首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forest fragmentation is one of the most important threats to global biodiversity, particularly in tropical developing countries. Identifying priority areas for conservation within these forests is essential to their effective management. However, this requires current, accurate environmental information that is often lacking in developing countries. The Cockpit Country, Jamaica, contains forests of international importance in terms of levels of endemism and overall diversity. These forests are under severe threat from the prospect of bauxite mining and other anthropogenic disturbances. In the absence of adequate, up-to-date ecological information, we used satellite remote sensing data and fragmentation analysis to identify interior forested areas that have experienced little or no change as priority conservation sites. We classified Landsat images from 1985, 1989, 1995, 2002, and 2008, using an object-oriented method, which allowed for the inclusion of roads. We conducted our fragmentation analysis using metrics to quantify changes in forest patch number, area, shape, and aggregation. Deforestation and fragmentation fluctuated within the 23-year period but were mostly confined to the periphery of the forest, close to roads and access trails. An area of core forest that remained intact over the period of study was identified within the largest forest patch, most of which was located within the boundaries of a forest reserve and included the last remaining patches of closed-broadleaf forest. These areas should be given highest priority for conservation, as they constitute important refuges for endemic or threatened biodiversity. Minimizing and controlling access will be important in maintaining this core.  相似文献   

2.
Road sides provide suitable conditions for the establishment and growth of non-native species. The phenomenon of non-native species spread through roads has further increased due to rapid anthropogenic developments. Here we intend to investigate the status of native and non-native species and how the species richness and diversity change in a perpendicular road transect across the three different road use types in the central highlands of India. Presence of 55 non-native species was recorded, of the total 71 species along the road sides. Non-native species richness significantly increased with increasing road use type. Although, the species diversity significantly decreased from road verges to the forest interior in all the road use types. Indicating the role of non-native propagule spread through the roads into the interior forest landscapes. The study gives a management implication, to restrict the non-native species spread from the road sides to the forest interior, irrespective of road use types.  相似文献   

3.
Soil Collembola communities were investigated in spruce forest stands of the High Tatra Mts that had been heavily damaged by a windstorm in November 2004 and subsequently by a wildfire in July 2005. The study focused on the impact of these disturbances and forestry practices on collembolan community distribution and structure 4 years after the disturbance. Four different treatments were selected for this study: intact forest stands (REF), non-extracted windthrown stands (NEX), clear-cut windthrown stands (EXT) and burnt windthrown stands (FIR). From a total of 7,820 individuals, 72 species were identified. The highest total abundance mean was recorded in FIR stands followed by NEX and EXT stands and, surprisingly, the lowest in REF stands. The highest total species richness was observed in REF stands, followed by NEX stands and FIR stands and the lowest in EXT stands. In REF and NEX stands, the most abundant species were Folsomia penicula and Tetracanthella fjellbergi, while in heavily damaged stands, the most abundant was Anurophorus laricis. The ordination method used demonstrated a significant influence of treatment on the abundance of Collembola. ANOVA used confirmed significant differences for all dominant species between treatments. The present study shows the negative impact of windthrow on Collembola communities as reflected in decreased species richness and abundance. However, disturbance by fire caused a considerable increase in collembolan abundance 3 years after the event. Moreover, we show that clearing of windthrown spruce forests after a windstorm is less favourable for communities of soil collembolans and slows down the recovery process.  相似文献   

4.
This study analyzes the results of the first 5 years of long-term environmental monitoring of the dynamics of coastal vegetation communities in southwestern Taiwan. Seven permanent plots were established in major vegetation communities, including grassland, windbreak forest, and secondary succession forest. Results showed that species richness decreased yearly in grasslands but fluctuated moderately in the forest plots. A Jaccard similarity coefficient was used to evaluate the similarities of species composition between different monitoring years. Species composition changed rapidly in grassland sites, with the similarity coefficient dropping from 82 to 29% in 5 years. The similarity coefficient of vegetation in the compositehardwood forest dropped from 80 to 50%, indicating that at least half the species were the same as those in the beginning and that the composition of forest communities was more stable than that of grassland communities. Dominant species in the forest community changed gradually during the monitoring period. The original planting of Casuarina equisetifolia in windbreak forests decreased year by year in most of the plots, while Cerbera manghas and Ficus microcarpa became the dominant species. The trend of replacement of dominant species indicates that most of the vegetation communities are still in successional stages.  相似文献   

