首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 140 毫秒

1.  杭州黑碳气溶胶污染特性及来源研究  被引次数:5
   徐昶  沈建东  叶辉  孙鸿良  张天  焦荔  洪盛茂  黄侃《中国环境科学》,2014年第12期
   2011年7月~2012年6月对黑碳气溶胶(BC)、PM2.5、污染气体及气象因子进行同步观测,以评估杭州市BC污染特征、来源分布及对大气能见度的影响.结果表明:杭州市大气BC日均浓度范围为1.3~16.5μg/m3,年均值达到(5.1±2.5)μg/m3.BC呈明显的季节变化趋势,秋冬季高,夏季低.BC也呈典型的日变化趋势,交通高峰期高,下午低,同时与NOx呈较好的相关性,表明城市中BC受到机动车尾气排放的重要影响;而BC/CO低于其他城市则表明生物质燃烧排放可能是杭州BC的另一大重要来源.BC随风速下降呈上升趋势,BC超过10μg/m3的高浓度事件中,风速基本低于2m/s,北-西北-西风对高浓度BC的输送作用明显.观测期间BC的吸收系数为(44.8±23.0)Mm-1,占到总消光比例的10.4%.灰霾和重度灰霾天气下,吸收系数分别为(66.2±30.1),(100.2±49.2)Mm-1,达到非霾天气的2.2和3.4倍,表明BC吸收消光作用是影响杭州市大气能见度下降和灰霾天气发生的重要因素之一.    

2.  重庆市黑碳气溶胶特征及影响因素初探  被引次数:4
   张灿  周志恩  翟崇治  陈刚才  张丹  余家燕  郑建军  吴莉萍《环境科学学报》,2014年第34卷第4期
   为了解影响重庆市黑碳气溶胶(Black Carbon,BC)污染的主要气象因素及BC的主要来源,对2012年重庆市BC与主要气象因素及燃煤、机动车产生的SO2、NO x进行了相关性分析,并分析了24 h内BC浓度变化与车流量的关系.结果显示,2012年,重庆市BC年日均浓度为(5.9±2.7)μg·m-3,占PM2.5年日均浓度的7.2%,BC小时浓度较大值出现在6:00—10:00及20:00—23:00.气温和相对湿度对BC浓度的影响不大.影响BC浓度的主要气象因素为风速,风速为0.5~1.5 m·s-1时,BC浓度随着风速增大而减小;当风速超过2 m·s-1时,BC浓度随风速增大而增加.BC与SO2、NO x的相关系数分别为0.374和0.542(p0.01),表明重庆市BC与SO2、NO x来源相同,即燃煤和机动车尾气排放,且受机动车排放的影响更大.BC浓度24 h变化与车流量的关系表明,BC浓度日变化除了受到气象条件的影响外,还受机动车尤其是柴油重型车的影响,因此,需重点控制柴油机动车以控制重庆市区BC污染.    

3.  广州市城区干湿季黑碳气溶胶污染特征及来源分析  
   程丁  吴晟  吴兑  刘建  田智林《环境科学学报》,2018年第38卷第6期
   为了解广州市城区不同季节黑碳气溶胶(BC)的时间变化规律及污染特征,利用广州市天河区暨南大学大气超级监测站AE-33黑碳仪在2015年干季(10、11月)和2016年湿季(4、5月)观测得到的BC数据及常规气象资料,针对BC在不同时间段的污染特征及来源进行了分析.结果表明:广州城区干季和湿季的BC平均浓度分别为(3.75±2.55)、(2.62±1.39)μg·m~(-3),本底浓度分别为(2.09±0.61)、(1.85±0.49)μg·m~(-3),干季BC污染较湿季严重,干季BC变化范围大于湿季;广州城区BC浓度呈白天低,夜间高的特点,BC波动在夜间更加剧烈;干湿两季的BC日变化特征有明显差异,干季呈现"双峰形",湿季呈现"单峰形";基于AAE的分析得出广州城区BC主要来源于化石燃料燃烧,干季AAE值大于湿季,是由于干季广州周边地区生物质燃烧事件增多,导致干季生物质燃烧对广州城区BC的贡献大于湿季.    

