首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
为研究杭州PM2.5污染来源特征,利用2013—2019年杭州市PM2.5监测数据和气象观测数据,分析了杭州市2013—2019年PM2.5浓度变化,选取本地积累型和输入型2种PM2.5污染过程,结合单颗粒气溶胶飞行时间质谱仪(SPAMS)和在线离子色谱数据,探讨杭州市PM2.5化学组分和污染来源。结果表明:每年秋冬季(11月至次年3月)杭州以东北风、西北风及偏南风为主,风速低于4 m/s时,大气扩散条件差,受本地污染物积累影响,PM2.5浓度容易出现超标;风速较大且为东北风和西北风时,受上游污染输入影响,易出现PM2.5重度污染。本地积累型和输入型案例中,PM2.5化学组分中占比最大的为NO3-、SO42-和NH4+;PM2.5浓度上升过程中,二次NO3-和SO42-转换率明显上升,其中NO3-上升更为显著,二次气溶胶污染严重。2次案例中,PM2.5来源贡献占比前3位均为机动车尾气源、燃煤源和工业工艺源,其中本地积累型PM2.5浓度上升阶段,机动车尾气源占比会明显上升;输入型案例中,输入阶段机动车尾气源占比显著上升,燃煤源贡献也小幅上升。  相似文献   

2.
北京市PM2.5质量浓度特征及组分化学质量闭合研究   总被引:1,自引:1,他引:0  
2013年7—9月分2次在北京市朝阳区的4个采样点(来广营、垡头、奥体和建外)进行PM2.5手工采样,共获得164个有效滤膜样品。以石英滤膜为例,这4个采样点的均值分别为85、94、81、86 μg/m3。数据显示PM2.5质量浓度呈"南高北低"的特点。化学质量闭合研究表明:碳质组分(OM+EC)和二次无机离子是PM2.5的主要组成;碳质组分对夏季PM2.5的质量浓度贡献比较稳定,2次采样对PM2.5的贡献均在1/3左右,与采样时间和地点无关;二次无机离子的贡献则与采样时间有关,对PM2.5的贡献在第一和第二次采样时间分别约为30%和20%。4个采样点中,最南端的垡头PM2.5质量浓度最高,有机颗粒物、SO42-、NO3-和NH4+的质量浓度平均值最高,分别为26、18.2、10.5、5.9 μg/m3。  相似文献   

3.
利用常州市6个环境空气质量评价点PM2.5、PM10、SO2、NO2、CO和水溶性离子数据,结合后向轨迹、激光雷达探空资料、气象资料等,分析了2018年1月29日—2月2日长三角区域一次持续重污染过程。结果表明,重度污染时次高达94 h,PM2.5最高值达235 μg/m3,由外来输送污染物与本地排放的污染物叠加而成,在不利气象条件影响下,污染物在长三角区域长时间滞留;重污染期间,污染物日变化规律显示,PM2.5受外来源影响更显著,而SO2、NO2受本地污染源影响更显著,水溶性粒子组分与常州市本地源存在较大差异,其中NO3-、NH4+、K+、Mg2+和SO42-值增加最为明显,较污染前分别增加了9.1,5.9,4.3,4.2和4.1倍;K+值升高较快,说明污染期间也受到了生物质燃烧的影响。此外,NO3-和SO42-在空气质量较好时,在水溶性离子中的占比日变化幅度较大,而在重污染期间,NO3-和SO42-日变化幅度明显减小。  相似文献   

4.
利用2013-2017年京津冀区域13个城市PM2.5监测数据,综合探讨了该区域PM2.5浓度的时空变化特征。结果表明:京津冀区域PM2.5污染整体较重,但治理成效显著,2013-2017年区域PM2.5年均质量浓度分别为106、93、77、71、64 μg/m3,完成《大气污染防治行动计划》PM2.5浓度下降25%左右的目标;13个城市PM2.5浓度各百分位数总体呈现下降趋势,且随百分位数增大而下降速率加大,PM2.5年均质量浓度平均每年下降10.6 μg/m3,污染严重的太行山沿线城市邢台、石家庄、邯郸3个城市平均每年分别下降20.3、16.1、13.9 μg/m3;京津冀区域PM2.5重度污染天数比例分别为19.9%、16.6%、9.5%、9.0%、7.0%,呈下降趋势。2013-2017年京津冀区域PM2.5平均质量浓度与非重度污染天相比升高19 μg/m3,PM2.5重度污染天平均质量浓度较非重度污染天时高244.4%。  相似文献   