5.
Rapid Assessment of Plant Diversity Patterns: A Methodology for Landscapes   总被引:2,自引:0,他引:2  
We present a rapid, cost-efficient methodology to link plantdiversity surveys from plots to landscapes using: (1) unbiasedsite selection based on remotely sensed information; (2) multi-scale field techniques to assess plant diversity; (3)mathematical models (species-area curves) to estimate thenumber of species in larger areas corrected for within-typeheterogeneity; and (4) mathematical techniques to estimatetotal species richness and patterns of plant diversity in alandscape. We demonstrate the methodology in a 754 ha studyarea in Rocky Mountain National Park, Colorado, U.S.A.,using four 0.025 ha and twenty-one 0.1 ha multi-scalevegetation plots. We recorded 330 plant species (1/3 thenumber of plants recorded in the 1074 km2 Park) in the2.2 ha area within the plots: this represents a samplingintensity of 0.29% of the 754 ha study site. We estimated 552plant species, about half the plant species recorded in the Park,in just 0.7% of the Parks area. We show how this rapid,cost-efficient methodology: (1) produces a rich informationbase on the patterns of native plant diversity and thedistribution of non-native plant species and keystoneecosystems; and (2) can be easily adapted for other nationaland state parks, national forests, wildlife refuges, and nature reserves.  相似文献   

6.
Landscape Ecological Assessment of the Chesapeake Bay Watershed   总被引:2,自引:0,他引:2  
The Chesapeake Bay Watershed, located in the Mid-Atlantic Region of the United States, is experiencing rapid habitat loss and fragmentation from sprawling low-density development. The bay itself is heavily stressed by excess sediment and nutrient runoff. Three states, the District of Columbia, and the federal government signed an agreement in 2000 to address these problems. The commitments included an assessment of the watershed's resource lands, and targeting the most valued lands for protection. As part of this task, the Resource Lands Assessment identified an ecological network comprised of large contiguous blocks (hubs) of forests, wetlands, and streams, interconnected by corridors to allow animal and plant propagule dispersal and migration. Hubs were prioritized by ecoregion, by analyzing a variety of ecological parameters, including: rare species presence, rarity and population viability; vegetation and vertebrate richness; habitat area, condition, and diversity; intactness and remoteness; connectivity potential; and the nature of the surrounding landscape. I found that much of the watershed was still fairly intact, although this varied dramatically by ecoregion. Current protection also varied, and an assessment of vulnerability will help focus protection efforts among the most valuable hubs and corridors.  相似文献   

7.
We evaluate a field method for determining species richness andcanopy cover of vascular plants for the Forest Health MonitoringProgram (FHM), an ecological survey of U.S. forests. Measurementsare taken within 12 1-m2 quadrats on 1/15 ha plots in FHM.Species richness and cover are determined for four height classes(strata) within each quadrat and aggregated by stratum over the entireplot. We estimated (1) the agreement between experienced trainers andinexperienced technicians who collected the data on this survey(accuracy) and (2) the agreement among the technicians (precision) forresults on species richness and cover from 3 test plots at 3 timeintervals. The methods appear to be highly precise, although somediscrepancies with the values obtained by the trainers were found.Trainers found significantly more species in the ground stratum (0–0.6 m) and measured significantly more cover in the uppermost stratum(>4.9 m). The proportion of variation due to measurement error andtemporal variability was less than 13% for species richness (all strata)and cover (all but one stratum). This indicates that the method issuitable for monitoring changes in species richness and canopy coverfor a large-scale synoptic monitoring project such as FHM.  相似文献   

