首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gaseous ammonia (NH3) is an important form of N deposition to ecosystems, but it is not being routinely monitored in Switzerland. Therefore, a study was conducted to estimate annual means and seasonal patterns of NH3 concentrations for different site types in Switzerland, and to compare annual measured and modelled NH3 concentrations. NH3 concentrations were measured using the 'Zürcher' passive sampler, a Palmes type sampler with an acidic solution as absorbent. Twenty-four sampling sites were run for one year, and 17 for two years. The samplers were changed fortnightly or monthly. Spatial emission patterns were mapped by combining information on (1) the location of emission sources, (2) national statistics on NH3-emitting activities and (3) activity-specific emission factors. The spatial resolution was one hectare. The mean annual NH3 concentration in the ambient air of the 41 sites was 2.5+/-0.3 microg m(-3) (mean+/-standard error). It ranged from 0.4 to 7.5 microg m(-3). The site type and the season were the most important factors explaining the variation in the seasonal mean concentration. NH3 concentrations were highest in intensively used agricultural areas and in cities, and lowest in Alpine sites remote from emission sources. At 39 out of 41 sites, the NH3 concentrations were higher in summer (3.1+/-0.3 microg m(-3)) than in winter (2.0+/-0.3 microg m(-3)). Modelled NH3 concentrations did not systematically deviate from measured concentrations (r2 = 0.69). With the combined monitoring and modelling approach, it is now possible to obtain a reasonable and consolidated picture of the overall NH3 situation in Switzerland.  相似文献   

2.
Samples of river water and treated drinking water were obtained from eight sites along the Potomac River between western Maryland and Washington DC. Samples were collected each month from October 2007 to September 2008 and analyzed for perchlorate by ion chromatography/mass spectrometry. Data on anions were also collected for seven of the twelve months. Data were analyzed to identify spatial and temporal patterns for the occurrence of perchlorate in the Potomac. Over the year of sampling, the largest monthly increase occurred from June to July, with levels then decreasing from July to September. Samples from the period between December and May had lower perchlorate concentrations, relative to the remainder of the study year. Spatially, higher levels of perchlorate were found at sites located in west-central Maryland, the eastern panhandle of West Virginia, and central northern Virginia, with levels decreasing slightly as the Potomac approaches Washington DC. Within the sampling boundaries, river (untreated) water perchlorate concentrations ranged from 0.03 μg L(-1) to 7.63 μg L(-1), averaged 0.67 ± 0.97 μg L(-1) over the year-long period and had a median value of 0.37 μg L(-1). There was no evidence that any of the existing drinking water treatment technologies at the sampling sites were effective in removing perchlorate. There were no correlations found between the presence of perchlorate and any of the anions or water quality parameters examined in the source water with the exception of a weak positive correlation with water temperature. Results from the summer (June-August) and fall (September-November) months sampled in this study were generally higher than from the winter and spring months (December-May). All but one of the locations had annual average perchlorate levels below 1 μg L(-1); however, 7 of the 8 sites sampled had river water perchlorate detections over 1 μg L(-1) and 5 of the 8 sites had treated water detections over this level.  相似文献   

3.
Hourly concentrations of ozone (O(3)), 55 volatile organic compounds (VOCs, ozone precursors) and nitrogen oxides (NOx) were measured at an upwind urban site, a downwind suburban site, and a rural site in central Taiwan, from January 2003 to December 2006. VOC and NOx mean concentrations showed a gradient from high to low across the urban (56 ppb and 34 ppb), suburban (38 ppb and 27 ppb) and rural sites (25 ppb and 21 ppb) but a reverse gradient in ozone across these sites (24, 27, and 29 ppb, respectively). Although there was about twice the difference in VOC concentrations between the urban and rural sites, nearly 65% ozone formation potential was contributed to by the same 9 VOCs. Seasonal patterns showed peak ozone levels in autumn and minima in summer at the urban site, but minima in winter at the downwind suburban and rural sites. Ozone precursor levels, on the other hand, were lowest in summer and highest in winter. The diurnal pattern showed that ozone levels peaked one hour later at the rural site than at the urban site. The ethylbenzene to m,p-xylene ratio, an indicator of the age of the air mass, increased from 0.4 at the urban site to 0.6 at the suburban site and 0.8 at the rural site during daily peak ozone times. This finding suggests the transport of ozone and precursors from upwind to downwind producing elevated ozone levels in the suburban and rural areas. Ozone episodes occurred mostly in days with a mean midday UV index of 6.5 (1 UV index=100 J m(-2)) and wind speed at 1.3 m s(-1) at all three sites.  相似文献   

