is few. Temporal variability of macrofaunal community from Mormugao Bay, Zuari estuary, on the west coast of India was examined from 2003 to 2004 at seven stations. Environmental variability was assessed through physicochemical parameters of water and sediment. The changes in macrobenthic community were assessed using abundance, biomass and species diversity indices. The environmental parameters showed a significant seasonal variation influenced by monsoonal changes. The changes in the environmental conditions brought about variation in the macrobenthic community. Macrofaunal abundance, biomass and species diversity were the highest during post-monsoon influenced by recruitment. In monsoon, the macrobenthic community was dominated by polychaetes (92.17%), whereas bivalves dominated during the post-monsoon (57.7%). The macrofauna showed drastic decline during the stable pre-monsoon season, a period when the highest abundance of fauna is observed in the tropical estuary. Therefore, the macrobenthic community in the area did not follow the seasonal trend generally observed in a tropical estuary. Further, the community during pre-monsoon season was dominated by the opportunistic polychaete species indicating a possible influence of harbour activities in structuring the benthic community of the area.  相似文献   

2.
The distribution of perfluorooctane sulfonate (PFOS) was investigated in a total of 15 water and sediment samples from the Yellow River Estuary, China in April 2011. The results indicated that the concentrations of PFOS in the water and sediment samples averaged 157.5 ng/L and 198.8 ng/g and ranged from 82.30 to 261.8 ng/L and 75.48 to 457.0 ng/g, respectively. The concentrations of PFOS in the sediment column increased from 45.32 to 379.98 ng/g with the decrease of the sampling depth, which showed that the increased PFOS pollution in the sediment appeared in this region in over recent years. The distribution coefficient (K d) of PFOS between water and sediment linearly increased from 0.37 to 4.80 L/g as the salinity (S‰) increased from 0.18 to 4.47. Correlation analysis revealed that K d was significantly and positively correlated to the contents of total organic carbon and clay of the sediment, and salinity. Therefore, salinity was an important parameter in controlling the sediment–water interactions and the fate or transport of PFOS in the aquatic environment. The results of this study showed that the estuary was an important sink for PFOS and suggested that PFOS might be carried with the river water and transported for long distances before it reached to the sea and largely scavenged to the sediment in the estuaries due to the change in salinity.  相似文献   

3.
The spatial and temporal variability of potentially harmful phytoplankton was examined in the oyster-growing estuaries of New South Wales. Forty-five taxa from 31 estuaries were identified from 2005 to 2009. Harmful species richness was latitudinally graded for rivers, with increasing number of taxa southward. There were significant differences (within an estuary) in harmful species abundance and richness for 11 of 21 estuaries tested. Where differences were observed, these were predominately due to species belonging to the Pseudo-nitzschia delicatissima group, Dinophysis acuminata, Dictyocha octonaria and Prorocentrum cordatum with a consistent upstream versus downstream pattern emerging. Temporal (seasonal or interannual) patterns in harmful phytoplankton within and among estuaries were highly variable. Examination of harmful phytoplankton in relation to recognised estuary disturbance measures revealed species abundance correlated to estuary modification levels and flushing time, with modified, slow flushing estuaries having higher abundance. Harmful species richness correlated with bioregion, estuary modification levels and estuary class, with southern, unmodified lakes demonstrating greater species density. Predicting how these risk taxa and risk zones may change with further estuary disturbance and projected climate warming will require more focused, smaller scale studies aimed at a deeper understanding of species-specific ecology and bloom mechanisms. Coupled with this consideration, there is an imperative for further taxonomic, ecological and toxicological investigations into poorly understood taxa (e.g. Pseudo-nitzschia).  相似文献   

4.
Amphipod crustaceans belong to the most successful invaders of aquatic environments. The work provides information concerning the spatial and temporal scales of expansion of four alien gammarid amphipods (three of them of Ponto-Caspian and one of North American origin): Pontogammarus robustoides (G.O. Sars, 1894), Obesogammarus crassus (G.O. Sars, 1894), Dikerogammarus haemobaphes (Eichwald, 1841), and Gammarus tigrinus Sexton, 1939 in the Vistula Lagoon (VL) and the Vistula Delta (VD) in 2008–2010. The mean abundance of these gammarids in nearshore zones was 382 ind?m?2 in VL and 89 ind?m?2 in VD. Their mean biomasses were likewise greater in VL (0.91 g?m?2) than in VD (0.49 g?m?2). G. tigrinus was the most dominant species in both nearshore zones of VL and VD and attained the highest frequency in these areas. The study gives evidence of total extinction of native gammarid species.  相似文献   

