首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was performed in Del Rey Lagoon, City of Los Angeles, to determine if the lagoon was as a source or sink for fecal indicator bacteria (FIB: total coliforms, Escherichia coli, enterococci) and to screen for the presence of other potentially pathogenic bacteria. The lagoon receives tidal flows from the adjacent Ballona Estuary whose water usually is contaminated with FIB originating from the highly urbanized Ballona Creek Watershed. During 16 sampling events from February 2008 through March 2009, replicate water samples (n?=?3) were collected 1 h prior to the high tide and 1 h prior to the following low tide. FIB concentrations were measured by the defined substrate method (IDEXX, Westbrook, Me) followed by culturing of bacterial isolates sampled from positive IDEXX Quanti-Tray wells and were identified using the Vitek 2 Compact (bioMérieux, Durham, NC). Mean concentrations of FIB often differed by an order of magnitude from flood to ebb flow conditions. The lagoon tended to act as a sink for total coliforms based on the ratio of mean flood to ebb densities (R F/E) >1.0 during 56 % of the sampling events and during ebb flows, as a source for E. coli and enterococci (R F/E <1.69 % of events). Approximately 54 species were identified from 277 isolates cultured from the IDEXX Quanti-Trays. Of these, 54 % were species known to include pathogenic strains that can be naturally occurring, introduced in runoff, or originated from other sources. Diversity and cluster analyses indicated a dynamic assemblage that changes in species composition with day-to-day fluctuations as well as tidal action. The concept of monitoring the lagoon and estuary as a sentinel habitat for pathogenic assemblages is discussed.  相似文献   

2.
Potable and non-potable uses of roof-harvested rainwater (RHRW) are increasing due to water shortages. To protect human health risks, it is important to identify and quantify disease-causing pathogens in RHRW so that appropriate treatment options can be implemented. We used a microfluidic quantitative PCR (MFQPCR) system for the quantitative detection of a wide array of fecal indicator bacteria (FIB) and pathogens in RHRW tank samples along with culturable FIB and conventional qPCR analysis of selected pathogens. Among the nine pathogenic bacteria and their associated genes tested with the MFQPCR, 4.86 and 2.77% samples were positive for Legionella pneumophila and Shigella spp., respectively. The remaining seven pathogens were absent. MFQPCR and conventional qPCR results showed good agreement. Therefore, direct pathogen quantification by MFQPCR systems may be advantageous for circumstances where a thorough microbial analysis is required to assess the public health risks from multiple pathogens that occur simultaneously in the target water source.  相似文献   

3.
Natural spring water has unique properties, as it is rich in minerals that are considered to be beneficial to human health. A survey of the microbiological quality of natural spring water was conducted to assess possible risks from the consumption of the water by visitors in recreational mountain areas located in Seoul, South Korea. The densities of total coliforms and Escherichia coli were measured during the spring and the summer of 2002 to investigate the presence of coliform bacteria in the drinking spring waters. Total coliforms were detected in all samples and the mean density of total coliforms was up to a maximum of 228 CFU/mL. Detectable E. coli was found in 78% of all samples and the mean densities of E. coli varied from a minimum of 0 CFU/mL to a maximum of 15 CFU/mL in all samples. Malfunctioning septic systems and wildlife population appear to be the main source of E. coli contamination. Presence of E. coli in natural spring water indicates potential adverse health effects for individuals or populations exposed to this water. The fecal contaminated spring water may present an unacceptable risk to humans if it is used as raw drinking water.  相似文献   

4.
A total of 285 water samples were collected from 71 roof harvested rainwater tanks from four villages in different provinces over a two-year (2013–2014) period during the early (October to December) and late (January to March) rainy season. Water quality was evaluated based on Escherichia coli, faecal coliforms and Enterococcus spp. prevalence using the IDEXX Quanti-Tray quantification system. Real-Time PCR was used to analyse a subset of 168 samples for the presence of Shigella spp., Salmonella spp. and E. coli virulence genes (stx1, stx2 and eaeA). Escherichia coli were detected in 44.1% of the samples, Enterococcus spp. in 57.9% and faecal coliforms in 95.7%. The most prevalent E. coli concentrations in harvested rainwater were observed in 29.1% of samples and 22.5% for Enterococcus spp. and, were within 1–10 cfu/100 ml and 10–100 cfu/100 ml, respectively, whereas those for faecal coliforms (36.6%) were within 100–1000 cfu/100 ml. On average 16.8% of the samples had neither E. coli nor Enterococcus spp. detected, while 33.9% had only Enterococcus spp. and 23.7% had only E. coli. E. coli and Enterococcus spp. were detected together in 25.5% of the samples. Evaluation of samples for potential pathogenic bacteria showed all tested samples to be negative for the Shigella spp. ipaH gene, while five tested positive for Salmonella ipaB gene. None of the samples tested positive for the stx1 and stx2 genes, and only two tested positive for the eaeA gene. These findings are potentially useful in the development of a simplified risk assessment strategy based on the concentrations of indicator bacteria.  相似文献   