4.
The objectives of this study were to use both parametric and probabilistic approaches to analyze water column concentrations of both salinity (24,845 measurements) and boron (13,028 measurements) from numerous investigations conducted in the San Joaquin River watershed from 1985 to 2002 to assess spatial and temporal trends and determine the probability of exceeding regulatory targets during both the irrigation and non-irrigation season. Salinity and boron concentrations from 26 mainstem and tributary sites were highly correlated based on this 17 yr data set. Generally, salinity and boron concentrations were higher in winter/spring and lower in summer/fall; higher concentrations of both constituents were reported in tributary sites when compared with the mainstem San Joaquin River. Approximately half the sites showed showed a negative correlation between flow and both constituents. Concentrations of both salinity and boron were somewhat variable with flow conditions for the other sites. Both linear and curvilinear trends were inconsistent over time. The salinity 90th centiles for the 26 sites ranged from 143 to 7,559 micros cm(-1) with the highest 90th centiles in tributary sites. Probabilistic analysis of salinity 90th centiles by year for five sites with extensive data showed a significant decrease over time at two sites and no significant trend for the other three sites. The probability of exceeding the salinity targets during either the irrigation (700 microm cm(-1)) or non-irrigation (1,000 micros cm(-1)) season was greater than 19% for all but three sites. The boron 90th centiles for the 26 sites ranged from 0.41 to 13.6 mg L(-1) with the highest 90th centiles from tributary sites. Probabilistic analysis of the boron 90th centile values by year for the five sites with the most extensive data showed a significant decrease over time at two sites and no significant trend for the other three sites. The probability of exceeding the boron target during the irrigation season (0.80 mg L(-1)) and non-irrigation (1.0 mg L(-1)) season was greater that 18% for all but three sites. Results from this analysis have important regulatory implications as targets for both salinity and boron are frequently exceeded at various sites in the San Joaquin River watershed.  相似文献   

5.
The concept of basin-wide Joint Danube Survey (JDS) was launched by the International Commission for the Protection of the Danube River (ICPDR) as a tool for investigative monitoring under the Water Framework Directive (WFD), with a frequency of 6 years. The first JDS was carried out in 2001 and its success in providing key information for characterisation of the Danube River Basin District as required by WFD lead to the organisation of the second JDS in 2007, which was the world’s biggest river research expedition in that year. The present paper presents an approach for improving the survey strategy for the next planned survey JDS3 (2013) by means of several multivariate statistical techniques. In order to design the optimum structure in terms of parameters and sampling sites, principal component analysis (PCA), factor analysis (FA) and cluster analysis were applied on JDS2 data for 13 selected physico-chemical and one biological element measured in 78 sampling sites located on the main course of the Danube. Results from PCA/FA showed that most of the dataset variance (above 75 %) was explained by five varifactors loaded with 8 out of 14 variables: physical (transparency and total suspended solids), relevant nutrients (N–nitrates and P–orthophosphates), feedback effects of primary production (pH, alkalinity and dissolved oxygen) and algal biomass. Taking into account the representation of the factor scores given by FA versus sampling sites and the major groups generated by the clustering procedure, the spatial network of the next survey could be carefully tailored, leading to a decreasing of sampling sites by more than 30 %. The approach of target oriented sampling strategy based on the selected multivariate statistics can provide a strong reduction in dimensionality of the original data and corresponding costs as well, without any loss of information.  相似文献   

