首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The EMAP program has been organized into three primary elements: Multi-Tier Design, Indicators, and Index Sites. The Index Sites program (DISPro - Demonstration Intensive Site Project) is the primary activity within the Index Sites element of EMAP. This project represents an inter-agency effort between EPA/ORD and DOI/NPS to develop a demonstration of an intensive site network of monitoring and research locations throughout the United States, utilizing the Nation's parklands as "outdoor laboratories." Twelve parks were selected to establish this demonstration. These 12 parks were selected because they are readily accessible, have a history of monitoring environmental information, and represent a broad spectrum of ecological communities. EMAP, through DISPro, is examining whether a "network" of sites existing within the parks can be used to address monitoring issues for global-scale environmental stressors (e.g., air pollution) as well as locale-specific stressors (e.g., air deposition, water-borne) and coordinated with cause-effect, issue-based research related to these environmental stressors. As a first activity, EPA will provide each of the sites with the instrumentation to monitor UV-B. The intent of the program is to initiate a consistent air monitoring program at each site to be followed by consistent monitoring within other media. The project will initiate research projects at all the sites (eventually) to examine the effects of environmental stressors of importance at each of the sites.  相似文献   

2.
During the 1994/1995 EMAP-Estauries program in the Carolinian Province we investigated the feasibility of using parasites of fish as response indicators. Parasites of fish are an indigenous component of healthy ecosystems. Within the EMAP-E design, the suite of environmental parameters which may affect parasite abundance, richness, prevalence, and diversity can be divided into three categories: 1) the physical and chemical characteristics of the water and sediment (including contaminants) external to the fish; 2) the internal environment defined by the physical condition (physiological) of individual fish; and 3) the presence and relative abundance of benthic macroinvertebrates, many of which serve as intermediate hosts. The biotic response of parasites to environmental stressors is also reflected in the health of fish. Parasite assemblages of silver perch Bairdiella chrysura respond to both natural and anthropogenic stressors. Our results showed that particular environmental stressors and specific parasites that respond include: temperature and monogeneans; contaminants and nematodes; low dissolved oxygen and protists; and salinity, together with a mixture of metal and organic contaminants and crustacea. Parasites of fish are useful biomarkers and appear to be more sensitive to environmental stressors than are the fish themselves. Parasite responses to selected environmental stressors may be used to discriminate polluted and unpolluted sites. The use of parasites of fish as biomarkers has relevant application to fisheries management and coastal monitoring programs.  相似文献   

3.
The mid-Atlantic region of the United States has a wide diversity of natural resources. Human pressures on these natural resources are intense. These factors have resulted in the collection of substantial amounts of environmental information about the region by EPA (both Regional and Research Offices), other governmental agencies, industry, and environmental groups. EPA Regional Offices comprehend first hand the importance of environmental data and are extremely supportive of investments in these data. Environmental data are used prominently in a variety of strategic planning and resource management initiatives. In EPA Region 3, the use of scientifically-sound environmental data is, in fact, one of our strategic programmatic goals. Environmental information is captured and assessed continuously by Regional staff, sometimes working in partnership with other Federal and State agencies, to derive relevant resource management conclusions. The restoration goals for the Chesapeake Bay are based on environmental indicators and resulting data. Attainment of the water quality objectives for streams and coastal estuaries are predicted on monitoring data. Our initiative in the Mid-Atlantic Highlands area uses environmental indicators to measure the condition of forests and streams. Landscape-level indicators will provide unique opportunities for the use of data in planning and management activities in support of the principles of community-based activism and sustainable development. Significant value is added to these data during their use by Regional managers. Regional programs, such as the Chesapeake Bay Program and several National Estuary Programs, are founded in environmental data. Environmental information is used by the Regional program managers to ascertain whether programs are accomplishing their intended objectives. Finally, Regional programs provide a crucial means for disseminating this information to broad segments of the public, so that a better informed and educated client base for effective environmental protection will develop.  相似文献   

4.
Overall, the greatest threats to Canadian and global biodiversity are associated with conversions of natural ecosystems to anthropogenic ones, and over-exploitation of biological resources. This circumstance does not, however, trivialize the importance of atmospheric influences. Although scientific understanding of the risks is incomplete, it is nevertheless clear that anthropogenic changes in atmospheric stressors are potentially damaging to biodiversity and other ecological values over medium- and longer-term scales. It is important that greater investments be made in support of longer-term monitoring and research designed to understand the effects of atmospheric and other environmental stressors on the biodiversity and structure and function of Canadian ecosystems.  相似文献   