5.
The influence of tides on bacterial populations in a monsoon influenced tropical estuary was assessed through fine resolution sampling (1 to 3 h) during spring and neap tides from mouth to the freshwater end at four stations during pre-monsoon, monsoon and post-monsoon seasons. Higher abundance of total bacterial count (TBC) in surface water near the river mouth, compared to the upstream, during pre-monsoon was followed by an opposite scenario during the monsoon When seasonally compared, it was during the post-monsoon season when TBC in surface water was highest, with simultaneous decrease in their count in the river sediment. The total viable bacterial count (TVC) was influenced by the depth-wise stratification of salinity, which varied with tidal fluctuation, usually high and low during the neap and spring tides respectively. The abundance of both the autochthonous Vibrio spp. and allochthonous coliform bacteria was influenced by the concentrations of dissolved nutrients and suspended particulate matter (SPM). It is concluded that depending on the interplay of riverine discharge and tidal amplitude, sediment re-suspension mediated increase in SPM significantly regulates bacteria populations in the estuarine water, urging the need of systematic regular monitoring for better prediction of related hazards, including those associated with the rise in pathogenic Vibrio spp. in the changing climatic scenarios.  相似文献   

6.
A comprehensive attempt has been made to evaluate the diurnal and spatial pattern of CO2 exchange between the atmosphere and water along the estuarine track of Indian Sundarbans during the two summer months, April and May, 2011. Rigorous field observations were carried out which included the hourly measurements of total alkalinity, pH, fugacity of CO2 in ambient air and water surface, dissolved oxygen, and chlorophyll a. The estuarine water was found rich in total alkalinity and was oversaturated with CO2 throughout the diurnal cycle in the two stations situated at the inner and middle estuary, respectively, whereas an entirely reverse situation was observed in the outer fringes. The fugacity of CO2 in water ranged from 152 to 657 μatm during the study period. The percentage of over-saturation in inner and middle estuary varied from 103 to 168 and 103 to 176 %, respectively, whereas the degree of under-saturation in the outer estuary lied between 40 and 99 %. Chlorophyll a concentrations were found higher in the outer estuary (12.3?±?2.2 mg?m?3) compared to the middle (6.4?±?0.6 mg?m?3) and inner parts (1.6?±?0.2 mg?m?3), followed by a similar decreasing pattern in nutrient availability from the outer to inner estuary. The sampling stations situated at the inner and middle estuary acted as a net source of 29.69 and 23.62 mg?CO2?m?2 day?1, respectively, whereas the outer station behaved as a net sink of ?33.37 mg?CO2 m?2 day?1. The study of primary production and community respiration further supports the heterotrophic nature of the estuary in the inner region while the outer periphery was marked by dominant autotrophic character. These contrasting results are in parity with the source characters of many inner estuaries and sinking characters of the outer estuaries situated at the distal continental shelf areas.  相似文献   

7.
Variability in horizontal zooplankton biomass distribution was investigated over 13 months in the Godavari estuary, along with physical (river discharge, temperature, salinity), chemical (nutrients, particulate organic matter), biological (phytoplankton biomass), and geological (suspended matter) properties to examine the influencing factors on their spatial and temporal variabilities. The entire estuary was filled with freshwater during peak discharge period and salinity near zero, increased to ~ 34 psu during dry period with relatively high nutrient levels during former than the latter period. Due to low flushing time (< 1 day) and high suspended load (> 500 mg L?1) during peak discharge period, picoplankton (cyanophyceae) contributed significantly to the phytoplankton biomass (Chl-a) whereas microplankton and nanoplankton (bacillariophyceae, and chlorophyceae) during moderate and mostly microplankton during dry period. Zooplankton biomass was the lowest during peak discharge period and increased during moderate followed by dry period. The zooplankton abundance was controlled by dead organic matter during peak discharge period, while both phytoplankton biomass and dead organic matter during moderate discharge and mostly phytoplankton biomass during dry period. This study suggests that significant modification of physico-chemical properties by river discharge led to changes in phytoplankton composition and dead organic matter concentrations that alters biomass, abundance, and composition of zooplankton in the Godavari estuary.  相似文献   