5.
Rodrigo de Freitas Lagoon is an urban ecosystem undergoing accelerated degradation, therefore selected as a model for microbiological quality studies of tropical lagoons. The aim of this study was to evaluate the abundance and the spatial distribution of fecal pollution indicators and pathogenic microorganisms in the lagoon. The relationships between microbial groups and abiotic measurements were also determined to evaluate the influence of environmental conditions on bacterial distribution and to identify the capability of coliforms and Enterococcus to predict the occurrence of Vibrio, Staphylococcus aureus, and Salmonella. Surface water samples were collected monthly, from December 1999 to October 2000. Analyses were performed by traditional culture techniques. A uniform spatial distribution was observed for all bacterial groups. The fecal pollution indicators occurred in low abundances while potentially pathogenic microorganisms were consistently found. Therefore, our study supported the use of counts of coliforms and Enterococcus to indicate only recent fecal contamination.  相似文献   

6.
In 2010, a magnitude 7.0 earthquake struck Haiti, severely damaging the drinking and wastewater infrastructure and leaving millions homeless. Compounding this problem, the introduction of Vibrio cholerae resulted in a massive cholera outbreak that infected over 700,000 people and threatened the safety of Haiti’s drinking water. To mitigate this public health crisis, non-government organizations installed thousands of wells to provide communities with safe drinking water. However, despite increased access, Haiti currently lacks the monitoring capacity to assure the microbial safety of any of its water resources. For these reasons, this study was designed to assess the feasibility of using a simple, low-cost method to detect indicators of fecal contamination of drinking water that could be implemented at the community level. Water samples from 358 sources of drinking water in the Léogâne flood basin were screened with a commercially available hydrogen sulfide test and a standard membrane method for the enumeration of thermotolerant coliforms. When compared with the gold standard method, the hydrogen sulfide test had a sensitivity of 65 % and a specificity of 93 %. While the sensitivity of the assay increased at higher fecal coliform concentrations, it never exceeded 88 %, even with fecal coliform concentrations greater than 100 colony-forming units per 100 ml. While its simplicity makes the hydrogen sulfide test attractive for assessing water quality in low-resource settings, the low sensitivity raises concerns about its use as the sole indicator of the presence or absence of fecal coliforms in individual or community water sources.  相似文献   

7.
饮用水病原微生物污染是公共卫生面临的主要威胁之一,微生物监测在水质监测中的必要性日益受到人们的认可。在实际工作中,一般是通过检测指示微生物间接反映病原微生物的存在。通过调研国内外各组织、机构颁布的水质标准发现,近年来,我国环境质量标准和污染物排放标准中对于指示微生物的选择有从总大肠菌群向粪大肠菌群和大肠埃希氏菌(E.coli)转变的趋势,而美国环保署、欧盟、世界卫生组织、澳大利亚国家健康与医疗研究委员会等根据最新的流行病学证据,强调了大肠埃希氏菌(E.coli)、肠球菌(Enterococci)与粪便污染的相关性更强,可用于替代大肠菌群。建议我国在后续水质标准中对微生物指标进行增补修订时,参考国外经验,形成集成多种指示微生物与多种特定病原体的监测指标体系,以更好地保护环境功能和民众健康。  相似文献   