5.
The European Water Framework Directive commits partner countries to evolve uniform protocols for monitoring the environmental condition of natural water bodies, crucially integrating biological and ecological criteria from the associated ecosystems. This has encouraged considerable research on the development of bioindicator-based systems of water quality monitoring. A critical step towards this end is providing evidence that the proposed bioindicator system adequately reflects the human pressures to which a specific water body is submitted. Here we investigate the utility of pulse-amplitude-modulated (PAM) fluorometry, a fast, non-destructive and increasingly popular bioindicator-based method, in assessing water quality based on the widespread Mediterranean seagrass Posidonia oceanica, an important constituent of submersed benthic vegetation. Specifically, we evaluated the ability of PAM to discriminate between sites along a pre-established gradient of anthropogenic pressures and the consistency and reliability of PAM parameters across spatial scales. Our results show that the maximum quantum yield (Fv/Fm), representing the structural photosynthetic efficiency of the plant, responds significantly to the degree of site-level anthropogenic pressure. However, Fv/Fm values in our study increased with increasing pressure, in striking contrast with other studies that report declines in Fv/Fm values with increasing stress. A potential explanation for this discrepancy is that our study sites were influenced by multiple diffuse stressors (characteristic of most coastal waters) that could potentially interact with each other to influence Fv/Fm values in often unpredictable ways. The photosynthetic variables calculated from rapid light curves (ETRmax, maximum electron transport rate; α, initial slope of the curve; I k, saturating irradiance), which represent an instant picture of the photosynthetic activity of the plant, were unable to clearly discriminate between sites subject to different anthropogenic pressures due to considerable small-scale variability. Taken together, these results suggest that even though PAM fluorometry may be a good candidate tool for monitoring water bodies in terms of costs and applicability, considerably more needs to be understood about how its parameters respond to real-world stressors, particularly when they act in concert with each other. With our present understanding of seagrass photosynthetic responses to anthropogenic stress, it would be ill advised to employ PAM as anything but a complementary tool to validate environmental stress derived with other, more robust methodologies.  相似文献   

6.
生态监测指标选择一般过程探讨   总被引:8,自引:2,他引:8  
本文对生态监测指标体系设计的一般过程进行了详细的分析和论述。主要包括生态监测目标、生态系统所受的环境压力、生态系统模型的提出以及生态监测指标的分类。旨在为我国生态监测规划和设计进行初步的探索。  相似文献   

7.
Coral reefs worldwide are declining at an alarming rate and are under continuous threat from both natural and anthropogenic environmental stressors. Warmer sea temperatures attributed to global climate change and numerous human activities at local scales place these valuable ecosystems at risk. Reefs provide numerous services, including shoreline protection, fishing, tourism and biological diversity, which are lost through physical damage, overfishing, and pollution. Pollution can be controlled under provisions of the Clean Water Act, but these options have not been fully employed to protect coral reefs. No U.S. jurisdiction has implemented coral reef biocriteria, which are narrative or quantitative water quality standards based on the condition of a biological resource or assemblage. The President’s Ocean Action Plan directs the U.S. Environmental Protection Agency (EPA) to develop biological assessment methods and biological criteria for evaluating and maintaining the health of coral reef ecosystems. EPA has formed the Coral Reef Biocriteria Working Group (CRBWG) to foster development of coral reef biocriteria through focused research, evaluation and communication among Agency partners and U.S. jurisdictions. Ongoing CRBWG activities include development and evaluation of a rapid bioassessment protocol for application in biocriteria programs; development of a survey design and monitoring strategy for the U.S. Virgin Islands; comprehensive reviews of biocriteria approaches proposed by states and territories; and assembly of data from a variety of monitoring programs for additional metrics. Guidance documents are being prepared to assist U.S. jurisdictions in reaching protective and defensible biocriteria.  相似文献   

8.
The Environmental Protection Agency (EPA) and U.S. Geological Survey (USGS) initiated a two-year regional pilot survey in 2007 to develop, test, and validate tools and approaches to assess the condition of northern Gulf of Mexico (GOM) coastal wetlands. Sampling sites were selected from estuarine and palustrine wetland areas with herbaceous, forested, and shrub/scrub habitats delineated by the US Fish and Wildlife Service National Wetlands Inventory Status and Trends (NWI S&T) program and contained within northern GOM coastal watersheds. A multi-level, stepwise, iterative survey approach is being applied to multiple wetland classes at 100 probabilistically-selected coastal wetlands sites. Tier 1 provides information at the landscape scale about habitat inventory, land use, and environmental stressors associated with the watershed in which each wetland site is located. Tier 2, a rapid assessment conducted through a combination of office and field work, is based on best professional judgment and on-site evidence. Tier 3, an intensive site assessment, involves on-site collection of vegetation, water, and sediment samples to establish an integrated understanding of current wetland condition and validate methods and findings from Tiers 1 and 2. The results from this survey, along with other similar regional pilots from the Mid-Atlantic, West Coast, and Great Lakes Regions will contribute to a design and implementation approach for the National Wetlands Condition Assessment to be conducted by EPA’s Office of Water in 2011.  相似文献   