8.
The dissolved labile and labile particulate fractions (LPF) of Cu and Zn were analyzed during different seasons and salinity conditions in estuarine waters of marina, port, and shipyard areas in the southern region of the Patos Lagoon (RS, Brazil). The dissolved labile concentration was determined using the diffusive gradients in thin films technique (DGT). DGT devices were deployed in seven locations of the estuary for 72 h and the physicochemical parameters were also measured. The LPF of Cu and Zn was determined by daily filtering of water samples. Seasonal variation of DGT–Cu concentrations was only significant (p?<?0.05) at one shipyard area, while DGT–Zn was significant (p?<?0.05) in every locations. The LPF of Cu and Zn concentrations demonstrated seasonal and spatial variability in all locations, mainly at shipyard areas during high salinity conditions. In general, except the control location, the sampling locations showed mean variations of 0.11–0.45 μg?L?1 for DGT–Cu, 0.89–9.96 μg?L?1 for DGT–Zn, 0.65–3.69 μg?g?1 for LPF–Cu, and 1.35–10.87 μg?g?1 for LPF–Zn. Shipyard areas demonstrated the most expressive values of labile Cu and Zn in both fractions. Strong relationship between DGT–Zn and LPF–Zn was found suggesting that the DGT–Zn fraction originates from the suspended particulate matter. Water salinity and suspended particulate matter content indicated their importance for the control of the labile concentrations of Cu and Zn in the water column. These parameters must be taken into consideration for comparison among labile metals in estuaries.  相似文献   

9.
The present work revealed that salinity, water temperature, and food availability were the most crucial factors affecting the abundance of larvae and their settlement as macrofouling community in the coastal waters of Kalpakkam. Quantitative as well as qualitative results showed that late post-monsoon (April–May) and pre-monsoon (June–September) periods were found to be suitable periods for larval growth, development, and survival to adult stages for most of the organisms. Clustering of physico-chemical and biological (including larval and adult availability) data yielded two major clusters; one formed by northeast (NE) monsoon months (October–January) and the other by post-monsoon/summer (February–May) months, whereas; pre-monsoon months (June–September) were distributed between these two clusters. Among all the major macrofouler groups, only bivalves established a successful relationship between its larval abundance and adult settlement. Principal component analysis indicated good associations of bivalve larvae with polychaete larvae and adult bivalves with adult barnacles. However, biotic relation between ascidians and bryozoans was observed both in the larval as well as adult community.  相似文献   

10.
Phytoplankton diversity and abundance in estuarine systems are controlled by many factors. Salinity, turbidity, and inorganic nutrient concentrations and their respective ratios have all been proposed as principal factors that structure phytoplankton diversity and influence the emergence of potentially toxic species. Although much work has been conducted on temperate estuaries, less is known about how phytoplankton diversity is controlled in tropical, monsoonal systems that are subject to large, seasonal shifts in hydrology and to rapidly changing land use. Here, we present the results of an investigation into the factors controlling phytoplankton species composition and distribution in a tropical, monsoonal estuary (Bach Dang estuary, North Vietnam). A total of 245 taxa, 89 genera from six algal divisions were observed. Bacillariophyceae were the most diverse group contributing to 51.4 % of the microalgal assemblage, followed by Dinophyceae (29.8 %), Chlorophyceae (10.2 %), Cyanophyceae (3.7 %), Euglenophyceae (3.7 %) and Dictyochophyceae (1.2 %). The phytoplankton community was structured by inorganic nutrient ratios (DSi:DIP and DIN:DIP) as well as by salinity and turbidity. Evidence of a decrease in phytoplankton diversity concomitant with an increase in abundance and dominance of certain species (e.g., Skeletonema costatum) and the appearance of some potentially toxic species over the last two decades was also found. These changes in phytoplankton diversity are probably due to a combination of land use change resulting in changes in nutrient ratios and concentrations and global change as both rainfall and temperature have increased over the last two decades. It is therefore probable in the future that phytoplankton diversity will continue to change, potentially favoring the emergence of toxic species in this system.  相似文献   