5.
2016—2017年武汉市城区大气PM2.5污染特征及来源解析   总被引:1,自引:0,他引:1  
利用2016年1月至2017年9月湖北省环境监测中心站大气复合污染自动监测站的在线监测数据,对武汉市城区PM2.5的污染特征及主要来源进行解析。结果表明,武汉市城区PM2.5质量浓度呈现出明显的季节差异,季节变化规律为冬季>春季>秋季>夏季。水溶性离子的主要成分SO42-、NO3-和NH4+占总离子质量浓度的82.0%。PM2.5中阴离子相对阳离子较为亏损,颗粒整体呈碱性。夏季气态污染物的氧化程度较高且SO2较NO2氧化程度高。后向轨迹分析结果表明,区域传输是武汉市PM2.5的一个重要来源,在4个典型重污染阶段,武汉市分别受到局地、东北、西北及西南方向气团传输的影响。PMF模型解析出武汉市PM2.5五大主要来源及平均贡献率:扬尘22.0%、机动车排放27.7%、二次气溶胶21.6%、重油燃烧14.9%和生物质燃烧13.8%。  相似文献   

6.
南京大气细颗粒物中水溶性组分的污染特征   总被引:4,自引:3,他引:1  
为了解南京城区大气细颗粒物中水溶性组分的污染特征,在国控点草场门进行了连续一年的PM2.5采样与分析。6种离子日均浓度为5.29~67.6 μg/m3,其中SO42-、NH4+、NO3-是PM2.5的主要组成成分,6 种离子约占PM2.5总质量的31%,SO42-、NO3-和NH4+相关性较好,NH4+是PM2.5中硫酸盐和硝酸盐中居于主导地位的离子。  相似文献   

7.
针对2022年1月5—14日连云港发生的细颗粒物(PM2.5)连续污染事件(PM2.5超标共计5 d),基于常规空气质量参数、气象要素、颗粒物组分参数等数据资料,系统分析了污染期间PM2.5时空变化特征及污染成因,结合大气化学与天气预测模式(WRF Chem)和敏感性试验方法,定量评估了应急减排措施对连云港各区县PM2.5浓度的影响。结果表明,5 d超标日中有3 d为轻度污染,2 d为中度污染,全市PM2.5浓度呈现先上升后下降的趋势。不利的气象条件(静稳、小风、高湿)、本地排放(机动车尾气、工业工艺源)和二次生成共同导致了PM2.5污染的发生。实施黄色预警管控后,ρ(PM2.5)平均值下降了4.6μg/m3,降幅为5.2%,其中东海县和灌云县ρ(PM2.5)的降幅最大,分别为6.1%和8.3%,同时污染天ρ(PM2.5)峰值平均下降了9.4μg/m3(6.0%)。通过PM2.5过程分析方法发现,应急减排导致人为排放、化学过程和背景浓度对近地面ρ(PM2.5)正贡献的减少量要显著大于垂直混合、区域输送和对流过程负贡献的增加量。  相似文献   

8.
宁波市区冬季大气颗粒物及其主要组分的污染特征分析   总被引:7,自引:4,他引:3  
为了更好地研究影响宁波市区环境空气质量的污染物变化特征,于2010年1月20—30日进行了加强监测。研究结果表明,宁波市区大气中PM10和PM2.5质量浓度较高,其中PM2.5/PM10为0.5~0.85。对PM10和PM2.5采样膜分析,水溶性粒子和含碳组分分别占PM10和PM2.5质量浓度的56.7%和66.9%,其中二次污染的水溶性离子SO42-、NO3-和NH4+是PM10和PM2.5中浓度较高的离子组分;PM2.5样品中OC与EC的相关性较好,表明OC与EC的来源相对一致,可能主要来自机动车尾气的贡献;但PM10样品中OC与EC的相关性较差,表明其来源相对复杂;其中SOC的浓度占OC的13%~35%,说明宁波市区冬季导致二次污染的光化学反应不活跃。  相似文献   