8.
This study was conducted to assess potential human health risks presented by pathogenic bacteria in a protected multi-use lake-reservoir (Lake Ma Vallée) located in west of Kinshasa, Democratic Republic of Congo (DRC). Water and surface sediments from several points of the Lake were collected during summer. Microbial analysis was performed for Escherichia coli, Enterococcus (ENT), Pseudomonas species and heterotrophic plate counts. PCR amplification was performed for the confirmation of E. coli, ENT, Pseudomonas spp. and Pseudomonas aeruginosa isolated from samples. The results reveal low concentration of bacteria in water column of the lake, the bacterial quantification results observed in this study for the water column were below the recommended limits, according to WHO and the European Directive 2006/7/CE, for bathing water. However, high concentration of bacteria was observed in the sediment samples; the values of 2.65?×?103, 6.35?×?103, 3.27?×?103 and 3.60?×?108 CFU g?1 of dry sediment for E. coli, ENT, Pseudomonas spp. and heterotrophic plate counts, respectively. The results of this study indicate that sediments of the Lake Ma Vallée can constitute a reservoir of pathogenic microorganisms which can persist in the lake. Possible resuspension of faecal indicator bacteria and pathogens would affect water quality and may increase health risks to the population during recreational activities. Our results indicate that the microbial sediment analysis provides complementary and important information for assessing sanitary quality of surface water under tropical conditions.  相似文献   

9.
As large numbers of ships either take in ballast from or discharge their ballast into the Mumbai Harbor region, it is pertinent to quantify microorganisms of health concerns and suggest on the suitability of water for ballasting purposes. To meet with this main aim, a selected set of general and pathogenic bacterial groups and their seasonal variations were studied from the Mumbai Harbor area. Sampling was carried out during postmonsoon (November 2001), pre-monsoon (April 2002) and monsoon (October 2002) periods. We quantified total coliforms and eight other groups of known human pathogenic bacteria from water, sediment, marine plant and animal samples collected in and around Mumbai Harbor. When compared with similar studies from other parts/harbors of the world, the Mumbai Harbor area has over 100-times higher levels of coliforms. The serotypes of Escherichia coli O157 and Shigella-Alkaligens Dispar group were abundant throughout the year. Even Vibrio cholerae, V. parahaemolyticus, Salmonella spp., campylobacters and aeromonads were present in large numbers. This comprehensive study, conducted with a view to quantify these bacterial groups and to evaluate the suitability of these waters for ballasting purposes, clearly suggests that both ballasting and deballasting be avoided in this region and alternative procedures should be developed for treating/handling ballast water.  相似文献   

10.
The prevalence and distribution of soil and water samples contaminated with enteroparasites of humans and animals with zoonotic potential (EHAZP) in Apucaraninha Indigenous Land (AIL), southern Brazil, was evaluated. An environmental survey was conducted to evaluate the presence of parasitic forms in peridomiciliary soil and associated variables. Soil samples were collected from 40/293 domiciles (10 domiciles per season), from November 2010 to June 2011, and evaluated by modified methods of Faust et al. and Lutz. Analyses of water from seven consumption sites were also performed. The overall prevalence of soil samples contaminated by EHAZP was 23.8 %. The most prevalent parasitic forms were cyst of Entamoeba spp. and eggs of Ascaris spp. The highest prevalence of contaminated soil samples was observed in winter (31 %). The probability map obtained with geostatistical analyses showed an average of 47 % soil contamination at a distance of approximately 140 m. The parasitological analysis of water did not detect Giardia spp. or Cryptosporidium spp. and showed that all collection points were within the standards of the Brazilian law. However, the microbiological analysis showed the presence of Escherichia coli in 6/7 sampled points. Despite the low level of contamination by EHAZP in peridomiciliar soil and the absence of pathogenic protozoa in water, the AIL soil and water (due to the presence of fecal coliforms) are potential sources of infection for the population, indicating the need for improvements in sanitation and water treatment, in addition periodic treatment of the population with antiparasitic.  相似文献   

11.
The origin and distribution of microbial contamination in Lake Geneva's most polluted bay were assessed using faecal indicator bacteria (FIB). The lake is used as drinking water, for recreation and fishing. During 1 year, water samples were taken at 23 points in the bay and three contamination sources: a wastewater treatment plant (WWTP), a river and a storm water outlet. Analyses included Escherichia coli, enterococci (ENT), total coliforms (TC), and heterotrophic plate counts (HPC). E. coli input flux rates from the WWTP can reach 2.5 x 10(10) CFU/s; those from the river are one to three orders of magnitude lower. Different pathogenic Salmonella serotypes were identified in water from these sources. FIB levels in the bay are highly variable. Results demonstrate that (1) the WWTP outlet at 30 m depth impacts near-surface water quality during holomixis in winter; (2) when the lake is stratified, the effluent water is generally trapped below the thermocline; (3) during major floods, upwelling across the thermocline may occur; (4) the river permanently contributes to contamination, mainly near the river mouth and during floods, when the storm water outlet contributes additionally; (5) the lowest FIB levels in the near-surface water occur during low-flow periods in the bathing season.  相似文献   