11.
The study is the first documentation of seasonal variations in species composition, abundance and diversity of tintinnid (Ciliata: Protozoa), in relation to water quality parameters along the stretch of the Hooghly (Ganges) River Estuary (HRE), eastern coastal part of India. A total of 26 species (22 agglomerated and 4 non-agglomerated) belonging to 8 genera has been identified from 8 study sites where Tintinnopsis (17 species) represented the most dominant genera, contributing up to 65 % of total tintinnid community followed by Tintinnidium (2 species), Leprotintinnus (2 species) and Dadayiella, Favella, Metacylis, Eutintinnus and Helicostomella (each with solitary species). The maximum (1,666 ind.?l?1) and minimum (62 ind.?l?1) abundance of tintinnids was recorded during post-monsoon and monsoon, respectively. A distinct seasonal dynamics in terms of biomass (0.005–2.465 μg C l?1) and daily production rate (0.04–3.13 μg C l?1 day?1) was also noticed, accounting highest value during pre-monsoon. Chlorophyll a and nitrate were found to be potential causative factors for the seasonal variations of tintinnids as revealed by a stepwise multiple regression model. The result of ANOVA showed a significant variation between species abundance and months (F?=?2.36, P?≤?0.05). k-dominance curves were plotted to determine the comparison of tintinnid dominance between the investigated stations. Based on a principal component analysis (PCA), three main groups were delineated with tintinnid ciliates and environmental parameters. The changes in lorica morphology in terms of temperature and salinity, recorded for three dominant species, provided information on the ecological characteristics of the species assemblage in this estuarine system.  相似文献   

12.
河口是河流和海洋生态系统的过渡带,目前中国缺乏河口区划界和水质评价标准,河口区及其附近海域环境质量评价直接使用《海水水质标准》(GB 3097—1997)对标评价的方式,评价结果往往与实际不符,对河口地区开发建设和管理保护不利。笔者系统分析了中国河口区划分及水质评价的现状和存在问题,以北部湾主要入海河口钦州湾为例比较了河口区营养盐背景值与海洋营养盐背景值,两者差异显著,认为使用《海水水质标准》(GB 3097—1997)对河口区进行评价不能很好地反映环境质量。因此依据现行的《地表水环境质量标准》(GB 3838—2002)、《海水水质标准》(GB 3097—1997)和《近岸海域环境功能区管理办法》,提出使用盐度等数据探讨河口混合区划定及建立河口混合区水质营养盐标准限值的方法。在钦州湾的应用案例中,河口混合区的划定和河口区营养盐标准限值确定,都具有科学性和可操作性。使用河口混合区营养盐标准进行评价的结果比直接使用《海水水质标准》(GB 3097—1997)评价能更准确地反映环境质量,可为河口区划界及水质评价提供方法参考。  相似文献   

13.
The Mobile Bay estuary in the northern Gulf of Mexico provides a rich habitat for many fish and shellfish, including those identified as economically and ecologically important. The National Estuary Program in Mobile Bay has focused on restoration of degraded estuarine habitat on which these species depend. To support this effort, we used statistical techniques of ordination, cluster analysis, and discriminant analysis to relate distributions of individual fish and shellfish species and species assemblages to two dozen water quality and habitat variables in a geo-referenced database. Species appeared to respond to dominant gradients of low to high salinity and upland to offshore habitat area; many of the 15 communities identified via cluster analysis showed aggregated spatial distributions that could be related to habitat characteristics. Species in the Mobile River Delta were distinct from those in other areas of the estuary. This analysis supports habitat management in the Mobile Bay estuary; however, due to mobility of organisms among sampling locations and the dynamic environmental conditions in estuaries, we conclude that the analyses presented here are most appropriate for an evaluation of the estuary as a whole.  相似文献   