4.  半干旱地区黑碳气溶胶和含碳气体特征及来源  被引次数:2
   陈霖  张镭  张磊  曹贤洁  黄建平  张武  张北斗《中国环境科学》,2012年第32卷第8期
    利用2009年9月~2010年6月兰州大学半干旱气候与环境观测站(SACOL)多角度吸收分光光度计(MAAP-5012)观测数据、CO和CO2气体成分混合比数据,分析了西北半干旱地区黑碳气溶胶和含碳气体特征、影响源地,以及影响黑碳浓度的排放物类型.结果表明BC、CO、CO2平均浓度分别为1.75μg/m3、601.71×10-9、387.78×10-6.利用后向轨迹模式将从观测站西部和东部输送过来的气流区分开,气流从东部来时,BC、CO、CO2浓度分别为1.38μg/m3、462.79×10-9、383.03×10-6;气流从西部来时,BC、CO、CO2浓度分别为2.2μg/m3、768.38×10-9、393.47×10-6.对500m、1500m、3000m高度气流来向的发源地进行聚类分析,发现3个高度上气流从中东、中亚及欧洲区域传输过来时,BC、CO、CO2浓度较高,△BC/△CO、△CO/△CO2值较大,说明燃料燃烧效率较低;气流从我国华北华中地区传输过来时,BC、CO、CO2浓度较低,△BC/△CO、△CO/△CO2值较小,表明燃料燃烧效率较高.    

5.  成都市黑碳气溶胶污染特征及与气象因子的关系  
   孙欢欢  倪长健  崔蕾《环境工程》,2016年第6期
   为系统了解成都市黑碳气溶胶(BC)的污染特征,利用四川省环境监测站提供的成都市人民南路四段2013年9月至2014年7月逐时BC监测数据,对其浓度进行了统计分析.结果表明:1)BC小时平均浓度变化范围较大,介于0.01 ~ 57.83 μg/m3,浓度中值(5.17 μg/m3)小于平均值(7.32 μg/m3),即BC小时浓度具有偏态分布特征.2)BC日均浓度变化范围为2 ~ 28.2μg/m3,其浓度日变化在四季均呈明显的单谷型,谷值出现在16:00时附近,表现为从凌晨到10:00时变化较平稳,10:00-16:00时浓度急剧下降,16:00到夜间浓度急剧上升;浓度季变化呈现出冬高夏低,春秋平稳的基本特征.3)秋、冬、春、夏四季BC本底浓度值分别为2.49,5.05,2.89,2.43 μg/m3.4)BC质量浓度与PM2.5和PM10变化趋势一致,BC浓度相对颗粒物浓度变化较快,在0.01水平上与PM2.5和PM10均呈显著正相关,相关系数分别为0.657、0.638,与温度、降水和风速均呈负相关,相关系数分别为-0.334,-0.338,-0.202.    

6.  不同季节气象条件对北京城区高黑碳浓度变化的影响  
   张宸赫  程兴宏  赵天良  徐祥德  武云飞  张仁健  蔡雯悦  苏航  王寅钧《环境科学学报》,2017年第37卷第6期
   利用2013年至2015年北京城区黑碳气溶胶(下文统称为"BC")和PM2.5观测资料,结合地面气象观测资料、ECMWF边界层高度再分析资料和FNL/NCEP不同高度风速再分析资料,讨论了BC质量浓度及其在PM2.5质量浓度中所占比例(下文统称"黑碳占比")的季节、月、日变化特征,并通过计算北京城区BC浓度与不同高度风速的相关矢量,分析了气象条件和外来输送对北京城区BC浓度变化的影响.结果发现:研究时段内北京城区BC浓度平均值为(4.77±4.49)μg·m-3;黑碳占比为8.23%±5.47%.BC浓度和黑碳占比在春、夏季低,秋、冬季高,其日变化特征在4个季节均为"白天低夜间高"的单峰型特征.随着PM2.5浓度的升高,BC浓度增大,黑碳占比减小.当北京地区风向为东北、东北偏东、东南和西南偏西(主风向)时,BC浓度与风速和边界层高度均呈反向变化,即随风速和边界层高度的增大而减小.另外不同季节BC浓度随风速变化的临界值及其变化速率不同.冬季高BC浓度时段,北京城区BC浓度在低层大气的关键影响区分别位于河北南部与山东交界地区以及河北西北部与山西内蒙交界地区;高空关键影响区主要位于北京以西的河北西部、山西北部和内蒙古地区.    