12.
The objective of this study was to determine the bacterial contaminations in drinking water in Nyala city, South Darfur, Sudan with special reference to the internally displaced people camps (IDPs). Two hundred and forty water samples from different sites and sources including bore holes, hand pumps, dug wells, water points, water reservoir and household storage containers were collected in 2009. The most probable number method was used to detect and count the total coliform, faecal coliform and faecal enterococci. Results revealed that the three indicators bacteria were abundant in all sources except water points. Percentages of the three indicators bacteria count above the permissible limits for drinking water in all samples were 46.4% total coliform, 45.2% faecal coliform and 25.4% faecal enterococci whereas the highest count of the indicators bacteria observed was 1,600 U/100 ml water. Enteric bacteria isolated were Escherichia coli (22.5%), Enterococcus faecalis (20.42%), Klebsiella (15.00%), Citrobacter (2.1%) and Enterobacter (3.33%). The highest contamination of water sources was observed in household storage containers (20%) followed by boreholes (11.25%), reservoirs (6.24%), hand pumps (5.42%) and dug wells (2.49%). Contamination varied from season to season with the highest level in autumn (18.33%) followed by winter (13.75%) and summer (13.32%), respectively. All sources of water in IDP camps except water points were contaminated. Data suggested the importance of greater attention for household contamination, environmental sanitation control and the raise of awareness about water contamination.  相似文献   

13.
Escherichia coli O157:H7 and Salmonella are pathogenic microorganisms that can cause severe gastrointestinal illness in humans. These pathogens may be transmitted in a variety of ways, including food and water. The presence of Salmonella and E. coli O157:H7 in surface waters constitutes a potential threat to human health when used for either drinking or recreation. As with most waterborne pathogens, Salmonella and E. coli O157:H7 are difficult to detect and enumerate with accuracy in surface waters due to methodological limitations. The aim of this study was to develop a protocol for the detection of Salmonella spp., E. coli O157:H7 and E. coli virulence genes (stx 1, stx 2 and eae) in water using a single enrichment step and PCR. In spiked water samples, PCR results showed high sensitivity (<3 CFU/L) for both microorganisms. The protocol developed in this study has been applied in different surface waters in association with microbiological and physical analysis. The frequency of PCR positive samples was 33% for Salmonella and 2% for E. coli O157:H7 producing intimin (eae) and Shiga-like toxin I (stx 1). Moreover, the finding of amplicons corresponding to eae and stx 1 genes in the absence of E. coli O157:H7 suggested the possible presence of other pathogenic bacteria that carry these genes (e.g. EHEC, Shigella strains). The results obtained showed that the developed protocol could be applied as a routine analysis of surface water for the evaluation of microbiological risks.  相似文献   

14.
Molecular approaches to microbiological monitoring: fecal source detection   总被引:1,自引:0,他引:1  
Molecular methods are useful both to monitor natural communities of bacteria, and to track specific bacterial markers in complex environments. Length-heterogeneity polymerase chain reaction (LH-PCR) and terminal restriction fragment length polymorphism (T-RFLP) of 16S rDNAs discriminate among 16S rRNA genes based on length polymorphisms of their PCR products. With these methods, we developed an alternative indicator that distinguishes the source of fecal pollution in water. We amplify 16S rRNA gene fragments from the fecal anaerobic genus Bacteroides with specific primers. Because Bacteroides normally resides in gut habitats, its presence in water indicates fecal pollution. Molecular detection circumvents the complexities of growing anaerobic bacteria. We identified Bacteroides LH-PCR and T-RFLP ribosomal DNA markers unique to either ruminant or human feces. The same unique fecal markers were recovered from polluted natural waters. We cloned and sequenced the unique markers; marker sequences were used to design specific PCR primers that reliably distinguish human from ruminant sources of fecal contamination. Primers for more species are under development. This approach is more sensitive than fecal coliform assays, is comparable in complexity to standard food safety and public health diagnostic tests, and lends itself to automation and high-throughput. Thus molecular genetic markers for fecal anaerobic bacteria hold promise for monitoring bacterial pollution and water quality.  相似文献   