9.
西安市大气颗粒物PM2.5与降水关系的探讨   总被引:3,自引:0,他引:3  
对西安市2011年的降水及PM2.5进行采样,并对其进行了pH及无机水溶性离子测定。结果表明,西安市酸雨的污染类型以硫酸型污染为主,连续性降水对大气颗粒物的去除效果明显,pH随降水量的增加而减小。对采样日降水前和降水后3 h的PM2.5监测结果表明降水对PM2.5质量浓度与其中的离子有一定去除作用。西安市的PM2.5呈酸性,并且与降水的pH有着很好的相关性;另外降水前PM2.5的质量浓度、SO42-浓度与降水pH呈负相关,NO3-与降水pH的相关性不明显。近几年PM2.5和降水中的SO42-/NO3-当量值变化趋势表明西安市大气污染已步入煤烟和机动车尾气混合型污染类型,且机动车污染对大气污染和酸雨的贡献比例有所增加。  相似文献   

10.
为了研究北京大气颗粒物和二NFDA1英(PCDD/Fs)的污染状况以及评估交通限行对大气颗粒物和PCDD/Fs的影响。利用同位素稀释高分辨率气相色谱/高分辨率质谱(HRGC/HRMS)联用法和USEPA 1613B 标准方法,以中国地质大学(北京)东门为采样点,采集大气PM2.5、PM10、TSP样品,对北京市交通限行期间以及交通限行前后等不同交通状况下颗粒物浓度及大气PM2.5中17种2,3,7,8-PCDD/Fs污染特征进行了监测。结果表明,PM2.5、PM10、TSP的日均质量浓度在交通限行前分别为126、202、304 μg/m3,限行期间分别为39、78、93 μg/m3,限行结束后分别为79、126 μg/m3。PM2.5中17种PCDD/Fs的质量浓度(毒性浓度)3个时段分别为1 804 fg/m3(70 fg I-TEQ/m3)、252 fg/m3 (9 fg I-TEQ/m3)和1 196 fg/m3 (48 fg I-TEQ/m3)。北京市交通限行期间颗粒物浓度和二 NFDA1 英浓度显著低于交通限行前后,交通源减排措施的实施是大气颗粒物和二 NFDA1英污染水平降低的主要原因,从减排效果看,交通源减排措施对大气细颗粒物(PM2.5)的控制效果明显好于大气粗颗粒物。  相似文献   

11.
2013年苏州春季一次重污染天气的过程分析   总被引:1,自引:0,他引:1  
研究了2013年3月在江苏范围内的一次重污染天气过程,重点分析苏州在此次污染过程中大气污染的变化特征。污染过程中,苏州市颗粒物浓度上升较为明显, PM10的小时质量浓度最高达548μg/m3, PM2.5质量浓度也达到197μg/m3,污染持续时间为2 d,3月8—9日当地空气质量均达到中度污染水平。根据后向轨迹模型、颗粒物离子浓度的分析,此次污染是由外来浮尘及苏州本地污染物排放所造成的区域霾污染影响所致。根据监测结果与实际污染特征,针对性地提出了对策和措施。  相似文献   