6.
Eighteen sites impacted by abandoned mine drainage (AMD) in Pennsylvania were sampled and measured for pH, acidity, alkalinity, metal ions, and sulfate. This study compared the accuracy of four acidity calculation methods with measured hot peroxide acidity and identified the most accurate calculation method for each site as a function of pH and sulfate concentration. Method E1 was the sum of proton and acidity based on total metal concentrations; method E2 added alkalinity; method E3 also accounted for aluminum speciation and temperature effects; and method E4 accounted for sulfate speciation. To evaluate errors between measured and predicted acidity, the Nash-Sutcliffe efficiency (NSE), the coefficient of determination (R 2), and the root mean square error to standard deviation ratio (RSR) methods were applied. The error evaluation results show that E1, E2, E3, and E4 sites were most accurate at 0, 9, 4, and 5 of the sites, respectively. Sites where E2 was most accurate had pH greater than 4.0 and less than 400 mg/L of sulfate. Sites where E3 was most accurate had pH greater than 4.0 and sulfate greater than 400 mg/L with two exceptions. Sites where E4 was most accurate had pH less than 4.0 and more than 400 mg/L sulfate with one exception. The results indicate that acidity in AMD-affected streams can be accurately predicted by using pH, alkalinity, sulfate, Fe(II), Mn(II), and Al(III) concentrations in one or more of the identified equations, and that the appropriate equation for prediction can be selected based on pH and sulfate concentration.  相似文献   

7.
In this work we measured a set of antioxidative and photoprotective compounds (chlorophylls, carotenoids, tocopherol, ascorbate and glutathione), which were suggested previously as stress markers in conifer needles, at two spruce forest sites at different elevation in Saxony, Germany. Most variables differed significantly between current and 1-year-old needles, but only the content of the xanthophyll cycle per mg total chlorophyll and the oxidation state of glutathione were significantly different between the sites. We applied principal component analysis (PCA) to address the question if underlying accumulated variables are similar to the ones found in spruce needles across Alpine elevation profiles and/or for pines in Mediterranean ecosystems. Four principal components (accumulated variables, PC) representing 68% of the total variance of the dataset were extracted. PC 1 encompassed total chlorophyll, lutein, and β-carotene contents, PC 2 combined the epoxidation state of xanthophylls, ascorbate content and redox state, and glutathione content, PC 3 represented the content of xanthophylls and the redox state of glutathione, and PC 4 encompassed the content of α-carotene and the epoxidation state of xanthophylls. Only PC 3 was significantly different between sites. The PCA structure shows many similarities to corresponding findings in studies on spruce in mountain forests in the Alps and pines in Mediterranean systems. This corroborates the interpretation of PCs as indicative for underlying physiological processes. However, separation of the two investigated sites by PCs was in the present case study not superior to the separation by single input variables.  相似文献   

8.
Phosphorus in one of the most important biogenous substances affecting water quality and connected with water pollution from man-associated sources. Concentrations of various phosphorus forms in Al-Khair river, Baghdad, showed that its water contained high levels of phosphorus and these concentrations increased significantly down the stream where the domestic sewage effluents are discharged. Total phosphorus (TP) concentrations reached 2.65 mg L-1 during October 1984, where total soluble phosphorus (TSP) formed the major constituent of TP at these affected sites. A flooding condition was established to dilute different species of contaminants as an attempt to control the pollution of Al-Khair river. During this stage, phosphorus concentrations decreased although the TP concentrations did not fall below 0.03 mg L-1 (with few exceptions). Moreover, higher phosphorus concentrations were recorded during summers VS. winter months during both stages of the work. This probably was due to the internal load where TP concentrations in the bottom sediments showed also high levels of phosphorus concentration (maximum 180 g g-1 dry wt.).  相似文献   