15.
Simple microbial test comprising H2S paper strip test,presence-absence (PA) test, and fluorogenic brila broth (BB)test performed directly at 44.5 °C were evaluated andcompared with the standard most probable number (MPN) method fordetection of fecal coliforms in 173 drinking water sources. BBand PA test were comparable with standard MPN method, whereas,poor compliance was noted for H2S test. PA test whencompared with standard MPN test only 15%; disagreement wasdetected, whereas, highest disagreement of 40%; was observed incase of H2S test. BB test was found to be highly sensitiveas only 7.8% disagreement with that of standard MPN test wasfound. Three hundred cultures obtained from positive tests wereidentified in order to evaluate the specificities of test usedin detection of fecal indicator Escherichia coli. BB testwas also found highly specific in detection of indicatororganism as compared to PA and H2S test. Among theorganisms isolated from BB test 84.4%; of them were identifiedas E. coli as compared to 43.4 and 33.3 in PA and H2Stest, respectively. The low incidence of recovery of E.coli (18.1%) for the standard MPN method places doubt on thevalidity of its application in tropical areas. The result ofthis investigation suggest that BB performed directly at 44.5 °C could be suitable cost effective test to assess themicrobiological quality of drinking water in India and other tropical countries.  相似文献   

16.
High levels of fecal indicator bacteria (FIB) in surface waters is a common problem in urban areas that often leads to impairment of beneficial uses such as swimming. Once impaired, common management and regulatory solutions include development of total maximum daily loads (TMDLs) and other water quality management plans. A critical element of these plans is establishment of a "reference" level of exceedances against which to assess management goals and TMDL compliance. The goal of this study was to provide information on indicator bacteria contributions from natural streams in undeveloped catchments throughout southern California during dry weather, non-storm conditions. To help establish a regional reference data set, bacteria levels [i.e. Escherichia coli (E. coli), enterococci and total coliforms] were measured from 15 unimpaired streams in 11 southern California watersheds weekly for one full year. Concentrations measured from reference areas were typically between one to two orders of magnitude lower than levels found in developed watersheds. Nearly 82% of the time, samples did not exceed daily and monthly bacterial indicator thresholds. E. coli had the lowest daily percent exceedance (1.5%). A total of 13.7% of enterococci exceeded daily thresholds. Indicator bacteria levels fluctuated seasonally with an average of 79% of both enterococci and total coliforms exceedances occurring during summer months (June to August). Temperature, at all sites, explained about one-half the variation in total coliforms density suggesting that stream temperatures regulated bacterial populations. Accounting for natural background levels will allow for management targets that are more reflective of the contributions from natural sources.  相似文献   

17.
Urbanization and industrialization has increased the strength and qualities of municipal sewage in Bangalore, India. The disposal of sewage into natural water bodies became a serious issue. Byramangala reservoir is one such habitat enormously polluted in South India. The water samples were collected from four hotspots of Byramangala tank in 3 months. The biochemical oxygen demand (BOD) and bacterial counts were determined. The fecal coliforms were identified by morphological, physiological, and biochemical studies. The antibiotics sensitivity profiling of isolated bacteria were further carried out. We have noticed that a high content of BOD in the tank in all the 3 months. The total and fecal counts were found to be varied from 1.6?×?106 to 8.2?×?106?colony forming unit/ml and >5,500/100 ml, respectively. The variations in BOD and total count were found to be statistically significant at p?>?0.05. Many pathogenic bacteria were characterized and most of them were found to be multidrug resistant. Salmonella showed resistance to cefoperazone, cefotaxime, cefixime, moxifloxacin, piperacillin/tazobactam, co-trimoxazole, levofloxacin, trimethoprim, and ceftazidime. Escherichia coli showed resistance to chloramphenicol, trimethoprim, co-trimoxazole, rifampicin, and nitrofurantoin while Enterobacter showed resistant to ampicillin, cefepime, ceftazidime, cefoperazone, and cefotaxime. Klebsiella and Shigella exhibited multiple drug resistance to conventional antibiotics. Staphylococcus showed resistance to vancomycin, methicillin, oxacillin, and tetracycline. Furthermore, Salmonella and Klebsiella are on the verge of acquiring resistance to even the strongest carbapenems-imipenem and entrapenem. Present study revealed that Byramanagala tank has become a cesspool of multidrug-resistant “superbugs” and will be major health concern in South Bangalore, India.  相似文献   