12.
中国北方地区采暖期颗粒物污染现状   总被引:2,自引:2,他引:0  
分析了2013—2016年冬季采暖期与非采暖期中国北方地区颗粒物污染现状及时空变化特征。结果表明:中国北方地区空气污染比较严重,采暖期尤为突出。2016年,中国北方地区重度及以上污染天数比例超过10%,采暖期优良天数比例较非采暖期下降22.8%,重度及以上污染天数比例升高10.1个百分点。颗粒物浓度呈现明显的冬季高、夏季低的特点,最高值一般出现在12月至次年1月,最低值一般出现在7—9月。2013—2016年,北方地区空气质量呈较为明显的改善趋势,PM_(10)和PM_(2.5)浓度总体呈下降趋势,但2014年以来采暖期同期比较显示,PM2.5浓度呈缓慢升高趋势,采暖期空气污染形势十分严峻。颗粒物浓度呈现明显的空间分布规律,采暖期石家庄、保定、衡水、邢台、邯郸、安阳等城市为京津冀区域污染最严重的城市。  相似文献   

13.
台州市酸雨污染现状及其对策分析   总被引:2,自引:1,他引:1  
通过对近十年来的酸雨监测资料的收集分析,结合同期台州市大气环境中二氧化硫和氮氧化物的监测数据,采用秩相关系数法,对酸雨污染趋势和成因进行分析和讨论,并提出针对性措施,以期为台州市以及类似地区的大气污染、酸雨污染等防治工作提供政策参考。  相似文献   

14.
贵阳市夏季大气颗粒物及多环芳烃污染特征研究   总被引:3,自引:2,他引:1       下载免费PDF全文
采集贵阳市老城区夏季5个典型监测点(太慈桥、贵州师范大学、大西门、省政府及省植物园)的样品进行PM2.5、PM10质量浓度分析。同时对PM2.5中PAHs的质量浓度进行分析。结果表明:贵阳市夏季PM2.5和PM10浓度排序均为太慈桥省政府大西门贵州师范大学省植物园,且PM2.5和PM10之间有良好的相关性,PM10=0.931 3 PM2.5+0.019 4,R2=0.996 7,PM2.5污染较重。此外,5个监测点总PAHs和苯并(a)芘的分析结果均为太慈桥省政府大西门贵州师范大学省植物园,苯并(a)芘浓度均未超标。  相似文献   

15.
An ambient air quality study was undertaken in two cities (Pamplona and Alsasua) of the Province of Navarre in northern Spain from July 2001 to June 2004. The data were obtained from two urban monitoring sites. At both monitoring sites, ambient levels of ozone, NOx, and SO2 were measured. Simultaneously with levels of PM10 measured at Alsasua (using a laser particle counter), PM10 levels were also determined at Pamplona (using a beta attenuation monitor). Mean annual PM10 concentrations in Pamplona and Alsasua reached 30 and 28 μg m−3, respectively. These concentrations are typical for urban background sites in Northern Spain. By using meteorological information and back trajectories, it was found that the number of exceedances of the daily PM10 limit as well as the PM10 temporal variation was highly influenced by air masses from North Africa. Although North African transport was observed on only 9% of the days, it contributed the highest observed PM10 levels. Transport from the Atlantic Ocean was observed on 68% of the days; transport from Europe on 13%; low transport and local influences on 7%; and transport from the Mediterranean region on 3% of the days. The mean O3 concentrations were 45 and 55 μg m−3 in Pamplona and Alsasua, respectively, which were above the values reported for the main Spanish cities. The mean NO and NO2 levels were very similar in both sites (12 and 26 μg m−3, respectively). Mean SO2 levels were 8 μg m−3 in Pamplona and 5 μg m−3 in Alsasua. Hourly levels of PM10, NO and NO2 showed similar variations with the typically two coincident maximums during traffic rush hours demonstrating a major anthropogenic origin of PM10, in spite of the sporadic dust outbreaks.  相似文献   

16.
内蒙古半干旱草原区大气气溶胶浓度以及散射等特性对生态环境、气候变化与预测研究有重要意义,文利用2009年1~4月在锡林浩特观象台草原站的观测资料,分析了冬、春季背景大气气溶胶质量浓度、黑碳质量浓度、散射系数的分布特征。研究发现,背景天气下,PM10、PM2.5、PM1.0浓度值都较低,平均值分别为22.7、9.5、6.1μg/m3,3种PM浓度值间的相关性不同;黑碳浓度平均值为0.59μg/m3,小粒子中的含量较高,其日分布规律受人类活动影响较大,与各PM浓度分布有较大不同;散射系数平均值为31.2Mm-1,与PM10、PM2.5、PM1.0、黑碳质量浓度都显著相关。三种PM中,PM2.5对散射和吸收的影响最大。风速、相对湿度对不同粒径的PM以及黑碳浓度、散射系数的影响有所不同。  相似文献   

