首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isoprene is a dominant constituent of the global biogenic volatile organic compounds budget. It plays an important role in regulating the atmospheric trace gas composition including tropospheric ozone concentrations. In this study, monthly measurements of isoprene emission rates were carried out over a 1-year period (December 2002–November 2003) from four Indian deciduous tree species, namely Ficus relegiosa, Ficus infectoria, Pongamia pinnata, and Morus alba, using branch enclosure method. Significantly high monthly variations in isoprene emission rates were observed in all four-plant species. Also, each plant species exhibited pronounced seasonal variation in isoprene emission. Maximum isoprene emissions were observed during summer and minimum during the winter or spring months.  相似文献   

2.
Quantitative knowledge of organic chemical release into the environment is essential to understand and predict human exposure as well as to develop rational control strategies for any substances of concern. While significant efforts have been invested to characterize and screen organic chemicals for hazardous properties, relatively less effort has been directed toward estimating emissions and hence also risks. Here, a rapid throughput method to estimate emissions of discrete organic chemicals in commerce has been developed, applied and evaluated to support screening studies aimed at ranking and identifying chemicals of potential concern. The method builds upon information in the European Union Technical Guidance Document and utilizes information on quantities in commerce (production and/or import rates), chemical function (use patterns) and physical-chemical properties to estimate emissions to air, soil and water within the OECD for five stages of the chemical life-cycle. The method is applied to 16,029 discrete substances (identified by CAS numbers) from five national and international high production volume lists. As access to consistent input data remains fragmented or even impossible, particular attention is given to estimating, evaluating and discussing uncertainties in the resulting emission scenarios. The uncertainty for individual substances typically spans 3 to 4 orders of magnitude for this initial tier screening method. Information on uncertainties in emissions is useful as any screening or categorization methods which solely rely on threshold values are at risk of leading to a significant number of either false positives or false negatives. A limited evaluation of the screening method's estimates for a sub-set of about 100 substances, compared against independent and more detailed emission scenarios presented in various European Risk Assessment Reports, highlights that up-to-date and accurate information on quantities in commerce as well as a detailed breakdown on chemical function are critically needed for developing more realistic emission scenarios.  相似文献   

3.
A new index named Air Quality Balance Index (AQBI), which is able to characterise the amount of pollution level in a selected area, is proposed. This index is a function of the ratios between pollutant concentration values and their standards; it aims at identifying all situations in which there is a possible environmental risk even when several pollutants are below their limit values but air quality is reduced. AQBI is evaluated by using a high-resolution three-dimensional dispersion model: the air concentration for each substance is computed starting from detailed emissions sources: point, line and area emissions hourly modulated. This model is driven with accurate meteorological data from ground stations and remote sensing systems providing vertical profiles of temperature and wind; these data are integrated with wind and temperature profiles at higher altitudes obtained by a Local Area Model. The outputs of the dispersion model are compared with pollutant concentrations provided by measuring stations, in order to recalibrate emission data. A three-dimensional high resolution grid of AQBI data is evaluated for an industrial area close to Alessandria (Northern Italy), assessing air quality and environmental conditions. Performance of AQBI is compared with the Air Quality Index (AQI) developed by the U.S. Environmental Protection Agency. AQBI, computed taking into account all pollutants, is able to point out situations not evidenced by AQI, based on a preset limited number of substances; therefore, AQBI is a good tool for evaluating the air quality either in urban and in industrial areas. The AQBI values at ground level, in selected points, are in agreement with in situ observations.  相似文献   

