首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
湖泊底泥挖掘可能导致水体氮磷平衡破坏的研究   总被引:15,自引:1,他引:14  
挖掘底泥是减少富营养化湖泊内源性氮、磷元素的主要手段 ,但若挖掘不当 ,则一段时间内可能会导致水体氮、磷平衡破坏 ,富营养化加剧。从底泥挖掘可能导致水体营养元素平衡破坏的成因入手 ,探讨避免水体富营养化加剧的对策。  相似文献   

2.
洞庭湖的富营养化研究   总被引:5,自引:0,他引:5  
分析了洞庭湖水体中氮、磷分布情况,采用指数评价法和浮游植物评价法划分了洞庭湖的营养类型,阐述了总磷与洞庭湖富营养化的关系,提出了减少总磷和防止湖泊富营养化的对策。  相似文献   

3.
浅水湖泊底泥与上覆水间磷迁移规律的研究   总被引:2,自引:0,他引:2  
以浅水湖泊中磷在底泥与上覆水间的迁移规律为研究对象,介绍了风浪扰动、微生物、水体pH值、氧化还原条件、底泥吸附与解吸等环境因素对磷的迁移影响.  相似文献   

4.
利用分级提取法分析了玄武湖的沉积磷形态,在玄武湖沉积物中,铝结合态磷的含量较低,平均值为64 mg/kg,其余形态磷中,铁结合态磷为241 mg/kg,有机磷为335 mg/kg,钙结合态磷为394 mg/kg.在环境变化的条件下,铁结合态磷可以释放到间隙水和上层水体中,是湖泊产生富营养化的重要因素;铝结合态磷由于含量少,对湖泊富营养化影响很小;钙结合态磷相对稳定且很难被生物利用,对湖泊富营养化影响不大;有机磷对水体有机负荷影响较大,并影响水体富营养化程度.  相似文献   

5.
藻类大量死亡后极易产生致嗅物.我们模拟了藻类的生长死亡过程,观测除藻后水体理化性质和生物性质的改变情况以及致嗅物的成分及浓度,以确定致嗅物质产生的途径.由于藻类死亡后细胞解体,藻类细胞中的氮、磷物质释放到水体中,导致水体的富营养化程度反而升高,而叶绿素-a也呈现下降趋势,整个试验过程后期溶解氧为0,水体产生嗅味物质,可采用吹扫捕集/固相微萃取—气相色谱—质谱法和顶空固相微萃取气质联用法分析致嗅物质.实验证明,当藻型湖泊的藻类被基本去除后,整个水体的初级生产力受到严重的破坏,威胁到水生态系统的安全性,可导致水体进一步恶化.  相似文献   

6.
磷是生态系统中必不可少的营养元素,其含量与水体的营养程度密切相关,过剩的磷会导致水体富营养化,使生态平衡遭到破坏.就不同水体沉积物中磷的形态进行了分类综述,归纳总结了不同水体沉积物中磷的形态以及分布特征,并且进一步概述了影响沉积物中磷向水体释放的因素.  相似文献   

7.
洋河水库蓝藻水华爆发预测影响因子研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为了预测洋河水库富营养化变化趋势和蓝藻水华爆发的风险,对洋河水库水体进行采样,分析其环境质量.研究结果表明,近年来洋河水库叶绿素a含量处于高位,氮、磷含量不断上升,特别是总氮质量浓度在5 mg/L左右,主要以硝态氮的形式存在,富营养化程度不断加剧,具有大规模爆发蓝藻水华的风险.对洋河水库藻华爆发的环境条件进行分析,提出...  相似文献   

8.
对固城湖水环境现状进行了调查与评价。结果表明.除湖心区断面枯水期总磷达Ⅳ类标准外,其余断面平、丰、枯水期水质均达Ⅲ类水标准。固城湖水体呈中营养化状态.且综合营养状态指数已接近富营养状态。指出,面源污染,内源污染。养殖污染。流域内的航运污染是造成固城湖水体富营养化的主要原素。提出,应严格控制各类污染源,建立流域内的污水处理厂.保护森林植被.推广使用无磷洗涤剂、生态化肥、生态农药;定期疏浚湖底淤泥,改良现有水生植被结构;加大对固城湖环境、功能和开发利用的研究及湖泊富营养化的研究.对水体中的磷、氮的化学行为及平衡进行分析,预测发展趋势。制定营养物质种类,防止其湖水向藻型湖泊发展。  相似文献   

9.
通过对国内主要湖泊沉积物化学成分的分析,研究了它们的主要差异性来源,对其进行了分类,并研究了底泥中的有机物含量的影响因素,为研究自然和人为扰动造成底泥的二次污染及湖泊的富营养化提供理论上的指导。  相似文献   

10.
去除藻类与控制其生长是湖泊水库水体恢复与保护的难题。打破藻类组成元素碳、氮、磷之间的比例,是有效抑制藻类细胞繁殖的前提和基础。文章结合工作实际,分析渔洞水库藻类数量和优势种群的变化,藻类与富营养化之间的关系,探讨物理、化学控藻技术存在的问题,提出生物控藻技术。  相似文献   

