首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper mainly aims to study the linear element influence on the estimation of vascular plant species diversity in five Mediterranean landscapes modeled as land cover patch mosaics. These landscapes have several core habitats and a different set of linear elements -habitat edges or ecotones, roads or railways, rivers, streams and hedgerows on farm land- whose plant composition were examined. Secondly, it aims to check plant diversity estimation in Mediterranean landscapes using parametric and non-parametric procedures, with two indices: Species richness and Shannon index.Land cover types and landscape linear elements were identified from aerial photographs. Their spatial information was processed using GIS techniques. Field plots were selected using a stratified sampling design according to relieve and tree density of each habitat type. A 50×20 m2 multi-scale sampling plot was designed for the core habitats and across the main landscape linear elements. Richness and diversity of plant species were estimated by comparing the observed field data to ICE (Incidence-based Coverage Estimator) and ACE (Abundance-based Coverage Estimator) non-parametric estimators.The species density, percentage of unique species, and alpha diversity per plot were significantly higher (p < 0.05) in linear elements than in core habitats. ICE estimate of number of species was 32% higher than of ACE estimate, which did not differ significantly from the observed values. Accumulated species richness in core habitats together with linear elements, were significantly higher than those recorded only in the core habitats in all the landscapes. Conversely, Shannon diversity index did not show significant differences.  相似文献   

2.
One of the fastest growing areas of natural gas production is coal bed methane (CBM) due to the large monetary returns and increased demand for energy from consumers. The Powder River Basin, Wyoming is one of the most rapidly expanding areas of CBM development with projections of the establishment of up to 50,000 wells. CBM disturbances may make the native ecosystem more susceptible to invasion by non-native species, but there are few studies that have been conducted on the environmental impacts of this type of resource extraction. To evaluate the potential effects of CBM development on native plant species distribution and patterns of non-native plant invasion, 36 modified Forest Inventory and Analysis plots (each comprised of four 168-m2 subplots) were established in the Powder River Basin, Wyoming. There were 73 168-m2 subplots on control sites; 42 subplots on secondary disturbances; 14 on major surface disturbances; eight on well pads; and seven on sites downslope of CBM wells water discharge points. Native plant species cover ranged from 39.5 ± 2.7% (mean ± 1 SE) in the secondary disturbance subplots to 17.7 ± 7.5% in the pad subplots. Non-native plant species cover ranged from 31.0 ± 8.4% in the discharge areas to 14.7 ± 8.9% in the pad subplots. The control subplots had significantly less non-native species richness than the combined disturbance types. The combined disturbance subplots had significantly greater soil salinity than the control sites. These results suggest that CBM development and associated disturbances may facilitate the establishment of non-native plants. Future research and management decisions should consider the accumulative landscape-scale effects of CBM development on preserving native plant diversity.  相似文献   

3.
Rapid Assessment of Plant Diversity Patterns: A Methodology for Landscapes   总被引:2,自引:0,他引:2  
We present a rapid, cost-efficient methodology to link plantdiversity surveys from plots to landscapes using: (1) unbiasedsite selection based on remotely sensed information; (2) multi-scale field techniques to assess plant diversity; (3)mathematical models (species-area curves) to estimate thenumber of species in larger areas corrected for within-typeheterogeneity; and (4) mathematical techniques to estimatetotal species richness and patterns of plant diversity in alandscape. We demonstrate the methodology in a 754 ha studyarea in Rocky Mountain National Park, Colorado, U.S.A.,using four 0.025 ha and twenty-one 0.1 ha multi-scalevegetation plots. We recorded 330 plant species (1/3 thenumber of plants recorded in the 1074 km2 Park) in the2.2 ha area within the plots: this represents a samplingintensity of 0.29% of the 754 ha study site. We estimated 552plant species, about half the plant species recorded in the Park,in just 0.7% of the Parks area. We show how this rapid,cost-efficient methodology: (1) produces a rich informationbase on the patterns of native plant diversity and thedistribution of non-native plant species and keystoneecosystems; and (2) can be easily adapted for other nationaland state parks, national forests, wildlife refuges, and nature reserves.  相似文献   