4.
Given the alarming global rates of mangrove forest loss it is important that resource managers have access to updated information regarding both the extent and condition of their mangrove forests. Mexican mangroves in particular have been identified as experiencing an exceptional high annual rate of loss. However, conflicting studies, using remote sensing techniques, of the current state of many of these forests may be hindering all efforts to conserve and manage what remains. Focusing on one such system, the Teacapán–Agua Brava–Las Haciendas estuarine–mangrove complex of the Mexican Pacific, an attempt was made to develop a rapid method of mapping the current condition of the mangroves based on estimated LAI. Specifically, using an AccuPAR LP-80 Ceptometer, 300 indirect in situ LAI measurements were taken at various sites within the black mangrove (Avicennia germinans) dominated forests of the northern section of this system. From this sample, 225 measurements were then used to develop linear regression models based on their relationship with corresponding values derived from QuickBird very high resolution optical satellite data. Specifically, regression analyses of the in situ LAI with both the normalized difference vegetation index (NDVI) and the simple ration (SR) vegetation index revealed significant positive relationships [LAI versus NDVI (R 2 = 0.63); LAI versus SR (R 2 = 0.68)]. Moreover, using the remaining sample, further examination of standard errors and of an F test of the residual variances indicated little difference between the two models. Based on the NDVI model, a map of estimated mangrove LAI was then created. Excluding the dead mangrove areas (i.e. LAI = 0), which represented 40% of the total 30.4 km2 of mangrove area identified in the scene, a mean estimated LAI value of 2.71 was recorded. By grouping the healthy fringe mangrove with the healthy riverine mangrove and by grouping the dwarf mangrove together with the poor condition mangrove, mean estimated LAI values of 4.66 and 2.39 were calculated, respectively. Given that the former healthy group only represents 8% of the total mangrove area examined, it is concluded that this mangrove system, considered one of the most important of the Pacific coast of the Americas, is currently experiencing a considerable state of degradation. Furthermore, based on the results of this investigation it is suggested that this approach could provide resource managers and scientists alike with a very rapid and effective method for monitoring the state of remaining mangrove forests of the Mexican Pacific and, possibly, other areas of the tropics.  相似文献   

5.
Considerable uncertainties are associated with the experimental estimates of emission rates of different volatile organic compound (VOC) species from the biosphere to the atmosphere. Some of this uncertainty derives from the sampling and analytical procedures used in emission rate measurements. A calibration system was developed in order to evaluate possible errors in the measurements of biogenic emission rates using a branch enclosure system. Two types of calibration procedures were tested, a standard additions technique and an internal standard procedure. Both techniques were used to evaluate possible losses while sampling isoprene and monoterpenes, which are the most abundant VOCs of biogenic origin. The losses to Teflon lines and the empty sampling system were tested and losses to the branch enclosure system installed on two VOC emitting plant species were evaluated. A considerable loss of isoprene (approximately 18% of inflow concentration 65 ng l(-1)) to the empty enclosure system and to the system installed on the plant was measured, but no losses of monoterpenes were observed.  相似文献   

6.
Isoprene is most dominant volatile organic compounds (VOC) emitted by many plants. In this study 40 common Indian plant species were examined for isoprene emission using dynamic flow through enclosure chamber technique. Isoprene emission rates of plants species were found to vary from undetectable to 69.5 microg g(-1) h(-1) (Madhuca latifolia). Besides, an attempt has been made to evaluate suitability of 80 common Indian plant species for planting programmes. Out of 80 species, 29 species were moderate to high emitters (10 to < or =25 microg g(-1) h(-1)), 12 species were low emitter emitters (1 to < or =10 microg g(-1) h(-1)) and remaining 39 species were found to be negligible or non emitters (<1 microg g(-1) h(-1)) of isoprene. About 50% plant species selected for planting programmes in India were found to be moderate to high emitters of isoprene.  相似文献   

7.
The objective of this paper is to present observations, results from monitoring measurements, and preliminary conclusions about the development of patterns and structures during the first 5 years of development of an artificial catchment starting from point zero. We discuss the high relevance of initial system traits and external events for the system development and draw conclusions for further research. These investigations as part of a Collaborative Research Center, aim to disentangle and understand the feedback mechanisms and interrelationships of processes and their co-development with spatial and temporal structures and patterns by studying an initial, probably less complex ecosystem. Therefore, intensive measurements were carried out in the catchment with regard to the development of surface structures, hydrological patterns, vegetation dynamics, water chemistry, and element budgets. During the first 5 years, considerable changes within the catchment were observed. Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment. Initial structures formed by the construction process and initial substrate characteristics were decisive for the distribution and flow of water. External factors like episodic events triggered erosion and dissection during this initial phase, promoted by the low vegetation cover, and the unconsolidated sandy substrate. The transformation of the initial geosystem into areas with evolving terrestrial or aquatic characteristics and from a very episodic to a more permanent stream network and discharge, together with the observed vegetation dynamics increased site diversity and heterogeneity with respect to water and nutrient availability and transformation processes compared with the more homogenous conditions at point zero. The processes and feedback mechanisms in the initial development of a new landscape may deviate in rates, intensity, and dominance from those known from mature ecosystems. It is therefore crucial to understand these early phases of ecosystem development and to disentangle the increasingly complex interactions between the evolving terrestrial and aquatic, biotic, and abiotic compartments of the system. Long-term monitoring of initial ecosystems may provide important data and parameters on processes and the crucial role of spatial and temporal structures and patterns to solve these problems. Artificially created catchments could be a suitable tool to study these initial developments at the landscape scale under known, designed, and defined boundary conditions.  相似文献   