7.  东莞与帽峰山黑碳气溶胶浓度变化特征的对比  被引次数:4
   陈慧忠  吴兑  廖碧婷  李海燕  李菲《中国环境科学》,2013年第33卷第4期
    将东莞(海拔30m,位于平原地区)与帽峰山(海拔550m,位于山地地区)的黑碳气溶胶(BC)浓度进行对比,结果表明,东莞地区BC浓度年均值为5.27mg/m3,帽峰山BC浓度值为2.43mg/m3,两个站点的浓度都比位于珠三角核心区的南村站浓度(8.42μg/m3)低.雨季,东莞与帽峰山BC浓度的日变化特征在中午呈现反位相,这是因为两站近地层受上升气流控制,热对流把地面的BC气溶胶带至高空,地面浓度下降,东莞出现谷值,而高空有了地面的垂直输送补充,帽峰山出现峰值.旱季,华南地区受高压控制,微弱下沉气流对于BC的垂直输送不利,BC的扩散以平流扩散为主,两地日变化情况相近.此外,受BC源远近的影响,东莞的逐月变化(标准差为0.60μg/m3)大于帽峰山(标准差为0.14 μg/m3).通过分析BC吸收系数的波长幂指数α探讨可能的污染来源,发现两地的α值均接近于1,说明两地BC的污染来源相同,均来自于化石燃料的燃烧.    

8.  南京北郊黑碳气溶胶污染特征及影响因素分析  被引次数:2
   肖思晗  于兴娜  朱彬  何镓祺《环境科学》,2016年第37卷第9期
   利用2015年1~10月黑碳小时平均质量浓度、PM2.5浓度、污染气体及常规气象观测资料,对南京北郊黑碳气溶胶的时间序列演变特征、污染特征及其影响因子进行了分析.结果表明,观测期间南京北郊黑碳浓度均值为(2524±1754)ng·m-3.黑碳浓度具有明显的季节变化,冬季最高,平均值达到(3468±2455)ng·m-3,春季平均值最低,为(2142±1240)ng·m-3;其日变化也具有明显的双峰结构,峰值出现在上午07:00~08:00和夜间21:00~22:00.黑碳气溶胶与NOx的相关性较好,说明黑碳浓度受机动车尾气排放的影响较大;但观测期间ΔBC/ΔCO比值较低,表明生物质燃烧可能是黑碳气溶胶的又一个重要来源.黑碳浓度随风速增加呈下降趋势,所有季节中小于2000 ng·m-3的低黑碳浓度主要集中在正西风及相邻风向上,秋冬季大于6000 ng·m-3的高黑碳浓度则多出现在偏东风下.灰霾和重度霾天气下的黑碳浓度平均值呈较高水平,是非霾天气下的2~2.3倍.    

9.  华南沿海某大气背景点黑碳气溶胶污染特征  
   邓彦阁  孙天乐  曾立武  何凌燕  黄晓锋《环境科学与技术》,2012年第11期
   黑碳气溶胶(BC)因其显著的气候效应和对人类健康的危害而成为研究的热点。研究背景点位BC的浓度水平和来源特征有助于掌握BC在区域尺度上的辐射强迫特性和环境影响。2009年秋季在华南沿海某区域大气背景点进行了为期约40 d的BC在线观测。观测期间BC的平均浓度为(2.34±1.33)μg/m3,与其它区域背景点相比处于较高水平。利用中尺度天气研究和预报系统WRF模拟的高分辨率三维气象场数据驱动HYSPLIT-4反向轨迹模式,模拟观测期间每小时的气团轨迹,将所有轨迹分为来源特征明显的东北沿海、北方内陆、香港方向和东南海面方向四类。当受到东北沿海来源气团影响时,BC的浓度为平均水平的1.4倍,BC和CO有较好的线性相关关系,而其它三类气团影响时的BC浓度都低于平均浓度,且BC和CO的相关关系很差,说明来自东北沿海地区的较近距离区域传输是影响该背景点大气BC的主要源区。    

10.  连云港黑碳气溶胶污染特征研究  
   陈程  花艳  王瑜  杨伟波《环境监控与预警》,2018年第10卷第2期
   采用2016年大气多参数站监测数据,分析连云港市大气中ρ(黑碳气溶胶)的小时及月度变化规律,结果表明,观测期间,黑碳气溶胶与NO_2、CO、PM_(10)、PM_(2.5)显著相关,与风速、能见度等呈负相关;黑碳气溶胶年均值为2.10μg/m~3,日变化呈明显双峰型,峰值出现在08:00和21:00左右;从季节看,ρ(黑碳气溶胶)冬春季高、夏秋季低;在不利气象条件时,ρ(黑碳气溶胶)有所增高,通过模型分析化石燃料燃烧产生的黑碳占比增大,说明在不利气象条件时,化石燃料燃烧产生的黑碳是影响ρ(黑碳气溶胶)及ρ(颗粒物)上升的主要因素。    