9.
This investigation presents the assessment of ambient air quality with respect to suspended particulate matter (SPM), sulphur dioxide (SO2) and oxides of nitrogen (NOX) at four sites (RGC, SRS, BBC and BCC) in the Raniganj-Asansol area in West Bengal, India. Ambient air was monitored with a sampling frequency of twenty four hours (3 × 8 hours) at each site on every alternate day (3 days a week) covering a period of one year. A total of 429 samples were collected from RGC, 429 from SRS and 435 each from the BBC and BCC sites. Meteorological parameters such as temperature, relative humidity, wind-speed and wind-direction were also recorded simultaneously during the sampling period. Monthly and seasonal variation of these pollutants have been observed and recorded. The annual average and range values have also been calculated. Results of the investigation indicates that the 95th percentile values of SPM levels exceed the limits (200 g m-3) at RGC, SRS and BBC sites and is within the limit of 500 g m-3 at the BCC sites. The 95th percentile values of SO2 levels did not exceed the reference level at any of the monitoring stations. The 95th percentile values of NOX are found to be exceeding the limit (80 g m-3) at RGC, SRS and BBC sites but is within the prescribed limit of 120 g m-3 at the BCC site. Further, it has been observed that the concentrations of the pollutants are high in winter in comparison to the summer or the monsoon seasons. Results of the investigation indicates that industrial activities, indiscriminate open air burning of coal by the local inhabitants for cooking as well as coking purposes, vehicular traffic, etc. are responsible for the high concentration of pollutants in this area.  相似文献   

10.
Principal component analysis (PCA) coupled with a multilinear regression analysis (MLRA) was applied to PM(10) speciation data series (2002-2005) from four sampling sites in a highly industrialised area (ceramic production) in the process of implementing emission abatement technology. Five common factors with similar chemical profiles were identified at all the sites: mineral, regional background (influenced by the industrial estate located on the coast: an oil refinery and a power plant), sea spray, industrial 1 (manufacture and use of glaze components, including frit fusion) and road traffic. The contribution of the regional background differs slightly from site to site. The mineral factor, attributed to the sum of several sources (mainly the ceramic industry, but also with minor contributions from soil resuspension and African dust outbreaks) contributes between 9 and 11 microg m(-3) at all the sites. Source industrial 1 entails an increase in PM(10) levels between 4 and 5 microg m(-3) at the urban sites and 2 microg m(-3) at the suburban background site. However, after 2004, this source contributed less than 2 microg m(-3) at most sites, whereas the remaining sources did not show an upward or downward trend along the study period. This gradual decrease in the contribution of source industrial 1 coincides with the implementation of PM abatement technology in the frit fusion kilns of the area. This relationship enables us to assess the efficiency of the implementation of environmental technologies in terms of their impact on air quality.  相似文献   

11.
If global warming is accelerating, then one might expect temperatures for most stations to be accelerating and perhaps variability to be increasing. In this study, we examine 57 New Zealand temperature time series for evidence of non-linearity and changing variability. These correspond to time series for annual minima, annual means and annual maxima for 19 stations. Estimation is by an extended least-squares method. We find a surprising diversity of behaviour of these series – presumably reflecting their different geographic factors as well as series length. We give evidence of regions where temperatures are decreasing. For series where a linear trend is significant, it is downwards in about one third of the cases. This proportion was higher in the South Island, especially for series of minima. Where a non-linear trend is significant, temperatures are decelerating in about one half of the cases. The ratio of downward to upward trends is highest among annual maxima and South Island minima and smallest in annual means. Where a linear trend in the variability is significant, it is decreasing in 13 cases and increasing in 5 cases, although possibly this is partly due to poorer quality data last century. Where a non-linear trend in the variability is significant, variability is decelerating in about two thirds of the cases. The results are used to project upper and lower return levels of minima, means and maxima for each of the series to the year 2010.  相似文献   