8.
Nonnative plants have tremendous ecological and economic impacts on plant communities globally, but comprehensive data on the distribution and ecological relationships of individual species is often scarce or nonexistent. The objective of this study was to assess the influence of vegetation type, climate, topography, and management history on the distribution and abundance of eight selected nonnative plant taxa in forests in western Oregon. These eight taxa were selected as being reliably detected by a multi-resource inventory of 1127 systematically-placed plots on nonfederal forest lands from 1995 to 1997 by the USFS Forest Inventory and Analysis (FIA) program. One or more of the eight nonnative taxa studied were found on 20% of the sampled subplots in the study area, but relatively few stands were dominated by them. Overall abundance of nonnative taxa was likely much greater, because few composites and graminoids were identified to species in this general-purpose inventory. Distribution of most taxa was more closely associated with low density of overstory trees than with climate. Nonnative taxa were significantly more abundant in stands that had been recently clearcut or thinned than in stands that had not. Frequencies of several taxa decreased with elevation, which may reflect proximity to source populations and intensive land use rather than any climatic constraints. Although the greatest potential for displacement of native forest species appears to be in early-successional communities, the potential for spread of some shade-tolerant evergreen shrubs also seems high.  相似文献   

9.
Robust monitoring of carbon sequestration by forests requires the use of multiple data sources analyzed at a common scale. To that end, model-based Moderate Resolution Imaging Spectroradiometer (MODIS) and field-based Forest Inventory and Analysis (FIA) data of net primary productivity (NPP) were compared at increasing levels of spatial aggregation across the eastern USA. A total of 52,167 FIA plots and colocated MODIS forest cover NPP pixels were analyzed using a hexagonal tiling system. A protocol was developed to assess the optimal scale as an optimal size of landscape patches at which to map spatially explicit estimates of MODIS and FIA NPP. The optimal mapping resolution (hereafter referred to as optimal scale) is determined using spatially scaled z-statistics as the tradeoff between increased spatial agreement as measured by Pearson’s correlation coefficient and decreased details of coverage as measured by the number of hexagons. Spatial sensitivity was also assessed using land cover assessment and forest homogeneity using spatially scaled z-statistics. Pearson correlations indicate that MODIS and FIA NPP are most highly correlated when using large hexagons, while z-statistics indicate an optimal scale at an intermediate hexagon size of 390 km2. This optimal scale had more spatial detail than was obtained for larger hexagons and greater spatial agreement than was obtained for smaller hexagons. The z-statistics for land cover assessment and forest homogeneity also indicated an optimal scale of 390 km2.  相似文献   

10.
This paper describes four global-change phenomena that are having major impacts on Amazonian forests. The first is accelerating deforestation and logging. Despite recent government initiatives to slow forest loss, deforestation rates in Brazilian Amazonia have increased from 1.1 million ha yr–1 in the early 1990s, to nearly 1.5 million ha yr–1 from 1992–1994, and to more than 1.9 million ha yr–1 from 1995–1998. Deforestation is also occurring rapidly in some other parts of the Amazon Basin, such as in Bolivia and Ecuador, while industrialized logging is increasing dramatically in the Guianas and central Amazonia.The second phenomenon is that patterns of forest loss and fragmentation are rapidly changing. In recent decades, large-scale deforestation has mainly occurred in the southern and eastern portions of the Amazon — in the Brazilian states of Pará, Maranho, Rondônia, Acre, and Mato Grosso, and in northern Bolivia. While rates of forest loss remain very high in these areas, the development of major new highways is providing direct conduits into the heart of the Amazon. If future trends follow past patterns, land-hungry settlers and loggers may largely bisect the forests of the Amazon Basin.The third phenomenon is that climatic variability is interacting with human land uses, creating additional impacts on forest ecosystems. The 1997/98 El Niño drought, for example, led to a major increase in forest burning, with wildfires raging out of control in the northern Amazonian state of Roraima and other locations. Logging operations, which create labyrinths of roads and tracks in forsts, are increasing fuel loads, desiccation and ignition sources in forest interiors. Forest fragmentation also increases fire susceptibility by creating dry, fire-prone forest edges.Finally, recent evidence suggests that intact Amazonian forests are a globally significant carbon sink, quite possibly caused by higher forest growth rates in response to increasing atmospheric CO2 fertilization. Evidence for a carbon sink comes from long-term forest mensuration plots, from whole-forest studies of carbon flux and from investigations of atmospheric CO2 and oxygen isotopes. Unfortunately, intact Amazonian forests are rapidly diminishing. Hence, not only is the destruction of these forests a major source of greenhouse gases, but it is reducing their intrinsic capacity to help buffer the rapid anthropogenic rise in CO2.  相似文献   