14.
Sequential chemical extraction using chelating agents were used to study the P dynamics and its bioavailability along the surface sediments of the Cochin estuary (southwest coast of India). Sediments were analyzed for major P species (iron bound P, calcium bound P, acid soluble organic P, alkali soluble organic P and residual organic P), Fe, Ca, total carbon, organic carbon, total nitrogen and total sulfur contents. An abrupt increase in the concentration of dissolved inorganic P with increasing salinity was observed in the study region. Iron-bound P exhibited a distinct seasonal pattern with maximum values in the monsoon season when fresh water condition was prevailed in the estuary. As salinity increased, the percentage of iron-bound P decreased, while that of calcium-bound P and total sedimentary sulfur increased. C/P and N/P ratios were low which indicate that large amounts of organic matter enriched with P tend to accumulate in surface sediments. The high organic P contribution in the sedimentary P pool may indicate high organic matter load with incomplete mineralization, as well as comparatively greater percentage of humic substance and resistant organic compounds. Principal component analysis is employed to find the possible processes influencing the speciation of P in the study region and indicate the following processes: (1) the spatial and seasonal variations of calcium bound P and acid soluble organic P was mainly controlled by sediment texture and organic carbon content, (2) sediment redox conditions control the distribution of iron bound P and (3) the terrigenous input of organic P is a significant processes controlling total P content in surface sediments. The bioavailable P was very high in the surface sediments which on an average accounts for 59 % in the pre-monsoon, 65 % in the monsoon and 53 % in the post-monsoon seasons. The surface sediments act as a potential internal source of P in the Cochin estuary.  相似文献   

15.
Petroleum hydrocarbon (PHC) concentration was monitored in water of estuaries, ports, and coastal transects up to 10-km distance in East Coast of India once in every year during 2002–2009. The highest concentration was observed at Haldia port (1.60–20.11 μg/l) due to the impact of hydrocarbon discharges from nearby oil refinery, petrochemical industries, handling of crude oils, etc. The concentration of PHC exhibited relatively higher values during low tide than the high tide in all the four estuaries indicating riverine inputs and land-based discharges, which contribute substantial amounts of PHC to the coastal water. Hoogly estuary recorded higher values of PHC (1.17–18.50 μg/l) due to the influence of industrial wastes, land runoff, and port activities. The spatial distribution of PHC estimated by the kriging method showed a variation in concentration of PHC over the whole region. To discriminate the dispersion pattern of PHC, principal component analysis (PCA) was performed using a correlation matrix.  相似文献   

16.
The sediment–water distribution coefficient, K d, is one of the most important parameters in radionuclide assessment models. In this study, we determined K ds of stable iodine (I) in estuarine and coastal regions. We studied 16 estuarine and coastal regions of Japan and obtained I data on water and sediments. Data on salinity, pH, dissolved organic carbon and dissolved oxygen in water, and organic carbon (OC) in sediments were also obtained as estuarine variables. Determined K ds of I in the Sagami River estuary decreased along the salinity gradient (salinity range, 0.1–33.8), indicating that salinity is one of the important factors controlling the K d values; however, when the K d values were compared among all the estuaries, the difference between minimum and maximum K d values varied by about two orders of magnitude in a narrow salinity range of 30.0–34.4. A significant correlation between K d value and OC content in sediments was observed in all the stations with a salinity of ≥30 except for stations in the Ishikari and Onga River estuaries. The exceptions are probably due to different sources of the sediments, which are explained by the results of relatively low I/OC ratios in sediments in those two estuaries, compared to the other estuaries. Thus, OC in sediments as well as salinity may be responsible for the variation of K ds of I in the estuarine and coastal regions.  相似文献   