12.
The objectives of this study were to: (1) analyzehistorical diazinon water column monitoring data frominconsistent monitoring programs in mainstem and tributary sitesin the Sacramento and Feather River watersheds from 1991 to 2001to assess possible spatial and temporal trends and (2) determinethe probability of measured diazinon concentrations by site orsimilar pooled sites exceeding various proposed effectsbenchmarks such as Water Quality Criteria and 10th centilesderived from species sensitivity distributions proposed as targetconcentrations for Total Maximum Daily Loads (TMDLs). An analysisof diazinon monitoring data from both fixed and rain eventsampling from the Sacramento/Feather River watersheds from 1991to 2001 showed that 90th centiles for 27 different mainstemand tributary sites ranged from 12 to 14,897 ng L-1. The 90th centiles were generally higher at tributary sites (as compared to mainstem sites) during rain event sampling prior to 1995. A comparison of rain event samples for similar sites sampled in 1994 and 2000 showed that 90th centiles were lower in seven of eight sites in 2000. A comparison of pooled mainstemsites between 1994 and 2000 for rain event data showed a lower90th centile value for 2000; 90th centiles were alsolower in 2000 at all pooled tributary sites and all sites whendata from a highly influential site was removed. For varioussite designations (all sites, pooled mainstem sites etc.) theprobability of exceeding the acute and chronic diazinon targetsdeveloped by California Department of Fish and Game decreasedfrom 1994 to 2000. These data clearly show progress in the 6 yrperiod in reducing environmental concentrations of diazinon.Probability of exceeding the 10th centile targets based onspecies sensitivity distributions for arthropods (the mostsensitive taxa to diazinon exposure) was similar and fairly lowbetween years; the highest percent probability of exceedance forany site designation was 20%.Results from a two-way ANOVA using individual measurementsfrom all sites sampled showed a significant decrease during rainevents between 1994 and 2000, although the decrease was notequivalent for all sites. Sources of uncertainty identified inthe analysis of rain event data from 1994 and 2000 wereinconsistent frequency of sampling during rain events for eachyear, unknown definition of rain events between the two years andnon-defined measurement point within the hydrograph of rainevents sampled in each year. Analysis of diazinon trends fromfixed sampling was limited due to lack of yearly data by site;therefore, only parametric analysis could be conducted. Based onparametric analysis of diazinon monitoring data from fixedsampling sites, the percent detected concentrations were greaterthan 20% for 12 tributary sites and 5 mainstem sites fromsamples collected during January-March. On the average over allsites and months, diazinon concentrations have decreased at fixedsampling sites in the Sacramento/Feather River watershed from1991 to 2001.  相似文献   

13.
The monitoring of water quality today provides a great quantity of data consisting of the values of the parameters measured as a tunction of bme or as spatial function.In the marine environment, and especially in the suspended material, increasing importance is being given to the presence of particular pollution indices. With the increase in the number of sampling points, the amount of data increases and examining the results and their consequent interpretation becomes more difficult. To overcome such difficulties, numerous chemometric techniques have been introduced in environmental chemistry, such as Principal Component Analysis (PCA).The use of the PCA in this work has been applied to the analysis of twenty three different sampling points in three seasonal sampling cruises in the same year. This led to recognition of the influence and the localisation of wastewaters in the Augusta bay after measuring the water pollution parameters.The PCA made evident the difference between some sampling sites whose data were initially thought to be similar where the presence of hot industrial water discharge or urban wastewater determines the permanent water quality.Furthermore, it has allowed a choice of more significant parameters for monitoring programs and more representative sampling site locations.  相似文献   