17.
佛山市高明区环境空气污染物变化分析   总被引:1,自引:1,他引:0  
根据佛山市高明区2007—2012年环境空气监测数据资料,分析该区近6年来空气污染物的变化趋势和影响因素。结果表明,2007—2012年该区空气污染呈现由单一型污染向复合型污染转变,综合污染指数总体上升,污染物以SO2、PM10为主。SO2、NO2浓度呈逐年增长,PM10则呈平稳状态。三者污染浓度最高值均在每年第4季度出现。该区的SO2浓度主要受工业污染源影响;NO2也受工业影响显著,与机动车数量呈正相关;PM10与烟粉尘排放量呈正相关,与降水量呈负相关。因此,改善该区环境空气应着重从控制工业污染源、扬尘污染、机动车排气污染3大方面开展工作。  相似文献   

18.
2022年春季,受新一轮新冠疫情影响,长三角各城市采取了一系列管控措施,使得大气污染物排放水平降低。对2022年春季(3—5月)南京及长三角地区的六项污染物尤其是臭氧(O3)的变化特征进行了分析,从气象因素和O3前体物方面,同时利用基于观测的模型(OBM)对南京O3污染变化原因进行了研究,并分析了南京挥发性有机物(VOCs)的关键活性组分和来源。结果表明:2022年春季,南京PM2.5、PM10、NO2和CO均值浓度均同比下降,但O3日最大8 h滑动平均质量浓度(O3-8 h)同比上升19.8%,O3-8 h超标时间同比增加9 d;长三角区域O3-8 h同比上升17.9%,O3-8 h超标天数为2021年同期的2.5倍。南京O3浓度上升的原因:一方面是由于不利的气象条件,另一方面是由于南京O3生成处于VOCs控制区,但氮氧化物(NOx)降幅大于VOCs降幅,同时结合O3前体物削减方案的分析结果发现,VOCs和NOx不当的削减比例会导致O3浓度不降反升。南京O3生成的关键VOC活性物种依次为乙醛、丙烯、间/对二甲苯、丙烯醛和乙烯;正定矩阵因子分解(PMF)解析结果显示,机动车尾气是南京城区VOCs的主要来源,其次为液化石油气/天然气使用和石油化工。  相似文献   

19.
西宁市城区冬季PM2.5和PM10中有机碳、元素碳污染特征   总被引:1,自引:0,他引:1  
2014年11月—2015年1月对西宁市冬季开展PM_(2.5)和PM_(10)的连续监测。利用DRI 2001A型热光碳分析仪(美国)对有机碳和元素碳进行分析,结果表明:西宁市冬季PM_(2.5)和PM_(10)中碳气溶胶所占比例分别为33.13%±6.83%、24.21%±6.27%,说明碳气溶胶主要集中在PM_(2.5)中;OC/EC值均大于2,说明西宁市大气中存在二次污染;SOC占PM_(2.5)和PM_(10)的质量浓度比例分别为46.50%和57.40%,PM_(2.5)中SOC浓度占PM_(10)中SOC浓度的61.88%,说明SOC主要存在于PM_(2.5)中,且SOC形成的二次污染和直接排放的一次污染都是西宁市碳气溶胶的主要来源;与其他城市比较发现,西宁市冬季PM_(2.5)中的碳气溶胶含量普遍高于其他城市,PM_(10)中OC质量浓度相对其他城市较高,EC质量浓度偏低;OC和EC的相关性不显著,说明来源不统一;进一步对OC和EC各组分质量浓度进行分析知,西宁市冬季碳气溶胶主要来源于机动车汽油排放、燃煤和生物质燃烧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号