9.
The U.S. Environmental Protection Agency (EPA) is working with federal, state, local, and non-governmental partners to produce an interactive, spatial inventory of environmental data in the mid-Atlantic region. The inventory will include maps of sampling locations, lists of measurements, and design information for hundreds of research sites and monitoring programs. It will also feature user-defined queries, resulting in customized maps that satisfy search criteria. (For example, "Display the probability-based surveys that measure dry deposition and nutrient availability in soils"). The inventory will be used in an interagency pilot study, instigated by the National Science and Technology Council's Committee on the Environment and Natural Resources, to integrate environmental monitoring and research activities. The inventory will also provide information for a regional ecological assessment led by EPA Region 3 and the Office of Research and Development. In addition, an interagency consortium will use the inventory to identify suitable field data for assessing the accuracy of satellite imagery. In each of these three applications, the inventory will be tested and evaluated as a potential prototype for completing additional regions of the U.S. Maintained as an Oracle database, the inventory is accessible on the internet at http://www.epa.gov/monitor/. Currently, ten inventory records are on-line for demonstration. The complete federal inventory of approximately 180 records will be accessible on-line by October, 1997; approximately 200 state, local and non-governmental records are scheduled for on-line access by April, 1998.  相似文献   

10.
In 1990, the National Research Council (NRC) published two in-depth assessments of marine environmental monitoring effectiveness. The first of these, Managing Troubled Waters: The Role of Marine Environmental Monitoring, provided a national perspective and the second, Monitoring Southern California's Coastal Waters, examined the specifics of monitoring design and implementation in a densely populated, highly urbanized coastal region. The reports include explicit recommendations about the need for greater regionalization of monitoring efforts, supported by greater standardization of field, laboratory, and data analysis methods. They also identified the need for centralized data management and for greater flexibility in the language of standard discharge permits, flexibility that would permit discharge agencies to more readily participate in regional monitoring and research programs. Other recommendations identified a need for EPA and NOAA to focus on creating a national monitoring program structured as a network of coordinated local and regional efforts. Finally, the NRC emphasized the need for better reporting and for periodic review of monitoring's relevance to management concerns. In this paper, we use southern California as a test case to assess progress made in implementing the NRC's recommendations. We review progress made on each recommendation and discuss the features of the regulatory and management climate that contributed to or impeded this progress. We also consider whether, and to what extent, the NRC's recommendations remain relevant in the present context.  相似文献   

11.
Understanding the ecology, condition, and changes of coastal areas requires data from many sources. Broad-scale and long-term ecological questions, such as global climate change, biodiversity, and cumulative impacts of human activities, must be addressed with databases that integrate data from several different research and monitoring programs. Various barriers, including widely differing data formats, codes, directories, systems, and metadata used by individual programs, make such integration troublesome. Coastal data partnerships, by helping overcome technical, social, and organizational barriers, can lead to a better understanding of environmental issues, and may enable better management decisions. Characteristics of successful data partnerships include a common need for shared data, strong collaborative leadership, committed partners willing to invest in the partnership, and clear agreements on data standards and data policy. Emerging data and metadata standards that become widely accepted are crucial. New information technology is making it easier to exchange and integrate data. Data partnerships allow us to create broader databases than would be possible for any one organization to create by itself.  相似文献   

12.
The science and practice of assessing the status and trends of ecological conditions in great rivers have not kept pace with perturbation wrought on these systems. Participants at a symposium sponsored by the U.S. Environmental Protection Agency (USEPA) and the Council of State Governments concluded that useful and efficient assessments of great river ecosystems require thoughtful alignment of sampling designs, spatial and temporal scales, indicators, management needs, and ecosystem characteristics. Site-specific physical, chemical, and biological data long accumulated by monitoring programs have value but fail to provide the integrated system-wide perspective required for adaptive management and the Clean Water Act. Use of existing data may be limited by methodological incompatibilities, access difficulties, and the exclusive applicability of data to specific habitats or sites. The transition from site-specific to system-wide assessments benefits from research being done by USEPA's Environmental Monitoring and Assessment Program (EMAP) and other programs that use probability surveys and biological indicators. Indicators of various taxa (in particular fish, algae, and benthic invertebrates) have been successfully developed for great rivers. However, optimizing the information these ecological indicators convey to managers and the public is the subject of ongoing research.  相似文献   