11.  深圳市城区和郊区黑碳气溶胶对比研究  
   程丁  吴晟  吴兑  刘建  宋烺  孙天林  毛夏  江崟  刘爱明《中国环境科学》,2018年第5期
   为了解深圳地区黑碳气溶胶(BC)的污染特征,使用深圳市西涌(XC)站点(郊区)和竹子林(ZZL)站点(城区)2014年1月1日~2015年6月30日测得的BC浓度及常规气象资料,对比研究了深圳地区两个不同代表性站点的BC变化特征.结果表明:在观测期间,郊区XC和城区ZZL站点BC小时平均浓度分别为(1.12±0.90),(2.58±2.00)μg/m~3,本底浓度分别为(0.27±1.31),(1.07±0.85)μg/m~3,气溶胶吸收系数σ_(abs)分别为(5.87±4.81),(13.47±10.50)Mm~(-1),城区站点值均高于郊区站点.两站点BC浓度分布均为对数正态分布,且都呈现干季高、湿季低的季节变化特点.日变化分析表明ZZL站点BC浓度呈现明显的双峰结构,XC站点日变化不明显.通过计算两地的气溶胶波长吸收指数AAE值,发现两地AAE值均接近1,说明两地BC污染主要来源于化石燃料的燃烧.进一步分析可知XC站点西北方向32km处是世界第三大集装箱码头,当西北风达到一定程度时(10~20m/s),码头排放的污染物将严重影响XC站点的BC浓度.后向轨迹聚类分析结果表明,XC站点主要受中远距离输送影响,ZZL站点主要受周边及本地污染源排放影响.    

12.  鞍山黑碳气溶胶观测  被引次数:3
   王绪鑫  马雁军  向旬  董秀辉  安俊琳《环境化学》,2010年第29卷第6期
   以2009年5月鞍山大气成分站AE-31黑碳仪器观测数据,并结合GRIMM180观测数据,分析了该地区ρ(BC)变化特征,结果表明,以紫外光为检测光源测量的黑碳日平均浓度为4.015μg·m-3,以可见光为检测光源测量的黑碳日平均浓度为3.965μg·m-3,以红外光为检测光源测量的黑碳日平均浓度为4.051 μg·m-3,PM1.0日平均浓度为30.4μg·m-3.黑碳气溶胶的各波段μ(BC)变化趋势相同,紫外光和红外光为检测光测量的黑碳浓度较可见光的测量值高.ρ(BC)与ρ(PM1.0)有很好地相关性,ρ(BC)占ρ(PM1.0)的比例为22.6%.ρ(BC)与能见度大小呈反比,其对光的吸收是影响能见度的重要因素之一.    

13.  天津城区秋冬季黑碳气溶胶观测与分析  被引次数:2
   姚青  蔡子颖  韩素芹  黄鹤《环境化学》,2012年第31卷第3期
   利用天津大气边界层观测站2010年9月—2011年1月黑碳气溶胶、PM2.5质量浓度、大气能见度及常规气象观测数据,研究天津城区秋冬季黑碳气溶胶污染特征.结果表明,天津秋冬季黑碳气溶胶质量浓度均值7.24μg.m-3和6.46μg.m-3,分别占PM2.5质量的9.42%和7.98%,其吸收作用分别贡献大气消光的17.2%和17.6%;采用最大频数浓度法计算黑碳浓度本底值为2.50μg.m-3;黑碳浓度的日变化特征与天气过程有关,雾和霾天气下黑碳浓度较高,降水利于清除黑碳污染,秋季高浓度黑碳除局地源污染外,可能还与河北、山西、天津等地燃烧秸秆有关.    