8.
The effectiveness of different monitoring methods in detecting temporal changes in water quality depends on the achievable sampling intervals, and how these relate to the extent of temporal variation. However, water quality sampling frequencies are rarely adjusted to the actual variation of the monitoring area. Manual sampling, for example, is often limited by the level of funding and not by the optimal timing to take samples. Restrictions in monitoring methods therefore often determine their ability to estimate the true mean and variance values for a certain time period or season. Consequently, we estimated how different sampling intervals determine the mean and standard deviation in a specific monitoring area by using high frequency data from in situ automated monitoring stations. Raw fluorescence measurements of chlorophyll a for three automated monitoring stations were calibrated by using phycocyanin fluorescence measurements and chlorophyll a analyzed from manual water samples in a laboratory. A moving block bootstrap simulation was then used to estimate the standard errors of the mean and standard deviations for different sample sizes. Our results showed that in a temperate, meso-eutrophic lake, relatively high errors in seasonal statistics can be expected from monthly sampling. Moreover, weekly sampling yielded relatively small accuracy benefits compared to a fortnightly sampling. The presented method for temporal representation analysis can be used as a tool in sampling design by adjusting the sampling interval to suit the actual temporal variation in the monitoring area, in addition to being used for estimating the usefulness of previously collected data.  相似文献   

9.
The presence of vegetation in stream ecosystems is highly dynamic in both space and time. A digital photography technique is developed to map aquatic vegetation cover at species level, which has a very high spatial and a flexible temporal resolution. A digital single-lens reflex (DSLR) camera mounted on a handheld telescopic pole is used. The low-altitude (5 m) orthogonal aerial images have a low spectral resolution (red-green-blue), high spatial resolution (~1.9 pixels cm?2, ~1.3 cm length) and flexible temporal resolution (monthly). The method is successfully applied in two lowland rivers to quantify four key properties of vegetated rivers: vegetation cover, patch size distribution, biomass and hydraulic resistance. The main advantages are that the method is (i) suitable for continuous and discontinuous vegetation covers, (ii) of very high spatial and flexible temporal resolution, (iii) relatively fast compared to conventional ground survey methods, (iv) non-destructive and (v) relatively cheap and easy to use, and (vi) the software is widely available and similar open source alternatives exist. The study area should be less than 10 m wide, and the prevailing light conditions and water turbidity levels should be sufficient to look into the water. Further improvements of the image processing are expected in the automatic delineation and classification of the vegetation patches.  相似文献   

10.
11.
12.
The aim of this work was the study, by a multiparametric approach, of emissions from a laser printer in an experimental box-chamber, with particular attention to nanoparticles release. The experimental design included number concentration measurements by Fast Mobility Particle Sizer (FMPS) and chemical characterizations (elements) of size segregated samples collected by Nanomoudi cascade impactor. Volatile Organic Compounds (VOCs) were also sampled by charcoal sorbent tubes by personal sampling pumps. Monitoring of ozone, total volatile organic compounds concentrations and of temperature and humidity values inside the experimental box during the printing processes were also performed by automatic analyzers. The performed monitoring allowed to evidence different ways for particles emissions by laser printers, in particular showing that nanoparticles, characterised by high concentrations of Ba, Zn, B, K, Sr and Na, are set free at the beginning of the printing process. This emission seems to be directly ascribable to the use of toner powder, as all these elements are present in it. The emission of larger particles (ca. 100-320 nm) was observed in subsequent phases of the print process, probably due to the condensation of vapours released during the progressive heating of the fuser roller. This contribution was proved by both the FMPS measurements and the cascade impactor results. Also, a low emission of particles in higher size ranges was evidenced, mainly due to paper related particles. A very high concentration of VOCs was detected inside the chamber and the chemical speciation shows that the major contribution is associated to toner components, even if some species are released from other printer components. Although the formation of secondary species by reaction of VOCs with ozone cannot be excluded, these species were present inside the chamber at concentrations lower than the detection limit.  相似文献   