11.
江苏省12大湖泊水环境现状与污染控制建议   总被引:1,自引:0,他引:1       下载免费PDF全文
江苏面积大于50km^2的12个湖泊的水质恶化、面积减少、富营养化、湖泊生态系统退化与湖泊受TP、TN的污染和围湖造田等有关。经济快速发展,第二产业结构偏重,排放污染的总量超过湖泊承载力,湖泊底泥释放N、P及入糊河流携带污染物为造成湖泊环境问题的根本原因。建议调整产业结构,执行严格的排放标准,围绕重点区域、重点行业、重点企业和重点污染源治理,由控制COD为主转为控制COD和N、P并重,引水调控水质,建立湖泊资源数据库和生态系统信息网络,开展湖泊污染物来源分析和富营养化机理研究,开展跨界区域统筹对湖泊综合治理。  相似文献   

12.
湖泊、水库富营养化的监测   总被引:4,自引:4,他引:0  
介绍了湖泊、水库的特点及其水体富营养化的主要表现,从湖泊、水库富营养化的生态学意义、发生的机理及产生的危害等方面阐述了富营养化监测的特点及监测过程中应注意的技术问题,并提出了对目前国内湖泊、水库监测技术规范的修改建议。  相似文献   

13.
湖泊富营养化遥感评价模型的建立方法   总被引:3,自引:1,他引:2  
中国处于不同富营养状态的湖泊已达75%,湖泊富营养化监测已成为我国迫切需要解决的技术问题。遥感技术能够低成本地对水体实现大尺度、快速监测,实现传统点状监测到面状监测的延伸。充分考虑我国现有的湖泊富营养化评价方法、参评指标相互关系的同时,通过研究参评指标的光谱特性分析其遥感可行性,提出了从水体的叶绿素a和悬浮物浓度入手,综合评价湖泊富营养化的遥感评价方法。  相似文献   

14.
湖泊是中国重要的淡水资源之一 ,它与经济可持续发展以及人民生活休戚相关。随着国民经济不断增长 ,工业规模不断扩大 ,城镇人口不断增加 ,工业废水、生活污水的排放量也日益增加 ,大量营养物不断流入湖泊 ,湖泊富营养化、水质咸化、淤积和萎缩、生态破坏以及水质恶化等环境问题不断出现 ,其中湖泊的富营养化已成为中国最重要的水环境问题之一 ,湖泊的水质改善和保护也成为目前的紧急课题。现介绍湖泊富营养化水质改善技术及国外在实施这些技术方面的事例。1 营养盐对策1 1 湖内化学凝聚沉淀向湖中加入铁盐或铝盐 ,将湖水中溶解的无机磷…  相似文献   

15.
黄河口的水质、底质污染及其变化   总被引:16,自引:0,他引:16  
分析了2001年在黄河口附近所取的3处水样和3处泥样中污染物的含量,并与历史数据进行了比较.利用<地表水环境质量标准>(GB3838-2002)和美国国家海洋大气管理局(NOAA)水体泥沙质量标准等分别对水体和底泥中的重金属(砷)和氮磷污染进行了评价.认为黄河口的水污染严重,主要污染物为汞和氮;泥沙污染尚不严重,但污染物的增长率高;水体中较高的氮含量和泥沙中氮含量的迅速增高可能会对渤海湾的富营养化情况产生影响.  相似文献   

16.
红枫湖富营养化模糊评价   总被引:3,自引:2,他引:1       下载免费PDF全文
以红枫湖为例,论述水体富营养化模糊综合评价过程。结果表明,红枫湖属于中营养化,富营养化趋势得到遏制;证明模糊评价法应用于水体富营养化评价是可行的;揭示湖泊富营养化评价应结合多种方法进行研究,使评价结果更趋于合理。  相似文献   

17.
本文研究了姜堰市里下河地区河沟水体富营养化研究,分析了导致下河地区河沟水体富营养化的原因,提出了预防和治理下河地区河沟水体富营养化的对策和措施.  相似文献   

18.
湖泊富营养化与底质磷释放   总被引:6,自引:0,他引:6  
本文从磷作为湖泊富营养化的主要限制因子出发,讨论了底磷释放对湖泊的影响及影响底质磷释放的因素,最后用热力学方法阐明底质磷释放的本质条件.  相似文献   

19.
杭州西湖水体生态环境参数的相互关系   总被引:6,自引:1,他引:6  
采用 2 0 0 0年的西湖常规监测数据 ,分析了西湖水体中生态环境特征参数的季节变化和相互关系。分析表明 ,西湖水体各生态环境参数 ,除总氮外 ,均呈现出明显的季节性变化 ,总磷、溶性正磷酸盐、叶绿素 a和藻类季节变化一致 ,在夏季形成高峰 ,冬季最低 ;三无机氮高峰值出现在冬季 ,夏季含量为全年最低。 2 0 0 0年西湖水体总氮年均值为 2 .0 5 m g/L ,总磷年均值为 0 .12 6mg/L ,N/P大于 16,西湖属于磷控制型富营养湖泊。通过相关分析 ,从另一方面说明磷是西湖水体的限制因子 ;硝酸盐对西湖沉积物和湖水之间的磷酸盐平衡有一定的影响 ;硝酸盐对西湖水体中浮游植物生长繁殖可能有抑制作用  相似文献   

20.
卞玮 《干旱环境监测》2006,20(4):223-226
15年来,蘑菇湖水库一直处于富营养化状态,但污染物排放总量没有随着城市经济与人口的增加而成比例增加,相对污染物进库勘晓少。本文主要从水质状况、底泥、水生生物三方面入手,分析了蘑菇湖水库富营养化的成因,阐述水体富营养防治对策的同时。提出了蘑菇湖水库治理的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号