4.
The relative abundance of ant species was measured by pit-fall trapping at 44 sites in southern New Mexico and southeastern Arizona, U.S.A.. Sites were selected for study based on documentation of a history of disturbance or protection from disturbance, exposure to varying intensities of livestock grazing, dominance by an exotic species of plant and vegetation change resulting from disturbance or restoration efforts. Ant community composition, relative abundances of species, and species richness were the same on disturbed and undisturbed sites. None of the metrics based on hypothesized responses of ants to disturbance clearly distinguished between disturbed and undisturbed sites. Ant communities on sites where restoration efforts have resulted in distinct differences in vegetative cover and composition were similar to the ant communities on degraded unrehabilitated sites on the same soil type. Ant communities in riparian cottonwood gallery forests in Arizona and New Mexico were similar but differed from the assemblages in exotic salt cedar and native ash riparian woodlands. Ant species exhibited remarkable resistance to human-induced disturbances in these rangeland areas. In grasslands dominated by the South African grass, Eragrostis lehmanniana Nees, large seed harvesting ants, Pogonomyrmex spp., were greatly reduced in abundance compared to native grasslands. Other ant metrics were not different in E. lehmanniana grasslands and native grasslands. We conclude that ants cannot be used as indicators of exposure to stress, ecosystem health or of rehabilitation success on rangeland ecosystems. Ants are also not useful indicators of faunal biodiversity in rangeland ecosystems.  相似文献   

5.
Two boat-based and one in-water sampling method have been used to collect submerged aquatic vegetation (SAV) as part of a long-term monitoring program in Lake Okeechobee, Florida, USA. The boat-based methods consisted of collecting SAV with a ponar dredge, used only to collect Chara, and an oyster tongs-like rake apparatus, used to collect all SAV. The in-water method involved use of a 0.5 m2 PVC quadrat frame deployed by a diver. During summer 2002, SAV biomass samples were collected using all three methods at various sites in the lake to compare between-methods sampling precision. Sites used for these comparisons were selected based on plant type, plant density and sediment type. Statistical comparisons indicated that there were significant (p ≤ 0.05) biomass differences in 8 of 15 possible pairwise comparisons between sampling method biomass means. In four of the eight comparisons, significantly higher biomass mean values were obtained using the quadrat frame. In three of the remaining four comparisons, significantly higher biomass mean values were obtained with the rake apparatus. For the fourth comparison, a significantly higher biomass mean value was obtained with the ponar dredge. Three of the four relationships between SAV biomass collected by the rake and the quadrat and the rake and the quadrat/ponar dredge were statistically significant, linear and explained between 67 and 78% of the biomass variability. There were no significant differences between regression coefficients or elevations for these relationships, therefore these regressions estimated the same population regression. The population regression coefficient was 0.95, suggesting that the quadrat and ponar over-sampled relative to the rake, but the amount of this over-sampling was very small. Since there was no consistent pattern in the sampling method which yielded the significantly different biomass values and there were no significant differences in sampling precision across a range of plant species, plant densities and two sediment types, the boat-based rake method appears to be a suitable replacement for the previously used ponar dredge and quadrat methods, when in-lake measurements are not practical.  相似文献   

6.
Lantana camara, an aromatic shrub, native to tropical America, was introduced into India for ornamental hedging, but later escaped and became a serious invasive weed. This study assessed the quantitative and qualitative status of plant community richness and diversity in areas invaded by L. camara in the Siwalik Hills (Himachal Pradesh, India), and explored allelopathy as a possible mechanism of interference. We measured species diversity, richness and evenness of the vegetation in areas invaded and uninvaded by L. camara. Allelopathic effects of L. camara rhizosphere soil and litter were assessed against two native plants—Achyranthes aspera (a herb) and Albizia lebbeck (a tree). Density, biomass and indices of diversity, richness and evenness were reduced by L. camara, indicating a significant alteration in composition and structure of native communities. Seedling growth of the test species was reduced in L. camara rhizosphere- and litter-amended soil. The inhibitory effect was ameliorated by the addition of activated charcoal, indicating the presence of organic inhibitors (quantified as phenolics) in the soil. Lantana invasion greatly reduces the density and diversity of the vegetation in the invaded area, and chemical interference of its litter plays an important role in invasion.  相似文献   