11.
Biodiversity surveys are often hampered by the inability tocontrol extraneous sources of variability introduced intocomparisons of populations across a heterogenous landscape. If not specifically accounted for a priori, this noisecan weaken comparisons between sites, and can make itdifficult to draw inferences about specific ecologicalprocesses. We developed a terrain-based, paired-sitesampling design to analyze differences in aquaticbiodiversity between streams draining eastern hemlock (Tsuga canadensis) forests, and those draining mixedhardwood forests in Delaware Water Gap National RecreationArea (USA). The goal of this design was to minimize variancedue to terrain influences on stream communities, whilerepresenting the range of hemlock dominated streamenvironments present in the park. We used geographicinformation systems (GIS) and cluster analysis to define andpartition hemlock dominated streams into terrain types basedon topographic variables and stream order. We computedsimilarity of forest stands within terrain types and usedthis information to pair hemlock-dominated streams withhardwood counterparts prior to sampling. We evaluated theeffectiveness of the design through power analysis and foundthat power to detect differences in aquatic invertebratetaxa richness was highest when sites were paired and terraintype was included as a factor in the analysis. Precision ofthe estimated difference in mean richness was nearly doubledusing the terrain-based, paired site design in comparison toother evaluated designs. Use of this method allowed us tosample stream communities representative of park-wide forestconditions while effectively controlling for landscapevariability.  相似文献   

12.
A majority of the research on forest fragmentation is primarily focused on animal groups rather than on tree communities because of the complex structural and functional behavior of the latter. In this study, we show that forest fragmentation provokes surprisingly rapid and profound alterations in tropical tree community. We examine forest fragments in the tropical region using high-resolution satellite imagery taken between 1973 and 2004 in the Southern Western Ghats (India) in relation to landscape patterns and phytosociological datasets. We have distinguished fragmentation in six categories—interior, perforated, edge, transitional, patch, and undetermined—around each forested pixel. Furthermore, we have characterized each of the fragment class in the evergreen and semi-evergreen forest in terms of its species composition and richness, its species similarity and abundance, and its regeneration status. Different landscape metrics have been used to infer patterns of land-use changes. Contiguous patches of >1,000 ha covered 90% of evergreen forest in 1973 with less porosity and minimal plantation and anthropogenic pressures; whereas in 2004, the area had 67% forest coverage and a high level of porosity, possibly due to Ochlandra spread and increased plantations which resulted in the loss of such contiguous patches. Results highlight the importance of landscape metrics in monitoring land-cover change over time. Our main conclusion was to develop an approach, which combines information regarding land cover, degree of fragmentation, and phytosociological inputs, to conserve and prioritize tropical ecosystems.  相似文献   

13.
Land managers need better techniques to assess exoticplant invasions. We used the cross-correlationstatistic, I YZ, to test for the presence ofspatial cross-correlation between pair-wisecombinations of soil characteristics, topographicvariables, plant species richness, and cover ofvascular plants in a 754 ha study site in RockyMountain National Park, Colorado, U.S.A. Using 25 largeplots (1000 m2) in five vegetation types, 8 of 12variables showed significant spatial cross-correlationwith at least one other variable, while 6 of 12variables showed significant spatial auto-correlation. Elevation and slope showed significant spatialcross-correlation with all variables except percentcover of native and exotic species. Percent cover ofnative species had significant spatialcross-correlations with soil variables, but not withexotic species. This was probably because of thepatchy distributions of vegetation types in the studyarea. At a finer resolution, using data from ten1 m2 subplots within each of the 1000 m2 plots, allvariables showed significant spatial auto- andcross-correlation. Large-plot sampling was moreaffected by topographic factors than speciesdistribution patterns, while with finer resolutionsampling, the opposite was true. However, thestatistically and biologically significant spatialcorrelation of native and exotic species could only bedetected with finer resolution sampling. We foundexotic plant species invading areas with high nativeplant richness and cover, and in fertile soils high innitrogen, silt, and clay. Spatial auto- andcross-correlation statistics, along with theintegration of remotely sensed data and geographicinformation systems, are powerful new tools forevaluating the patterns and distribution of native andexotic plant species in relation to landscape structure.  相似文献   