14.  济南市春季大气颗粒物污染研究  被引次数:5
   周学华  王哲  郝明途  杨凌霄  王文兴《环境科学学报》,2008年第28卷第4期
   对济南市2005年春季大气颗粒物中PM10、PM2.5和细颗粒物中的黑碳气溶胶的浓度水平、时间分布和日变化进行了观测,并结合气象资料对变化特征进行综合分析,探讨了PM10,PM2.5和黑碳的相对含量以及对能见度的影响等.研究结果表明,PM10和PM2.5平均浓度分别为242.5μg·m-3和109.4μg·m-3.与我国空气质量二级标准PM10日均值150μg·m-3和美国国家空气质量PM2.5日均标准65μg·m-3相比,超标率分别达到80.77%和84.61%,污染较严重;监测期间PM2.5/PM10的平均值为0.456.在PM2.5中,黑碳气溶胶平均质量浓度为5.39μg·m-3,占PM2.5的5.06%,日浓度变化呈双峰型.在监测时间内,污染物浓度与温度无明显的相关性;与相对湿度呈弱正相关;与风速呈明显的负相关关系.降水对PM10、PM2.5和黑碳的清除作用较为显著.PM10、PM2.5和黑碳浓度与能见度均呈负相关,相关系数(r)分别为-0.633、-0.695和-0.704,细颗粒物是影响能见度的主要因素.    

15.  2008北京残奥会期间大气黑碳气溶胶污染特征  被引次数:1
   孙天乐  何凌燕  曾立武  黄晓锋《中国环境科学》,2012年第32卷第12期
    利用单颗粒黑碳光度计(SP2)对2008年残奥会期间北京市黑碳(BC)气溶胶的质量浓度、粒径分布及单颗粒混合态进行连续在线观测.结果表明:观测期间BC浓度均值为1.65μg/m3,低于往年同期水平;质量粒径分布呈单峰型,峰值位于207nm;内混态BC比例平均为56.1%,高于其他国内外城市,说明本地源排放贡献相对较小.随大气边界层高度及本地源排放变化,BC浓度在上午8:00和午夜0:00出现2个峰值,内混态BC比例日变化趋势与之相反.风向风速分析表明,残奥会期间来自五环外未限行区域的机动车排放对市区BC浓度有明显影响.    

16.  乌鲁木齐河源区黑碳气溶胶浓度特征及其来源分析  
   张昕  李忠勤  明镜  王飞腾《环境科学学报》,2019年第39卷第1期
   利用七波段黑碳仪对2016年8月—2017年7月乌鲁木齐河源区大气中黑碳气溶胶进行了实时监测,并结合同时期气象资料对该区域黑碳气溶胶浓度变化特征、影响因子和可能来源进行了分析.结果表明,观测期间乌鲁木齐河源区黑碳浓度在102~1525 ng·m~(-3)之间变化,均值为520 ng·m~(-3).春季、夏季、秋季和冬季的浓度分别为425、536、686和427 ng·m~(-3),呈秋季最高,夏季次之,冬、春季低的季节变化特点.日内变化具有明显的双峰双谷特征,在当地时间8:00—9:00(与北京时间的时差为2小时,即为北京时间10:00—11:00,下同)和16:00—19:00有两个明显的峰值,可能与当地的排放和气象因素有关.乌鲁木齐河源区黑碳的本底浓度在春季、夏季和秋季分别为253、271和290 ng·m~(-3),而冬季黑碳的本底浓度仅为162 ng·m~(-3).与其他偏远地区相比,乌鲁木齐河源区因受较多排放源影响,黑碳浓度本底值较高.黑碳气溶胶浓度与气象因素相关性显著,当风速小于2 m·s~(-1)时,黑碳的平均浓度明显偏高,当相对湿度大于55%时,黑碳浓度明显偏低.由浓度权重轨迹分析和波长吸收指数(AAE)可知,乌鲁木齐河源区的黑碳浓度,除了受本地化石燃料燃烧和生物质燃烧排放的影响以外,还可能受到中亚地区远距离传输的影响.    

17.  邯郸市黑碳气溶胶浓度变化及影响因素分析  
   齐孟姚  王丽涛  张城瑜  马笑  赵乐  纪尚平  鲁晓晗  王雨《环境科学学报》,2018年第38卷第5期
   根据2013年3月—2017年2月邯郸市河北工程大学站点的黑碳气溶胶、PM2.5、大气污染物的小时浓度数据及常规气象数据,对邯郸市黑碳浓度的时间变化特征及影响因素进行分析.结果表明,4年来邯郸市黑碳浓度呈逐年下降的趋势:与2013年相比,2014—2016年黑碳气溶胶浓度分别下降了5%、16%、24%;邯郸市黑碳气溶胶浓度的季节变化趋势基本一致且季节变化特征明显,冬季黑碳气溶胶浓度最高,秋季次之,春夏两季最低,其中,冬季平均浓度分别是春、夏、秋季的2.07、2.77、1.49倍;其日变化呈单峰单谷状,且4个季节的日变化趋势相同,峰值均出现在6:00—8:00,谷值均出现在14:00—15:00.黑碳与PM2.5的相关系数r为0.860,相关性显著,说明黑碳气溶胶和PM2.5的来源大部分是一致的;风速和风向对黑碳气溶胶浓度也有影响,黑碳气溶胶浓度随风速增加而降低;4个季节高频风向为南-西南方向,且该风向下黑碳气溶胶浓度均较高,冬季南-西南风向下的黑碳浓度最高;应用后向轨迹对研究时段内4段重污染期间的气流轨迹进行模拟发现,邯郸市黑碳气溶胶浓度较高的主要原因是本地源排放和近距离传输,远距离传输贡献较小.    