7.
We evaluate a field method for determining species richness andcanopy cover of vascular plants for the Forest Health MonitoringProgram (FHM), an ecological survey of U.S. forests. Measurementsare taken within 12 1-m2 quadrats on 1/15 ha plots in FHM.Species richness and cover are determined for four height classes(strata) within each quadrat and aggregated by stratum over the entireplot. We estimated (1) the agreement between experienced trainers andinexperienced technicians who collected the data on this survey(accuracy) and (2) the agreement among the technicians (precision) forresults on species richness and cover from 3 test plots at 3 timeintervals. The methods appear to be highly precise, although somediscrepancies with the values obtained by the trainers were found.Trainers found significantly more species in the ground stratum (0–0.6 m) and measured significantly more cover in the uppermost stratum(>4.9 m). The proportion of variation due to measurement error andtemporal variability was less than 13% for species richness (all strata)and cover (all but one stratum). This indicates that the method issuitable for monitoring changes in species richness and canopy coverfor a large-scale synoptic monitoring project such as FHM.  相似文献   

8.
通过对上海市3家城镇污水处理厂主要污水处理工艺臭气收集处理装置进出口有组织排放和二沉池等敞开液面无组织排放氨采样,研究污水处理厂氨气排放特征,建立污水处理厂分季节本地化氨排放系数,并计算2019年上海市城镇污水厂氨排放量。结果表明:3家污水处理厂氨排放系数平均为4.8 mg/m3,其中污水处理环节氨排放系数为3.3 mg/m3,污泥处理环节氨排放系数为1.5 mg/m3。2019年上海市城镇污水处理厂氨排放量为10.3 t。  相似文献   

9.
Six treatments of eastern Kansas tallgrass prairie – native prairie, hayed, mowed, grazed, burned and untreated – were studied to examine the biophysical effects of land management practices on grasslands. On each treatment, measurements of plant biomass, leaf area index, plant cover, leaf moisture and soil moisture were collected. In addition, measurements were taken of the Normalized Difference VegetationIndex (NDVI), which is derived from spectral reflectance measurements. Measurements were taken in mid-June, mid-July and late summer of 1990 and 1991. Multivariate analysis of variance was used to determine whether there were differences in the set of variables among treatments and years. Follow-up tests included univariate t-tests to determine whichvariables were contributing to any significant difference. Results showed a significant difference (p < 0.0005) among treatments in the composite of parameters during each of the months sampled. In most treatment types, there was asignificant difference between years within each month. The univariate tests showed, however, that only some variables, primarily soil moisture, were contributing to this difference. We conclude that biomass and % plant cover show the best potential to serve as long-term indicators of grassland condition as they generally were sensitive to effects ofdifferent land management practices but not to yearlychange in weather conditions. NDVI was insensitive to precipitation differences between years in July for most treatments, but was not in the native prairie. Choice of sampling time is important for these parameters to serve effectively as indicators.  相似文献   

10.
The most important function of watersheds in the western U.S. is the capacity to retain soil and water, thereby providing stability in hydrologic head and minimizing stream sediment loads. Long-term soil and water retention varies directly with vegetation cover. Data on ground cover and plant species composition were collected from 129 sites in the Rio Grande drainage of south-central New Mexico. This area was previously assessed by classification of Advanced Very High Resolution Radiometry (AVHRR) imagery. The classification of irreversibly degraded sites failed to identify most of the severely degraded sites based on size of bare patches and 35% of the sites classified as degraded were healthy based on mean bare patch size and vegetation cover. Previous research showed that an index of unvegetated soil (bare patch size and percent of ground without vegetative cover) was the most robust indicator of the soil and water retention function. Although the regression of mean bare patch size on percent bare ground was significant (p < 0.001), percent bare ground accounted for only 11% of the variability in bare patch size. Therefore bare patch size cannot be estimated from data on percent bare ground derived from remote sensing. At sites with less than 25% grass cover, and on sites with more than 15% shrub cover, there were significant relationships between percent bare soil and mean bare patch size (p < 0.05). Several other indicators of ecosystem health were related to mean bare patch size: perennial plant species richness (r = 0.6, p < 0.0001), percent cover of increaser species (r = 0.5, p < 0.0001) and percent cover of forage useable by livestock (r = 0.62, p < 0.0001). There was no relationship between bare patch size and cover of species that are toxic to livestock. In order to assess the ability of western rangeland watersheds to retain soil and water using remote sensing, it will be necessary to detect and estimate sizes of bare patches ranging between at least 0.5 m in diameter to several meters in diameter.  相似文献   

