首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
钦州湾近岸海域水质状况及富营养化分析   总被引:3,自引:1,他引:2       下载免费PDF全文
2012年5月钦州湾近岸海域水质监测结果表明,钦州湾近岸水温、盐度、pH、溶解氧等基本环境参数均有利于亚热带海洋生物的生长繁殖;溶解无机氮(DIN)和活性硅酸盐(SiO2-3-Si)均显示过剩,但溶解无机磷(DIP)具有低磷特征,高的氮磷比值使PO3-4-P可能成为浮游植物生长的潜在限制因子,且COD部分站位出现超标现象。污染指数(A)和单因子污染指数(Pi)结果显示,近期整个钦州湾近岸水域污染程度达到2级,属于开始受到污染,水质受到化学耗氧有机物不同程度的污染,超标率达到30%。富营养状态指数结果表明,钦州湾近岸海域总体尚未达到富营养化,但局部区域已出现富营养化状况。COD对富营养化的贡献率平均值及范围为72.46%(67.36%~83.96%),COD已成为影响钦州湾近岸海域富营养化的重要因素。  相似文献   

2.
钦州湾枯水期富营养化评价及其近5年变化趋势   总被引:6,自引:1,他引:5  
利用近5年枯水期现场调查的结果,采用富营养化指数法对该海湾富营养化程度进行评价并探求其变化趋势。结果表明近5年钦州湾枯水期富营养化指数的变化为0.08~10.2,其空间分布表现为沿着盐度梯度从茅岭江或钦江河口往外富营养化逐渐减轻。从2006年到2010年钦州湾富营养化从贫营养化往中度和重富营养化程度发展,富营养化显逐渐加重的趋势,在近两年河口区达到了重富营养化程度。陆源径流污染源的输入是富营养化空间分布的主要决定因素,而近5年富营养化逐渐加重的趋势主要是由不断增加的磷酸盐导致。海湾富营养化程度的增加并没有引起浮游植物生物量的急剧增加,但却增加了赤潮等生态灾害的风险。  相似文献   

3.
钦州湾春季水质营养状况分析与评价   总被引:3,自引:1,他引:2  
根据2010年4月对钦州湾海域调查结果,分析并评价了该海域春季的营养状况。结果表明,表层海水中DIN和SiO3-Si都为茅尾海钦江入海口含量较高,PO4-P为茅尾海西南部沿岸增养殖区含量较高,DIN、PO4-P和SiO3-Si水平分布上均表现为湾内含量高于湾外。从营养结构看,与Justic等提出的营养盐化学计量限制标准比较,符合P限制条件,PO4-P可能成为浮游植物生长的潜在限制因子。根据营养状态指数评价模式和有机污染评价指数计算结果显示,2010年春季钦州湾海域营养水平属于中营养水平,有机污染程度属4级,表明钦州湾表层海水水质已达到中度污染。  相似文献   

4.
2019年秋季和2020年春季在大亚湾海域开展了生态环境现状调查,调查要素包括水温、盐度、pH、溶解氧、化学需氧量(COD)、溶解无机氮(DIN)、磷酸盐(DIP)、叶绿素a等。秋季DIN和DIP平均浓度分别为(5.00±3.36)、(0.31±0.56) μmol/L,春季分别为(3.12±1.97)、(0.13±0.05) μmol/L,春季DIN和DIP含量低于秋季。秋、春季DIN和DIP高值区均位于淡澳河入海口、哑铃湾和范和港湾口以及渔业养殖和港口交汇海域,且呈现自湾顶至湾口逐渐减小趋势,主要受入海径流、外海水入侵、渔业养殖、污水排放等多重因素影响。大部分海域处于贫营养化状态,仅湾顶局部海域为中度富营养化水平。春季叶绿素a平均值为(2.10±1.07) μg/L,大于秋季[(0.83±0.54) μg/L],秋、春季叶绿素a空间分布大体与营养盐相同,即湾顶高,湾中和湾口逐渐降低,秋、春季N/P平均值分别为30.52±20.09和26.68±17.70,湾顶浮游植物繁殖的主要限制因子为磷,湾口的主要限制因子为氮。  相似文献   

5.
俚岛湾海域砷的分布特征及污染评价   总被引:1,自引:1,他引:0       下载免费PDF全文
以威海俚岛湾养殖区为研究对象,调查研究了俚岛湾海域表层海水和沉积物中总砷的分布特征,并综合评价了砷的污染状况及潜在生态风险。俚岛湾海域表层海水总砷浓度为1.78~2.78μg/L,平均浓度为2.20μg/L,比大洋水略高,俚岛湾海域海水水质较好,未受到砷污染;海水中砷的季节变化为夏季较高、秋冬季基本稳定、春季最低。俚岛湾海域表层沉积物中砷的平面分布呈现出由近岸向远岸降低的趋势,砷含量的年际变化甚微,基本保持稳定的水平;采用潜在生态风险指数法和重金属质量基准法对沉积物进行评价。评价结果表明,该海域表层沉积物中砷污染水平较低,属于低潜在生态风险。  相似文献   

6.
黄河兰州段氨氮含量变化特征分析   总被引:1,自引:0,他引:1  
于2007年对黄河兰州市区段上的新城桥断面和雁儿湾断面逐月取样,测定了其中氨氮、溶解氧、温度、pH值等指标。经分析认为,两断面氨氮含量最高值出现在枯水期、最低值均出现在枯水期,两断面均有水温低时氨氮含量升高、水温高时氨氮含量降低的现象,氨氮与溶解氧变化关系不明显。  相似文献   