18.  西安市黑碳气溶胶浓度特征及与气象因素和常规污染物相关性  被引次数:1
   刘立忠  王宇翔  么远  韩婧  李文韬  韩泽龙《中国环境监测》,2016年第32卷第5期
   利用西安市环境监测站超级站2013年9月1日-2015年5月31日黑碳气溶胶(BC)的监测数据,研究空气中BC浓度特征及其与气象因素和常规污染物相关性。结果表明:BC小时平均浓度均值在春季、夏季和冬季的变化趋势呈“W”型,秋季呈“V”型,且冬季的第一个最低值和峰值比春季和夏季的分别延迟1 h和2~3 h,且20:00~次日6:00秋季BC小时平均浓度均值高于当年冬季。BC浓度在秋季和冬季较高,夏季较低。冬季BC/PM2.5基本最低,秋季BC/PM2.5相对最高。BC日平均浓度与气温、降水和风速的日平均值为极负显著相关,且风速小于1.0 m/s时,其与风速呈最显著的负相关。除O3外,BC日平均浓度与其他常规空气污染物浓度呈显著相关,表明其同源性很强,且受机动车尾气排放的影响更大。    

19.  西安泾河夏季黑碳气溶胶及其吸收特性的观测研究  被引次数:3
   杜川利  余兴  李星敏  陈闯  王繁强  彭艳  董妍  董自鹏《中国环境科学》,2013年第33卷第4期
    为研究西安泾河夏季黑碳气溶胶及其吸收特性,利用2011年夏季西安远郊泾河大气成分站观测的黑碳气溶胶浓度、颗粒物质量浓度、探空资料、地面气象资料,计算边界层顶高度、气溶胶吸收系数、大气消光系数,导出单次散射反照率,并对其进行分析讨论.结果表明:西安夏季黑碳气溶胶浓度为6.07μg/m3;黑碳气溶胶占颗粒物质量浓度PM1.0比值为21.9%,黑碳气溶胶与颗粒物质量浓度PM1.0、PM2.5、PM10相关系数分别为0.69、0.85、0.91;黑碳气溶胶浓度受城市边界层顶高度影响,风向、风速对泾河黑碳气溶胶的堆积输送有不同作用;气溶胶吸收系数和大气消光系数日变化显著,气溶胶吸收系数占大气消光系数比值范围在12%~30%;季单次散射反照率平均值为0.76,变化范围在0.70~0.84.    

20.  南京北郊黑碳气溶胶的来源解析  
   肖思晗  于兴娜  朱彬  何镓祺  吕睿  沙丹丹《环境科学》,2018年第39卷第1期
   利用七波段黑碳仪对2015年1~12月南京北郊地区黑碳(black carbon,BC)气溶胶实时监测,并结合黑碳仪模型对该期间内BC进行来源解析,探讨化石燃料排放产生BC(BCff)与生物质燃烧产生BC(BCbb)各自的贡献大小.结果表明,观测期间BC的吸收波长指数(α)和生物质燃烧对BC的贡献百分比(BB)的变化范围都较大但趋势较为一致;冬季α值偏高而夏季α值较低,表明不同季节时间BC来源和强度的差异性.BCff在各季节BC总浓度中占比略有不同但均高于75%;BC、BCff和BCbb的日变化趋势均呈双峰特征,在07:00~09:00和18:00~21:00左右浓度有最大值;全天中,BCff对BC贡献最大,浓度值约为BCbb的3~5倍;夜晚BC浓度普遍高于白天,其平均浓度值是白天的1.2倍.由浓度权重轨迹分析的结果可知,影响南京北郊地区高浓度BC的源区主要集中在浙江、安徽以及江西和福建等地区.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号