13.
Acadia National Park was one of the 14 sites included in the Park Research and Intensive Monitoring of Ecosystems network (PRIMENet). For eight years the EPA monitored ultraviolet (UV) radiation at this site, with the National Park Service (NPS) sponsoring a total climate and air monitoring station. Under the auspices of PRIMENet, research projects were initiated that investigated the effects of UV on amphibians, determined watershed mass balances, and developed a model of deposition along an elevational gradient. The monitoring data and research results have been used by park management to protect vegetation and water resources from ozone and deposition. These data are now being used to develop a “vital signs” monitoring program under the NPS’ Inventory and Monitoring Program. These data sets have been used in regional, national and international programs to protect human health and resources from air pollution. Public outreach has been accomplished through web site resources and via the Schoodic Education and Research Center.  相似文献   

14.
The Great Lakes may be viewed as a coastal environment, affected by the same meteorological and physical forces as the coastal ocean. The U.S. EPA, Great Lakes National Program Office (GLNPO) has monitored the open waters of the lakes, annually, since 1983. As part of the U.S. EPA Environmental Monitoring and Assessment Program (EMAP), a pilot study was performed in Lake Michigan to compare the existing GLNPO deterministic sampling grid with the EMAP probabilistic grid. Results of chemical analyses of trophic status indicators (total phosphorus and chlorophyll a) as well as nutrients and conventional limnological measurements, from spring and summer surveys in 1992 indicate little difference between the grids in the offshore region of the lake. The few statistically significant differences may be due to station distribution throughout the lake, or simple chance. This might be expected due to the well mixed nature of the open waters of Lake Michigan. The detection of a long-term trend for total phosphorus in Lake Michigan benefits from an annual program: viewing cumulative frequency distributions based on a four year EMAP interval does not convey information on the decrease in phosphorus in the lake. If the EMAP sampling grid were to be used in the Great Lakes, pilots in each of the lakes would be necessary for utilization of the existing long-term record as a basis for trend detection.  相似文献   

15.
Implementing a statistically valid and practical monitoring design for large-scale stream condition monitoring and assessment programs can be difficult due to factors including the likely existence of a diversity of ecosystem types such as ephemeral streams over the sampling domain; limited resources to undertake detailed monitoring surveys and address knowledge gaps; and operational constraints on effective sampling at monitoring sites. In statistical speak, these issues translate to defining appropriate target populations and sampling units; designing appropriate spatial and temporal sample site selection methods; selection and use of appropriate indicators; and setting effect sizes with limited ecological and statistical information about the indicators of interest. We identify the statistical and operational challenges in designing large-scale stream condition surveys and discuss general approaches for addressing them. The ultimate aim in drawing attention to these challenges is to ensure operational practicality in carrying out future monitoring programs and that the resulting inferences about stream condition are statistically valid and relevant.  相似文献   

16.
The U. S. Environmental Protection Agency's Office of Research and Development (ORD) is continuing research efforts initiated by the Environmental Monitoring and Assessment Program on ecological indicator development. An ORD Ecological Indicators Working Group has been formed with activities in three primary areas. (1) Guidelines and procedures are being developed to evaluate indicators for use in monitoring programs. Indicators will be evaluated on conceptual soundness, implementation, response variability, and interpretation/utility. The evaluation guidelines will be applied in peer review to endorse technically acceptable indicators and will provide research direction for improvements. (2) An ORD strategy for research in ecological indicators is being developed by the Working Group in collaboration with Division research scientists. The strategy will serve to prioritize research based on the greatest importance and uncertainty and identify goals for indicator development in both intramural and extramural programs. The research strategy includes application of the evaluation guidelines to identify relevant research questions. (3) Interactions with indicator client and user groups (states, program offices and regions) are actively being sought for successful development and implementation of indicators. Client indicator priorities are formally included in the research strategy and user feedback on indicators will help to identify relevant research questions. Consultations with users will serve to assist in evaluating, implementing, and interpreting indicators in monitoring programs.  相似文献   