11.
This work aims to assess the spatial distribution and concentration of sulfur in the topsoil layer and to determine the relationships between sulfur concentration, soil pH, soil electrical conductivity, and plant cover at the reforested site of the former sulfur mine (Southern Poland). Soil samples were collected from 0 to 20 cm (topsoil) from a total of 86 sampling points in a regular square grid with sides of 150 m. Plant cover was assayed in circular plots with an area of 100 m2, divided into a woody plant layer and herbaceous plant layer. Soil properties such as particle size distribution, pH in KCl and H2O, soil electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (NT), and total sulfur (ST) were determined. The degree of soil contamination with sulfur was assessed based on the guidelines of the Institute of Soil Science and Plant Cultivation (IUNG), Poland. The results indicate that remediation and application of lime were not fully effective in spatial variation, because 33 points with sulfur contamination above 500 mg kg?1 were observed. These spots occurred irregularly in the topsoil horizons. This high sulfur concentration in the soil did not result in severe acidification (below 4.5) in all cases, most likely due to neutralization from the application of high doses of flotation lime. High vegetative cover occurred at some points with high soil sulfur concentrations, with two points having S concentration above 40,000 mg kg?1 and tree cover about 60%. Numerous points with high soil EC above 1500 μS cm?1 as well as limited vegetation and high soil sulfur concentrations, however, indicate that the reclamation to forest is still not completely successful.  相似文献   

12.
Introduced plant species have significant negative impacts in many ecosystems and are found in many forests around the world. Some factors linked to the distribution of introduced species include fragmentation and disturbance, native species richness, and climatic and physical conditions of the landscape. However, there are few data sources that enable the assessment of introduced species occupancy in native plant communities over broad regions. Vegetation data from 1,302 forest inventory plots across 24 states in northeastern and mid-western USA were used to examine and compare the distribution of introduced species in relation to forest fragmentation across ecological provinces and forest types, and to examine correlations between native and introduced species richness. There were 305 introduced species recorded, and 66 % of all forested plots had at least one introduced species. Forest edge plots had higher constancy and occupancy of introduced species than intact forest plots, but the differences varied significantly among ecological provinces and, to a lesser degree, forest types. Weak but significant positive correlations between native and introduced species richness were observed most often in intact forests. Rosa multiflora was the most common introduced species recorded across the region, but Hieracium aurantiacum and Epipactus helleborine were dominant in some ecological provinces. Identifying regions and forest types with high and low constancies and occupation by introduced species can help target forest stands where management actions will be the most effective. Identifying seemingly benign introduced species that are more prevalent than realized will help focus attention on newly emerging invasives.  相似文献   

13.
This study examines the effects of recreational use on the soil and vegetation at a site of ecological importance (Nacimiento del Río Mundo, Albacete, Spain). The most visited sites showed increased soil compaction of approximately 50%, bare ground increase to 61 ± 10% and a decrease in richness (from 25 ± 2 to 15 ± 2 species), diversity (from 4.0 ± 0.1 to 2.7 ± 0.4) and stratification of plant species (from 80 ± 11 to 21 ± 4%). The most visited sites had 90% less plant species as compared to the least visited. Intense use was associated with the presence of nitrophilous plant and vegetal species with a morphology adapted to heavy trampling. The recreational areas showed a distribution pattern of impact radiating outwards from the most used and degraded point. At the most visited point, Los Chorros (the spring of the river), the impact radiated outwards for about 20 m. A pilot experiment examining the effects of one-year restriction to visitors for access to a formerly impacted area showed a plant cover increase by anthropic and not by native species of 57 percent units.  相似文献   

14.
Approaches linking biodiversity assessment with landscape structure are necessary in the framework of sustainable rural development. The present paper describes a methodology to estimate plant diversity involving landscape structure as a proportional weight associated with different plant communities found in the landscape mosaic. The area occupied by a plant community, its patch number or its spatial distribution of patches are variables that could be expressed in gamma plant diversity of a territory. The methodology applies (1) remote sensing information, to identify land cover and land use types; (2) aspect, to discriminate composition of plant communities in each land cover type; (3) multi-scale field techniques, to asses plant diversity; (4) affinity analysis of plant community composition, to validate the stratified random sampling design and (5) the additive model that partitions gamma diversity into its alpha and beta components. The method was applied to three Spanish rural areas and was able to record 150-260 species per ha. Species richness, Shannon information index and Simpson concentration index were used to measure diversity in each area. The estimation using Shannon diversity index and the product of patch number and patch interspersion as weighting of plant community diversity was found to be the most appropriate method of measuring plant diversity at the landscape level.  相似文献   