17.
Monthly variation of CO2 fugacity (fCO2) in surface water and related atmospheric exchanges were measured in the Hooghly estuary which is one of the most important estuaries, since it is fed by one of the world's largest rivers, the Ganges with a flow of 15,646 m3 s-1 (1.6% of the world's combined river flow). Carbon dioxide fluxes averaged over the entire estuary are in the range of -2.78 to 84.4 mmol m-2 d-1. This estuary acts as a sink for CO2 during monsoon months and seasonal variation of its flux is controlled by dilution of seawater by river water. Since the solubility of CO2 and the disassociation of carbonic acid in estuarine water are controlled by temperature and salinity, the observed variations of CO2 fluxes are compared with those predicted from seasonal changes in temperature, salinity and the ratio of gross primary production to community respiration using empirical equations with an explained variability of 55%.  相似文献   

18.
Phosphorus fractionation was employed to find the bioavailability of phosphorus and its seasonal variations in the Panangad region of Cochin estuary, the largest estuarine system in the southwest coast of India. Sequential extraction of the surficial sediments using chelating agents was taken as a tool for this. Phosphate in the water column showed seasonal variations, with high values during the monsoon months, suggesting external runoff. Sediment texture was found to be the main factor influencing the spatial distribution of the geochemical parameters in the study region. Similarly, total phosphorus also showed granulometric dependence and it ranged between 319.54 and 2,938.83 ??g/g. Calcium-bound fraction was the main phosphorus pool in the estuary. Significant spatial variations were observed for all bioavailable fractions; iron-bound inorganic phosphorus (5.04?C474.24 ??g/g), calcium-bound inorganic phosphorus (11.16?C826.09 ??g/g), and acid-soluble organic phosphorus (22.22?C365.86 ??g/g). Among the non-bioavailable phosphorus, alkali-soluble organic fraction was the major one (51.92?C1,002.45 ??g/g). Residual organic phosphorus was comparatively smaller fraction (3.25?C14.64% of total). The sandy and muddy stations showed distinct fractional composition and the speciation study could endorse the overall geochemical character. There could be buffering of phosphorus, suggested by the increase in the percentage of bioavailable fractions during the lean pre-monsoon period, counteracting the decreases in the external loads. Principal component analysis was employed to find the possible processes influencing the speciation of phosphorus in the study region.  相似文献   

19.
Off-line solid-phase extraction (SPE) combined with liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS-MS) was used to study the estuarine behaviour of the polar pesticides, atrazine, chloridazon, diuron and metolachlor, and their transformation products (TPs), hydroxyatrazine (HA), desisopropylatrazine (DIA), desethylatrazine (DEA), 3,4-dichlorophenylmethylurea (DPMU) and monuron. The compounds were identified by comparing their LC retention times and product-ion spectra with those of standard solutions. In all but one case the detection limits of the method were sufficient to determine the compounds of interest over the entire salinity range in the estuary. The concentrations of the dissolved pesticides ranged from 70 ng l-1 for chloridazon to 1350 ng l-1 for diuron. The levels of TPs were 3-8% of the levels of their parent pesticide. The mixing plots of polar pesticides and their TPs indicated that TPs, which are present in fresh river water, are conservatively transported to the sea and that no additional amounts of TPs are formed during their transport through the estuary. The one exception was HA, of which approximately 10% of the amount transported to the North Sea is formed in the lower part of the estuary by photochemical oxidation of atrazine. The latter was concluded from the ratios of each analyte over the sum total of the parent pesticide and all TPs along the salinity gradient, which proved to be a useful tool for identifying such estuarine transformations.  相似文献   

20.
The influence of anthropogenic loading on the distribution of soft bottom benthic organisms of a tropical estuary (Cochin backwaters) was examined. The industrial activities were found to be high in the northern and central part of the estuary, where dissolved inorganic nitrogen (DIN > 210 ??M) and phosphorus (DIP > 6.5 ??M) have caused high abundance of chlorophyll a (up to 73 mg m???3) and accumulation of organic carbon in sediments (up to 5%). Principal component analysis distinguished three zones in the estuary. The central zone (Z1) was characterized by organic enrichment, low species diversity, and increased number of pollution tolerant species. Long-term deterioration of the estuary is indicated by an increase in the nutrients and chlorophyll a levels by sixfold during the last few decades. Flow restrictions in the lower estuary have lead to a fourfold increase in sediment organic carbon over the period of three decades. The reduced benthic diversity followed by an invasion of opportunistic polychaetes (Capitella capitata), are indicative of a stress in the estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号