14.
Daily PM10 concentrations were measured at four sampling stations located in Chiang Mai and Lamphun provinces, Thailand. The sampling scheme was conducted during June 2005 to June 2006; every 3 days for 24 h in each sampling period. The result revealed that all stations shared the same pattern, in which the PM10 (particulate matters with diameter of less than 10 microm) concentration increased at the beginning of dry season (December) and reached its peak in March before decreasing by the end of April. The maximum PM10 concentration for each sampling station was in the range of 140-182 microg/m(3) which was 1.1-1.5 times higher than the Thai ambient air quality standard of 120 microg/m(3). This distinctly high concentration of PM10 in the dry season (Dec. 05-Mar. 06) was recognized as a unique seasonal pattern for the northern part of Thailand. PM10 concentration had a medium level of negative correlation (r = -0.696 to -0.635) with the visibility data. Comparing the maximum PM10 concentration detected at each sampling station to the permitted PM10 level of the national air quality standard, the warning visibility values for the PM10 pollution-watch system were determined as 10 km for Chiang Mai Province and 5 km for Lamphun Province. From the analysis of PM10 constituents, no component exceeded the national air quality standard. The total concentrations of PM10-bond polycyclic aromatic hydrocarbons (PAHs) are calculated in terms of total toxicity equivalent concentrations (TTECs) using the toxicity equivalent factors (TEFs) method. TTECs in Chiang Mai and Lamphun ambient air was found at a level comparable to those observed in Nagasaki, Bangkok and Rome and at a lower level than those reported at Copenhagen. The annual number of lung cancer cases for Chiang Mai and Lamphun Provinces was estimated at two cases/year which was lower than the number of cases in Bangkok (27 cases/year). The principal component analysis/absolute principal component scores (PCA/APCS) model and multiple regression analysis were applied to the PM10 and its constituents data. The results pointed to the vegetative burning as the largest PM10 contributor in Chiang Mai and Lamphun ambient air. Vegetative burning, natural gas burning & coke ovens, and secondary particle accounted for 46-82%, 12-49%, and 3-19% of the PM10 concentrations, respectively. However, natural gas burning & coke ovens as well as vehicle exhaust also deserved careful attention due to their large contributions to PAHs concentration. In the wet season and transition periods, 42-60% of the total PAHs concentrations originated from vehicle exhaust while 16-37% and 14-38% of them were apportioned to natural gas burning & coke ovens and vegetative burning, respectively. In the dry period, natural gas burning & coke ovens, vehicle exhaust, and vegetative burning accounted for 47-59%, 20-25%, and 19-28% of total PAHs concentrations. The close agreement between the measured and predicted concentrations data (R(2) > 0.8) assured enough capability of PCA/APCS receptor model to be used for the PM10 and PAHs source apportionment.  相似文献   

15.
A quantitative determinants-of-exposure analysis of respirable crystalline silica (RCS) levels in the construction industry was performed using a database compiled from an extensive literature review. Statistical models were developed to predict work-shift exposure levels by trade. Monte Carlo simulation was used to recreate exposures derived from summarized measurements which were combined with single measurements for analysis. Modeling was performed using Tobit models within a multimodel inference framework, with year, sampling duration, type of environment, project purpose, project type, sampling strategy and use of exposure controls as potential predictors. 1346 RCS measurements were included in the analysis, of which 318 were non-detects and 228 were simulated from summary statistics. The model containing all the variables explained 22% of total variability. Apart from trade, sampling duration, year and strategy were the most influential predictors of RCS levels. The use of exposure controls was associated with an average decrease of 19% in exposure levels compared to none, and increased concentrations were found for industrial, demolition and renovation projects. Predicted geometric means for year 1999 were the highest for drilling rig operators (0.238 mg m(-3)) and tunnel construction workers (0.224 mg m(-3)), while the estimated exceedance fraction of the ACGIH TLV by trade ranged from 47% to 91%. The predicted geometric means in this study indicated important overexposure compared to the TLV. However, the low proportion of variability explained by the models suggests that the construction trade is only a moderate predictor of work-shift exposure levels. The impact of the different tasks performed during a work shift should also be assessed to provide better management and control of RCS exposure levels on construction sites.  相似文献   