18.
The aim of this study was to monitor the heavy metal contents and fecal pollution in Tapes decussatus (carpet shell clam) from Izmir Bay (Eastern Aegean). Bivalve mollusks were sampled on January, March, July, and October 2007 in the Izmir Bay. Izmir Bay is one of the great natural bays of the Mediterranean. Concentrations of heavy metals were determined in the clams from the different seasons. Fecal coliform densities were determined to evaluate the degree of water pollution and clams’ microbiological accumulation of the classical microbial pollution indicators. The concentration of heavy metals in T. decussatus from Izmir Bay were Hg 0.044–0.13; Cd 0.026–0.24; Pb 0.38–1.2; Cr 2.3–3.7; Cu 6.4–8.4; Zn 56.0–81.8, and Ni 8.1–9.6 μg/g (dry weight). The maximum values were generally obtained in July and March except Ni. This study found that the levels of heavy metals except Cr in T. decussatus were below Spanish and European Communities legislations for shellfish as food. Microbial pollution indicators (heterotrophic bacteria and fecal coliform) were measured in T. decussatus. Maximum heterotrophic bacteria and fecal coliforms were recorded in the winter while the lowest were detected in summer.  相似文献   

19.
To assess the potential for treated wastewater irrigation to impact levels of fecal indicator bacteria (FIB) and salinity in irrigated soils, levels of Escherichia coli, Enterococcus, and environmental covariates were measured in a treated wastewater holding pond (irrigation source water), water leaving the irrigation system, and in irrigated soils over 2 years in a municipal parkland in Arizona. Higher E. coli levels were measured in the pond in winter (56 CFU 100 mL−1) than in summer (17 CFU 100 mL−1); however, in the irrigation system, levels of FIB decreased from summer (26 CFU 100 mL−1) to winter (4 CFU 100 mL−1), possibly related to low winter water use and corresponding death of residual bacteria within the system. For over 2 years, no increase in FIB was found in irrigated soils, though highest E. coli levels (700 CFU g−1 soil) were measured in deeper (20–25 cm) soils during summer. Measurements of water inputs vs. potential evapotranspiration indicate that irrigation levels may have been sufficient to generate bacterial percolation to deeper soil layers during summer. No overall increase in soil salinity resulting from treated wastewater irrigation was detected, but distinct seasonal peaks as high as 4 ds m−1 occurred during both summers. The peaks significantly declined in winter when surface ET abated and more favorable water balances could be maintained. Monitoring of seasonal shifts in irrigation water quality and/or factors correlated with increases and decreases in FIB will aid in identification of any public health or environmental risks that could arise from the use of treated wastewater for irrigation.  相似文献   

20.
The present study was aimed to make an assessment of health risk due to pollution and human pathogenic bacteria associated with the recreational and drinking water sources in twin densely populated holy Indian cities Ayodhya and Faizabad. Though physicochemical studies revealed that the water available in the area is under recommended limits for human use, it is unsafe on account of poor microbiological quality of surface and ground water in the region. The most probable number (MPN) test results revealed the preponderance of ≥2,400 total coliforms (TC) (100 ml) − 1 in river, pond, dug well and kund waters. Contrary to that, 94% tube wells, 32% hand pumps and 25% piped supply water were under safe limits having <3 TC (100 ml) − 1. The shallow depth (~40 ft), water logging and presence of septic tanks in the near vicinity are the possible reasons of poor microbial quality of hand pump drinking water. The municipal supply water passes along sewage line where loose connections and/or cracks in pipe lead to mixing and contamination. The significant best quality of tube well water evident from the absence of TC could be attributed to the depth of well ≥150 ft and usually their location away from the habitation. A total of 263 bacteria from 186 water samples were isolated, and at least five genera of enteric bacteria from various water sources were identified morphologically and biochemically as Escherichia coli, Klebsiella sp., Enterobacter sp., Shigella sp. and Salmonella sp. The serotyping of 72 E. coli and 36 Salmonella sp. revealed 51 as E. coli O157 and 20 as Salmonella sp. The presence of enteric pathogens in water sources pose threat to human health and therefore call for immediate remedial measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号