14.
Forest management has a significant influence on the preferences of people for forest landscapes. This study sought to evaluate the dynamic effects of thinning intensities on the landscape value of forests over time. Five typical stands in Wuxiangsi National Forest Park in Nanjing, China, were subjected to a thinning experiment designed with four intensities: unthinned, light thinning, moderate thinning, and heavy thinning. People’s preferences for landscape photographs taken in plots under various thinning intensities were assessed through scenic beauty estimation (SBE) at 2 and 5 years after thinning. The differences in scenic beauty value between different thinning intensities were then analyzed with a paired samples t test for the two periods. The results indicated that the landscape value of all of the thinned plots significantly exceeded that of the unthinned plots 2 years after thinning (p?相似文献   

15.
The production of timber from native forests is presently one of the most controversial land management issues in Australia. Part of this controversy results from the potential impacts of forestry practices on forest-dependent fauna, particularly those that are rare and endangered, such as Leadbeater's Possum Gymnobelideus leadbeateri McCoy, in the forests of central Victoria, south-eastern Australia. A significant proportion of the highly limited distribution of this species overlaps with some of the most valuable wood production forests in Australia within which extensive clearfelling operations are employed to produce timber and pulpwood. These operations can destroy the habitat of G. leadbeateri. The Victoria government agency that is responsible for forest and wildlife management has devised a forest zoning system as part of the management strategies to conserve G. leadbeateri within timber production areas. This is designed to partition the forest into three types of areas: (1) where the conservation of G. leadbeateri is a priority, (2) where wood production is a priority, and, (3) where both land uses are a joint priority. The classification of areas of forest where the conservation of G. leadbeateri is the primary land use is based on an understanding of the habitat requirements of the species. The results of recent field studies, where statistical models of the habitat requirements of G. leadbeateri have been developed and their performance subsequently tested using a new dataset, highlights the need for a new basis to guide the classification of areas for the conservation of the species within wood production forests. We describe a method for devising a forest management zoning system that is based on a statistical model of the habitat requirements of G. leadbeateri and which will better integrate wood production and the conservation of the species. This procedure accounts for the uncertainty in the statistical model and, in turn, reduces the risk that areas where G. leadbeateri occurs are logged, whilst ensuring that other areas are not unnecessarily excluded from timber harvesting.  相似文献   

16.
Forested watersheds of the Mid-Atlantic Region are an important economic resource. They are also critical for maintaining water quality, sustaining important ecological services, and providing habitat to many animal and plant species of conservation concern. These forests are vulnerable to disturbance and fragmentation from changing patterns of land use in the Mid-Atlantic Region, and from harvests of commercially mature and relatively inexpensive timber. The U.S. Department of Agriculture Forest Service (USDA-FS) Forest Inventory and Analysis (FIA) compiles data on forest condition by state and county. We have transformed these FIA data to a U.S. Geological Survey (USGS) 6-digithdrologic unit code (HUC 6) watershed base, and projected trends in timber growth, inventory, and harvest to 2025 using a timber economics forecasting model (SRTS). We consider forest sustainability from the perspective of timber production, and from the perspective of landscape stability important to conservation values. Simulation data is combined with FIA planted pine acreage data to form a more complete picture of forest extent, composition, and silvicultural practice. Early recognition of prevailing economic trends which encourage the fragmentation of mature forests due to increasing timber harvests may provide managers and policy makers with a planning tool to mitigate undesirable impacts.  相似文献   

17.
Lantana camara, an aromatic shrub, native to tropical America, was introduced into India for ornamental hedging, but later escaped and became a serious invasive weed. This study assessed the quantitative and qualitative status of plant community richness and diversity in areas invaded by L. camara in the Siwalik Hills (Himachal Pradesh, India), and explored allelopathy as a possible mechanism of interference. We measured species diversity, richness and evenness of the vegetation in areas invaded and uninvaded by L. camara. Allelopathic effects of L. camara rhizosphere soil and litter were assessed against two native plants—Achyranthes aspera (a herb) and Albizia lebbeck (a tree). Density, biomass and indices of diversity, richness and evenness were reduced by L. camara, indicating a significant alteration in composition and structure of native communities. Seedling growth of the test species was reduced in L. camara rhizosphere- and litter-amended soil. The inhibitory effect was ameliorated by the addition of activated charcoal, indicating the presence of organic inhibitors (quantified as phenolics) in the soil. Lantana invasion greatly reduces the density and diversity of the vegetation in the invaded area, and chemical interference of its litter plays an important role in invasion.  相似文献   