15.
The disturbance of highway construction upon surrounding vulnerable ecosystems is a common threat in the Longitudinal Range Gorge Region of southwestern China. We evaluated the disturbance of highway on plant species richness and diversity and soil nutrients from adjacent to the highway to 300 m upslope and 100 m downslope in forests and grasslands by setting 12 belt transects in forests and grasslands (six belt transects and six control belt transects, respectively). The results showed that there were some significant variances in belt transects with respective control belt transects for species richness and diversity in both forests and grasslands. Species richness and diversity of trees were lower within a 50-m distance from the highway and more noticeable on the downslope portion. Species richness and diversity of shrubs and herbs appeared higher near highway edge. Both species richness and diversity of herbs were similar in forests. In addition, exotic species, such as Eupatorium adenophorum, were further from the road and more widely dispersed in grasslands. Soil nutrients except total potassium (TK) were lower in the downslope area adjacent to highway edge and showed a significant increase with increasing distance from the highway in both forests and grasslands. This indicates that grasslands acted as microhabitats for exotic species and are more easily to be invaded than forests, especially if disturbed. Once destroyed, plant species and soil nutrients will require a significant amount of time to be restored to control levels. This work illustrates that the effects extend considerably to distances upslope and downslope from the construction site. Given that these changes occurred relatively quickly, the study suggests that the environmental "footprint" grows far beyond the road and adjacent zone of disruption.  相似文献   

16.
To assesses the effect of geomorphology, topography, and vegetation changes on spatial pattern of soil organic carbon (C) and total nitrogen (N) in sand dunes, we used the quantitative methods to examine the spatial heterogeneity of vegetation cover, soil organic C, and total N in an 11-year naturally restored mobile dune (RMD11) and a 20-year naturally restored mobile dune (RMD20) that had been fenced to exclude grazing in Horqin Sandy Land, northern China. Our results showed that the vegetation cover, plant density, species number and diversity, soil organic C, and total N increased from RMD11 to RMD20 and increased from the 50 × 50-m plot (crest) to the 100 × 100-m plot (slope) in each dune. Geostatistical analysis showed that the spatial structural variance accounted for the largest proportion of the total sample variance in vegetation cover, soil organic C, and total N in each dune plot. Calculated spatial autocorrelation ranges of vegetation cover, soil organic C, and total N increased from RMD11 to RMD20, indicating that longer time since vegetation restoration results in a more homogeneous distribution of vegetation cover, soil organic C, and total N in sand dunes. In addition, the spatial continuity of vegetation cover, soil organic C, and total N decreased from the 50 × 50-m plot (crest) to the 100 × 100-m plot (slope) in each dune. These results suggest that the spatial distribution of soil organic C and total N in sand dunes is associated closely with geomorphic position related to the dune crest and slope, relative elevation of sampling site, and vegetation cover. Understanding the principles of this relationship between them may guide strategies for the conservation and management of semiarid dune ecosystems.  相似文献   

17.
Contemporary coral reefs are forced to survive through and recover from disturbances at a variety of spatial and temporal scales. Understanding disturbances in the context of ecological processes may lead to accurate predictive models of population trajectories. Most coral-reef studies and monitoring programs examine state variables, which include the percentage coverage of major benthic organisms, but few studies examine the key ecological processes that drive the state variables. Here we outline a sampling strategy that captures both state and process variables, at a spatial scale of tens of kilometers. Specifically, we are interested in (1) examining spatial and temporal patterns in coral population size-frequency distributions, (2) determining major population processes, including rates of recruitment and mortality, and (3) examining relationships between processes and state variables. Our effective sampling units are randomly selected 75 × 25 m stations, spaced approximately 250?C500 m apart, representing a 103 m spatial scale. Stations are nested within sites, spaced approximately 2 km apart, representing a 104 m spatial scale. Three randomly selected 16 m2 quadrats placed in each station and marked for relocation are used to assess processes across time, while random belt-transects, re-randomized at each sampling event, are used to sample state variables. Both quadrats and belt-transects are effectively sub-samples from which we will derive estimates of means for each station at each sampling event. This nested sampling strategy allows us to determine critical stages in populations, examine population performance, and compare processes through disturbance events and across regions.  相似文献   