13.
利用植被供水指数法监测干旱的研究   总被引:2,自引:0,他引:2  
利用FY-1D/AVHRR数据通道1、2的反射率计算植被指数和通道4、5的亮温计算作物冠层温度,进而求出植被供水指数可监测干旱状况.本文简单介绍了利用FY-1D/AVHRR数据植被供水指数法监测生长季的干旱状况.研究表明,该方法所得结果从总体趋势看,与实际情况基本吻合.因此,植被供水指数法适用于生长季大范围的干旱监测.  相似文献   

14.
Tropical and sub tropical regions are regarded as dominant source of biogenic volatile organic compounds emission (BVOC). However, measurement studies from these regions are limited and largely confined to South Africa and Amazonia. Consequently, global BVOC estimates are mainly based on modeling studies. Moreover, BVOC emission estimate is altogether lacking for any region of the Indian sub continent. This study attempts to estimate isoprene emission capacity of forest of Haryana state. Individual plant species isoprene emission capacity is found to vary from below detection limit (BDL) to 12.01 mg Cm− 2 h− 1. Maximum emission capacity (12.01 mg Cm− 2 h− 1) is noticed in case of Dalbergia sissoo. The area average isoprene emission capacity for the Haryana forest is found to be 19.98 mg Cm− 2 h− 1, which is significantly (2.4 times) higher than the reported isoprene emission value of 8.2 mg Cm− 2 h− 1 for the Kalahari woodland of Africa.  相似文献   

15.
16.
Validation of Urban Emission Inventories   总被引:1,自引:0,他引:1  
Two emission validation methods are presented. The first method focuses on the precision of the emission factors and the accuracy of modelled traffic flows. Emission factors derived from the COPERT II methodology are compared with on-board emission measurements and modelled traffic flow rates are compared with observations. The second validation method focuses on the completeness of the inventory, i.e. coverage of all sources. The method compares measured pollutant fluxes in the urban plume with the downwind transported and dispersed emissions integrated over plume width and mixing height. Both methods seem to indicate that traffic emission factors used in the urban emission inventories show large uncertainties. Besides the lack of measurement precision this is mainly induced by external influence factors like driving behaviour and vehicle maintenance.  相似文献   

17.
Mentougou District acts as a crucial component in the ecological buffer in western Beijing mountainous areas, Beijing, China. Using two Landsat MSS/TM images acquired on July 14, 1979 and July 23, 2005, the vegetation coverage of Mentougou District was calculated based on normalized difference vegetation index and spectral mixture analysis (NDVI-SMA) model. Its temporal and spatial changes were analyzed according to digital elevation model (DEM) image, social and economic data. The results showed that the vegetation coverage decreased from 76.4% in 1979 to 72.7% in 2005. Vegetation degradation was probably the result of human disturbance, such as outspreading of resident areas, and coal and stone mining activities, while vegetation restoration might be contributed by the combined effects of both natural processes and ecological construction effort. Vegetation changes were closely related to topographical characteristics. Plants at high altitude were more stable and less degraded than the plants at low altitude, while the plants on steep slope or northwest aspect were more vulnerable to degradation. During the period of 26 years, landscape appeared to become more fragmental, and ecological quality of the land seemed deteriorated sharply in that highly-covered vegetation area has been decreased by 24%.  相似文献   