16.
The lack of information and the need for knowledge on the organic pollutants within the area of KwaZulu-Natal together with the global problem of water supply have prompted our investigation into the analyses of eight polychlorinated biphenyl (PCB) congeners in the Msunduzi River of KwaZulu-Natal, South Africa. Soil, sediment, and water samples were collected at ten different sites along the river during winter and spring seasons. Soil and sediment samples were extracted using ultra sonication with dichloromethane while water samples were liquid-liquid extracted using dichloromethane. All sample extracts were cleaned-up using a multi-layer silica gel column and analyzed with gas chromatography-mass spectrometry. Quality assurance measures were also determined. The percentage recoveries for water were 53–128 for all the PCBs analyzed, while sediment recoveries ranged between 69 and 105%. The highest total concentrations of the PCBs in sediment were 214.21–610.45 ng/g dw at the Du Toit sampling site and 30.86–444.43 ng/g dw basis at the wastewater treatment inlet for winter and spring, respectively. Soil PCB concentrations were 76.53–397.75 ng/g dw at the Msunduzi Town sampling site and 20.84–443.49 ng/g (dry weight) at the Du Toit sampling site for winter and spring, respectively. In addition, high PCB concentrations were found in effluent of the wastewater treatment inlet compared to other sampling sites, which ranged between 0.68–22.37 and 2.53–35.69 ng/mL for winter and spring seasons, respectively. In all the sampling sites selected for this study, Du Toit afforded the highest PCB concentration levels and the lowest was after chlorination at the Darvill wastewater treatment plant. The results presented are new and it is the first study of organic pollutants such as PCBs that has been carried out on this river.  相似文献   

17.
This complex study presents indoor and outdoor levels of air-borne fine particles, particle-bound PAHs and VOCs at two urban locations in the city of Kaunas, Lithuania, and considers possible sources of pollution. Two sampling campaigns were performed in January-February and March-April 2009. The mean outdoor PM(2.5) concentration at Location 1 in winter was 34.5 ± 15.2 μg m(-3) while in spring it was 24.7 ± 12.2 μg m(-3); at Location 2 the corresponding values were 36.7 ± 21.7 and 22.4 ± 19.4 μg m(-3), respectively. In general there was little difference between the PM concentrations at Locations 1 and 2. PM(2.5) concentrations were lower during the spring sampling campaign. These PM concentrations were similar to those in many other European cities; however, the levels of most PAHs analysed were notably higher. The mean sum PAH concentrations at Locations 1 and 2 in the winter campaign were 75.1 ± 32.7 and 32.7 ± 11.8 ng m(-3), respectively. These differences are greater than expected from the difference in traffic intensity at the two sites, suggesting that there is another significant source of PAH emissions at Location 1 in addition to the traffic. The low observed indoor/outdoor (I/O) ratios indicate that PAH emissions at the locations studied arise primarily from outdoor sources. The buildings at both locations have old windows with wooden frames that are fairly permissive in terms of air circulation. VOC concentrations were mostly low and comparable to those reported from Sweden. The mean outdoor concentrations of VOC's were: 0.7 ± 0.2, 3.0 ± 0.8, 0.5 ± 0.2, 3.5 ± 0.3, and 0.2 ± 0.1 μg m(-3), for benzene, toluene, ethylbenzene, sum of m-, p-, o-xylenes, and naphthalene, respectively. Higher concentrations of VOCs were observed during the winter campaign, possibly due to slower dispersion, slower chemical transformations and/or the lengthy "cold start" period required by vehicles in the wintertime. A trajectory analysis showed that air masses coming from Eastern Europe carried significantly higher levels of PM(2.5) compared to masses from other regions, but the PAHs within the PM(2.5) are of local origin. It has been suggested that street dust, widely used for winter sanding activities in Eastern and Central European countries, may act not only as a source of PM, but also as source of particle-bound PAHs. Other potential sources include vehicle exhaust, domestic heating and long-range transport.  相似文献   