18.
Within the European intensive forest monitoring programme, the native vegetation on permanent Level II plots has been monitored for visible ozone injuries. The main purpose of the programme is to assess the potential risks for the forest vegetation and the natural ecosystems at the intensive monitoring plots. During the first years of the programme the surveys were qualitative, reporting only the number and the name of the symptomatic species in selected Light Exposed Sampling Site. In 2003 a new plot design was tested, based on the distribution of a number of miniplots along the edge of the forest, so as to obtain quantitative findings about the occurrence and distribution of the symptoms. The problems that still persist are related to: (i) the forest edge assessed for ozone symptoms may have a different floristic composition from the Level II plot itself; (ii) the anthropic pressure and the disturbances affecting the forest edge alters the floristic composition; (iii) the variability of the plant composition in the forest edge, which makes comparability difficult between different sites; and (iv) the evaluation of symptoms in several species that have not yet been experimentally tested. Further difficulties are due to the fact that symptoms observed in the field are often aspecific and cannot, therefore, be attributed solely to the phytotoxic action of ozone. To improve the effectiveness of the European programme, it is necessary: (i) to individualise and select common sensitive plant species for homogeneous ecological regions; (ii) to enhance experimental activities to test the sensitivity of a large number of plant species.  相似文献   

19.
In natural boreal forests, disturbances such as fire and variation in surficial deposits create a mosaic of forest stands with different species composition and age. At the landscape level, this variety of stands can be considered as the natural mosaic diversity. In this paper, we describe a model that can be used to estimate the natural diversity level of landscapes. We sampled 624 stands for tree species composition and surficial deposits in eight stand-age classes corresponding to eight fire episodes in the region of Lake Duparquet, Abitibi, Québec at the southern fringe of the Boreal Forest. For six surficial deposit types, stand composition data were used to define equations for vegetation changes with time for a chronosequence of 230 years for four forest types. Using Van Wagner's (1978) model of age class distribution of stands, the proportion of each forest type for several lengths of fire cycle were defined. Finally, for real landscapes (ecological districts) of the ecological region of the Basses-Terres d'Amos, the proportion of forest types were weighted by the proportion of each surficial deposit type using ecological map information. Examples of the possible uses of the model for management purposes, such as biodiversity conservation and comparisons of different landscapes in terms of diversity and sensitivity to fire regime changes, are discussed.  相似文献   

20.
Mycorrhiza is the main spatial and temporal linkage between different constituents in a forest ecosystem. The functional compatibility and stress tolerance of ectomycorrhizal types is species specific, and therefore the information on the ectomycorrhizal community structure can add to the understanding of processes in forest ecosystems and can also be applied as tools for bioindication of pollution stress in forest soils. We have studied the effects of pollution (N and S) on trees and forest soils by: (1) quantification of ECM types diversity as in situ indicators in forest stands, (2) determination and quantification of pollution-sensitive or -insensitive ECM types as passive monitors, (3) root growth and development of ECM on nonmycorrhizal spruce seedlings, planted at the studied sites (active monitors), and (4) ECM infection (a bioassay based on mycorrhizal inoculum potential) of seedlings in an experimental set-up as ex situ testers. ECM species richness for Norway spruce trees (Picea abies) showed higher values in unpolluted sites than in polluted ones, while the differences were not significant for European beech trees (Fagus sylvatica). As pollution-sensitive or -insensitive ECM species in spruce forests, we suggest Hydnum rufescens (sensitive) and Paxillus involutus (unsensitive). Mycorrhizal potential in Norway spruce seedlings as a bioassay for soil N and S pollution was effective, and is suggested as an additional, standardized and widely comparable system in bioindication of soil pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号