17.
Understanding the relationship between human disturbance and ecological response is essential to the process of indicator development. For large-scale observational studies, sites should be selected across gradients of anthropogenic stress, but such gradients are often unknown for a population of sites prior to site selection. Stress data available from public sources can be used in a geographic information system (GIS) to partially characterize environmental conditions for large geographic areas without visiting the sites. We divided the U.S. Great Lakes coastal region into 762 units consisting of a shoreline reach and drainage-shed and then summarized over 200 environmental variables in seven categories for the units using a GIS. Redundancy within the categories of environmental variables was reduced using principal components analysis. Environmental strata were generated from cluster analysis using principal component scores as input. To protect against site selection bias, sites were selected in random order from clusters. The site selection process allowed us to exclude sites that were inaccessible and was shown to successfully distribute sites across the range of environmental variation in our GIS data. This design has broad applicability when the goal is to develop ecological indicators using observational data from large-scale surveys.  相似文献   

18.
Canada has established a National Ecological Monitoring and Assessment Network (EMAN). The Network's operating objective is to understand what changes are occurring in the ecosystems and why. Each site is designed to have long-term multidisciplinary monitoring programs in place with supporting research and manipulation experiments. About 85 sites have been incorporated into the network. A Directory of EMAN Sites is available and a list of the Goals, Objectives and Deliverables (GODs) for many sites is also available. Information can be obtained on the EMAN's website at http://www.cciw.ca/eman/. The network is operated in conjunction with a program of developing national environmental indicators, with increasing emphasis on indicators of sustainable development. A series of environmental assessments are being produced that are issue and/or area focused. The assessment are designed as support for policy decisions. The national coordinating office supports the overall program of data gathering, reporting environmental indicators and produce assessments.  相似文献   

19.
An Overview of EPA's Regional Vulnerability Assessment (ReVA) Program   总被引:4,自引:0,他引:4  
Regional Vulnerability Assessment (ReVA) is an approach to place-based ecological risk assessment that is currently under development by EPA's Office of Research and Development. The pilot assessment will be done for the mid-Atlantic region and builds on data collected for the Environmental Monitoring and Assessment Program. ReVA is being developed to identify those ecosystems most vulnerable to being lost or degraded in the next 5 to 50 years and to elucidate which stressors cause the greatest risk to ecosystem goods and services. The goal here is not exact predictions, but an early warning system to identify and prioritize the undesirable environmental changes we should expect over the next few decades. As such, ReVA represents a new risk paradigm for EPA that will require innovative approaches to combine existing knowledge, focus new research, and synthesize many types of information into a meaningful assessment designed to inform environmental decision-makers about future environmental risk.  相似文献   

20.
State water quality agencies are custodians of water quality management programs under the Clean Water Act of which the protection and restoration of biological integrity in surface waters is an integral goal. However, an inappropriate reliance on chemical/physical stressor and exposure data or administrative indicators in place of the direct measurement of ecological response has led to an incomplete foundation for water resource management. As point sources have declined in significance, the consequences of this flawed foundation for dealing with the major limitations to biological integrity (nonpoint sources, habitat degradation) have become more apparent. The use of biocriteria in Ohio, for example, resulted in the identification of 50% more impairment than a water chemistry approach alone and other inconsistencies of a flawed monitoring foundation are illustrated in the national 305(b) report statistics on waters monitored, aquatic life use attainment, and habitat degradation. Biological criteria (biocriteria) incorporates the broader concept of water resource integrity to supplement the roles of chemical and toxicological approaches and reduces the likelihood of making overly optimistic estimates of aquatic life condition. A carefully conceived ambient monitoring approach comprised of biological, chemical, and physical measures ensures all relevant stressors to water resource integrity are identified and that the efficacy of administrative actions can be directly measured with environmental results. New multimetric indices, such as the IBI, ICI, and BIBI represent a significant advancement in aquatic resource characterization that have allowed the inclusion of biological information into many States water quality management programs. Ohio adopted numerical biocriteria in the Ohio water quality standards regulations in May 1990 and, through multiple aquatic life uses that reflect a continuum of biological condition, represents a tiered approach to water resource management. Biocriteria provide the impetus and opportunity to recognize and account for natural, ecological variability in the environment, something which previously was been lacking in state water quality management programs. The upper Great Miami River in Ohio illustrates a case study where bioassessment data documented the efficacy of efforts to permit, fund, and construct municipal treatment systems in restoring aquatic life. In contrast, in the Mahoning River similar administrative actions were inadequate to restore aquatic life in an environment with severe sediment contamination and impacts from combined sewer overflows. A biocriteria-based goal of restoring 75% of aquatic life uses by the year 2000 in Ohio has led to the use of biological data to identify trends and forecast the status and the causes and sources of impairment to Ohio streams, an effort that should affect the strategic focus of our water resource management efforts. A biocriteria-based approach has profoundly influenced strategic planning and priority setting, water quality based permitting, water quality standards, basic monitoring and reporting, nonpoint source assessment, and problem discovery within Ohio EPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号