18.
Trends in total suspended particulates (TSP) emissioninventories were compared with ambient TSP concentrationsduring the period of 1993-1999 in the Czech Republic. TheTSP annual emission decreased within the period of observationfrom 441 300 to 67 000 of metric tonnes (by 85%). During thesame period a less pronounced downward trend from80.3 g m-3 to 31.5g m-3 (decrease by 61%)was noted also for the ambient TSP annual average. Differencebetween the two air quality indicators seems to indicate thatchanges in TSP emission inventories from year to year arebeing to some extent overestimated. Monthly ambientparticulate concentrations did not respond to overall drop inemissions proportionately but were closely associated withmonthly mean temperatures. While in the winter the correlationbetween ambient TSP and temperature was negative, in summerthe correlation between the two variables was positive. Inspring and autumn there was no clear correlation betweentemperature and ambient particulate pollution. The improvementof air quality in the Czech Republic since the economical andpolitical transformation in 1990s is substantial whendemonstrated by emission figures, however, true state ofparticulate pollution expressed by ambient levels requiresfurther attention.  相似文献   

19.
In order to analyze and evaluate different trace metals on surface water of the Changjiang River, concentrations of dissolved trace metals (Cu, Ni, Fe, Co, Sc, Al, Zn, Pb, Cd, Se, As, Cr, and Hg), major elements(Ca and Mg), and nutrient(NO $_{3}^{-})$ were measured. Samples were taken at 76 positions along Changjiang River in flood and dry seasons during 2007?C2008. Spatial distributions identified two main large zones mainly influenced by mineral erosion (sites 1?C22) and anthropogenic action (sites 23?C76), respectively. Principal component analysis (PCA) and hierarchical cluster analysis were used to identify the variance distinguishing the origin of water. Four significant components were extracted by PCA, explaining 74.91% of total variable. Cu, Ni, Fe, Co, Sc, Al, Ca, and Mg were mainly associated with the weathering and erosion of various rocks and minerals, while an anthropogenic source was identified for Cd and As. Although erosion was one source of Pb and Zn, they were also input by atmospheric deposition and industrial pollutions. NO $_{3}^{-}$ and Se were mainly associated with agriculture activities. However, Hg and Cr showed different sources. CA confirmed and completed the results obtained by PCA, classifying the data into two large groups representing different areas. Group 1 referred to the upper reaches which represented samples mainly corresponding to natural background areas. Group 2 referred to the middle and lower reaches including samples under anthropogenic influence. Meanwhile, group 2 was subdivided into three new groups, representing agricultural, industrial, and various artificial pollution sources, respectively.  相似文献   

20.
The main purpose for this study is to observe the seasonal and monthly variations for arsenic (As) in total suspended particulates (TSP) concentration and dry deposition at five characteristic sampling sites during the years 2009 and 2010 in central Taiwan. The results show that the highest and lowest monthly average As concentrations in TSP occurred in January and May at Bei-shi (suburban/coastal) and Quan-xing (industrial) sampling sites. In addition, the results show that the highest and lowest monthly average As dry deposition occurred in October and May at Chang-hua (downtown) and Gao-mei (wetland) sampling sites. This study reflected that the mean highest As concentrations in TSP and mean highest As dry deposition occurred at Quan-xing (industrial). However, the mean lowest As concentrations in TSP and mean lowest As dry deposition also occurred at Gao-mei (wetland). Regarding seasonal variation, the results show that the As average seasonal concentration order in TSP was winter > spring > fall > summer, respectively, at Chang-hua (downtown) and He-mei (residential) sampling sites. Finally, the order of As average seasonal dry deposition was fall > winter > spring > summer, respectively, at Chang-hua (downtown), He-mei (residential), and Gao-mei (wetland) sampling sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号