18.
The contamination of aquatic ecosystems by natural and anthropogenic metals has lead to a need to better characterize their impact in the environment. To a large extent, the fate and the (eco)toxicity of these elements in aquatic systems are related to their chemical speciation, which may vary continuously in space and time. Detailed measurements of the fraction of specific metal species or groups of homologous metal species and their variation as a function of the bio-physicochemical conditions of the natural media are thus of prime importance. To determine these metal fractions as well as redox chemical species regulating their distribution (dissolved oxygen, sulfides, iron and manganese oxides), new analytical tools capable of performing in situ, real-time monitoring in both water columns and sediments with minimum perturbation of the media are required. This paper reviews the challenges associated with metal speciation studies, and the progress made with state of the art voltammetric techniques to measure the speciation of metals in situ. More specifically, it summarizes the specific conceptual, analytical, and technical criteria that must be considered and/or fulfilled to develop rugged, field deployable, non-perturbing sensors and probes. Strategies used to satisfy these criteria are presented by describing the up-to-date most advanced voltammetric sensors, mini-/micro-integrated analytical systems, and submersible equipments developed for in situ measurements of trace metals and main redox species in aquatic systems. The spatial and temporal resolutions achieved by these news tools represent a significant advantage over traditional laboratory techniques, while simultaneously remaining cost effective. The application of these tools to aquatic systems is illustrated by several examples of unattended and remote in situ monitoring and/or profiling in water columns and sediments.  相似文献   

19.
From 1999 through 2010, a team of scientists and engineers systematically reviewed approximately eight million classified and unclassified documents at Los Alamos National Laboratory (LANL) that describe historical off-site releases of radionuclides and chemicals in order to determine the extent to which a full-scale dose reconstruction for releases is warranted and/or feasible. As a part of this effort, a relative ranking of historical airborne and waterborne radionuclide releases from LANL was established using priority index (PI) values that were calculated from estimated annual quantities released and the maximum allowable effluent concentrations according to The U.S. Nuclear Regulatory Commission (USNRC). Chemical releases were ranked based on annual usage estimates and U.S. Environmental Protection Agency (USEPA) toxicity values. PI results for airborne radionuclides indicate that early plutonium operations were of most concern between 1948 and 1961, in 1967, and again from 1970 through 1973. Airborne releases of uranium were found to be of most interest for 1968, from 1974 through 1978, and again in 1996. Mixed fission products yielded the highest PI value for 1969. Mixed activation product releases yielded the highest PI values from 1979 to 1995. For waterborne releases, results indicate that plutonium is of most concern for all years evaluated with the exception of 1956 when (90)Sr yielded the highest PI value. The prioritization of chemical releases indicate that four of the top five ranked chemicals were organic solvents that were commonly used in chemical processing and for cleaning. Trichloroethylene ranked highest, indicating highest relative potential for health effects, for both cancer and non-cancer effects. Documents also indicate that beryllium was used in significant quantities, which could have lead to residential exposures exceeding established environmental and occupational exposure limits, and warrants further consideration. In part because of the close proximity of residents to LANL, further study of historical LANL releases and the potential impact to public health is recommended for those materials with the largest priority index values; namely, plutonium, uranium, and selected chemicals.  相似文献   

20.
At Swiss long-term forest ecosystem research sites, ground vegetation was assessed during the period 1994-2003/2008 following two approaches: (1) visual assessment of the cover of species occurring in sixteen 1 m(2) quadrats, distributed over a 43 × 43 m area, and (2) phytosociological relevés in concentric circular plots of 30, 200, and 500 m(2). We first compared the two approaches with respect to diversity assessment. The number of species recorded in the 16 quadrats was in general higher than in the 30 m(2) plot and it represented 42% to 108% of the number of species recorded in the 500 m(2) plot. In a second step, we tested whether any temporal trends were apparent. In a few cases, a decrease or increase in Landolt's mean indicator values for light, nitrogen availability, soil pH, soil moisture, or temperature was found to be significant. However, these changes were usually restricted to one approach or one area. The only clear trend was detected in an unmanaged former coppice beech stand, for which all survey approaches indicated canopy closure. At another site, vegetation reacted to the local opening of the canopy following windthrow. In a third step, we compared the leaf area index (LAI), measured with an LAI-2000 instrument (Licor, Inc.) over each quadrat, with the indicator value of the vegetation for light (L). Within a site, there was no clear relationship between LAI and L values per quadrat. In contrast, across all sites, the relationship between LAI and L, averaged per site for all available years, was highly significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号