18.
Impact of thermal discharge from a coastal power station (Madras Atomic Power Station, southeast coast of India) on the spatial variability of Donax cuneatus abundance was assessed to determine the impact boundary. Totally, 20 sites were selected both on south and north side in increasing spatial scale from mixing zone, 12 locations were selected toward south side at a distance from 0 (near mixing point) to 2,000 m and eight location were selected toward north from the effluent mixing zone. Mean water temperature along the coast ranged from 29.1 ±0.15°C to 31.2 ± 0.15°C. Total organic carbon content in the sediment ranged from 0.27% to 0.70%. D. cuneatus population on the swash zone was ranged between 1.3 ± 1.5 and 88.3 ± 9.6 m???2. Meager population of wedge clam was observed up to 100 m (S100) south from mixing point and abundance gradually increased in different spatial scale. Comparatively high abundance was observed from S400 and reached maximum at S1000 (64.0 ± 3.6 m???2). Similar pattern was observed on north side too but less abundance was observed only up to 80 m (N80). Maximum abundance was observed at control location C3-N500 (88.3 ± 9.6 m???2). Forty meters on either side of discharge point was highly impacted, 80 to 100 m toward plume flow (south) was moderately impacted, and 80 m north of mixing point also witnessed moderate impact. After 100 m (N100), north was not affected by effluents, whereas between 100 and 400 m, south was influenced slightly. Multivariate clustering pattern on the environmental variables of all sampling locations and population trend of D. cuneatus at those stations showed similarity. Present investigation unambiguously showed that the abundance pattern of D. cuneatus on the sandy beach of east coast of Kalpakkam is not governed by single major factor but due to the result of multiple interacting factors. The population size of the wedge clam with reference to the effect of power plant effluents and other features of habitats of the beach ecosystem are also discussed.  相似文献   

19.
This study analyzes the results of the first 5 years of long-term environmental monitoring of the dynamics of coastal vegetation communities in southwestern Taiwan. Seven permanent plots were established in major vegetation communities, including grassland, windbreak forest, and secondary succession forest. Results showed that species richness decreased yearly in grasslands but fluctuated moderately in the forest plots. A Jaccard similarity coefficient was used to evaluate the similarities of species composition between different monitoring years. Species composition changed rapidly in grassland sites, with the similarity coefficient dropping from 82 to 29% in 5 years. The similarity coefficient of vegetation in the compositehardwood forest dropped from 80 to 50%, indicating that at least half the species were the same as those in the beginning and that the composition of forest communities was more stable than that of grassland communities. Dominant species in the forest community changed gradually during the monitoring period. The original planting of Casuarina equisetifolia in windbreak forests decreased year by year in most of the plots, while Cerbera manghas and Ficus microcarpa became the dominant species. The trend of replacement of dominant species indicates that most of the vegetation communities are still in successional stages.  相似文献   

20.
Wind erosion is a primary cause of desertification as well as being a serious ecological problem in arid and semi-arid areas across the world. To determine mechanisms for restoring desertified lands, an unrestored shifting sand dune and three formerly shifting sand dunes (desertified lands) that had been enclosed and afforested for 5, 15, and 25 years were selected for evaluation on the south edge of the Tengger Desert, China. Based on sampling heights between 0.2 and 3 m, the critical threshold average wind speed was 6.5 m s?1 at 2 m where the sand transport rate was reduced from 285.9 kg m?2 h?1 on the unrestored dunes to 9.1 and 1.8 kg m?2 h?1 on the sites afforested and enclosed for 5 and 15 years, respectively. The percentage of wind eroded area was reduced from 99.9% on the unrestored dune to 94.5, 9.0, and 0.5% on the sites afforested and enclosed for 5, 15, and 25 years, respectively. Wind erosion was effectively reduced after 15 years. Although there were different driving factors for wind erosion mitigation on the different restoration stages, an increase in the vegetation cover, surface roughness, soil shear strength, soil clay content, organic matter, and reduction in the near-surface wind speed were the primary variables associated with the restoration chronosequence. We conclude that reducing the wind speed and developing a biological crust through vegetation restoration were the critical components for restoration of desertified land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号