7.
泸沽湖坐落于川滇交界处,是中国典型高原淡水湖泊。对泸沽湖水质的客观评价对于其规划保护及保护成效评估极为重要。鉴于溶解氧常常成为决定泸沽湖水质类别的唯一关键指标,在综合分析泸沽湖2013—2020年连续8年水环境主要指标变化的基础上,着重分析了溶解氧随季节、年际等的变化情况及其主要影响因素。结果表明,溶解氧浓度及饱和率存在明显的季节和年际波动。其中:溶解氧浓度一般是在春季升至全年最高,夏季末降低,并在秋冬季维持低位;溶解氧饱和率则是夏秋季节最高,冬季最低。溶解氧浓度的季节变化与水温显著负相关,而溶解氧饱和率的季节变化和水温、pH显著正相关;溶解氧浓度及饱和率的年际变化与水质主要指标均不存在显著相关关系。受高海拔低气压影响,虽然采取了大气压和温度补偿校准,但泸沽湖溶解氧浓度仍不易达到Ⅰ类水质标准限值(7.5 mg/L);而优良的水质加之茂盛的水生植被使得其溶解氧饱和率长期处于较高水平,可以达到Ⅰ类标准限值(90%)。因此,在自然环境特征类似于泸沽湖的水质优良高原湖泊,优先以饱和率作为溶解氧的评价指标更为合理。  相似文献   

8.
釜溪河为沱江一级支流,在自贡城区段设有国考碳研所断面。收集碳研所断面近10年来水质自动站数据,分析溶解氧(DO)变化特征,采样调查釜溪河自贡城区段水质及河道底泥污染状况,采用相关性分析、数值模拟等,研究分析釜溪河自贡城区段溶解氧分布特征及碳研所断面季节性低氧成因。研究结果表明,碳研所断面的溶解氧质量浓度变化特征呈现春末夏初最低,白天高晚上低的特征。釜溪河碳研所断面河水耗氧类污染物质量浓度较沱江流域内其他断面高,耗氧强度较大,溶解氧质量浓度较沱江流域其他断面偏低;其次,研究河段中釜溪河污水厂以下河段受污水厂低氧水排入和金子凼堰底层低氧水下泄影响,其溶解氧水平整体较污水厂以上河段低;最后,河段底泥有机质含量较高,春夏季气温升高将导致微生物分解活性增强大量消耗溶解氧,同时,闸坝和外来水体排入的水文扰动造成污水厂以下河段水温梯度弱,表层溶解氧易受底层低氧水影响,促使断面形成季节性低氧现象。溶解氧预测模型结果也进一步证实了温度变化和垂向温度梯度弱是碳研所断面溶解氧质量浓度季节性偏低的主要因素。  相似文献   

9.
河口是河流和海洋生态系统的过渡带,目前中国缺乏河口区划界和水质评价标准,河口区及其附近海域环境质量评价直接使用《海水水质标准》(GB 3097—1997)对标评价的方式,评价结果往往与实际不符,对河口地区开发建设和管理保护不利。笔者系统分析了中国河口区划分及水质评价的现状和存在问题,以北部湾主要入海河口钦州湾为例比较了河口区营养盐背景值与海洋营养盐背景值,两者差异显著,认为使用《海水水质标准》(GB 3097—1997)对河口区进行评价不能很好地反映环境质量。因此依据现行的《地表水环境质量标准》(GB 3838—2002)、《海水水质标准》(GB 3097—1997)和《近岸海域环境功能区管理办法》,提出使用盐度等数据探讨河口混合区划定及建立河口混合区水质营养盐标准限值的方法。在钦州湾的应用案例中,河口混合区的划定和河口区营养盐标准限值确定,都具有科学性和可操作性。使用河口混合区营养盐标准进行评价的结果比直接使用《海水水质标准》(GB 3097—1997)评价能更准确地反映环境质量,可为河口区划界及水质评价提供方法参考。  相似文献   

10.
浙江近岸海域春季表层溶解氧饱和度分布及影响因素   总被引:1,自引:0,他引:1  
根据2014年春季对浙江省近岸海域溶解氧的调查结果,结合现场的温度和盐度,得出溶解氧饱和度的平面分布,并在此基础上探讨了饱和度与温度、盐度、化学需氧量、浮游植物丰度之间的关系。结果显示,浙江省近岸海域溶解氧饱和度范围为92.1%~120%,均值为100%。总体呈西部沿岸低,东部外海高的平面分布趋势。溶解氧饱和度高值区与浮游植物丰度的高值区一致。低饱和区域化学需氧量含量基本高于1 mg/L。陆源径流和有机物质耗氧分解是沿岸低饱和区域主要控制因素,外海水和浮游植物光合作用是高饱和区域主要控制因素。径流和外海水对有机物质分解和浮游植物光合作用有一定的调控作用。  相似文献   

11.
运用多元统计方法,对东江中游水质自动站(河源临江站和惠州剑潭站)2009-2012年水质监测数据进行时空分异特征及影响因素研究。结果表明:水站水质在Ⅰ类~Ⅲ类之间;空间特征差异为 T 与 TB 差异不显著,pH 值、EC、DO、IMn、NH3-N 及 TP均存在极显著差异;水期体征差异为河源临江站除 DO各水期差异显著外,其他指标差异不明显,惠州剑潭站 pH值、EC、IMn与 TP各水期均呈显著差异,NH3-N 水期差异不显著。Pearson 相关性分析表明,T 是制约河源临江站水体 DO的主要相关因子,营养盐作用相对较低;惠州剑潭站水体 DO 与 T、TP及 IMn呈极显著负相关关系。通过因子分析,识别出影响惠州剑潭水质的主因子,量化了水体理化性质、地表径流及人为污染对水质变化的贡献。  相似文献   

12.
The usefulness of water quality indices, as the indicators of water pollution, for assessment of spatial-temporal changes and classification of river water qualities was verified. Four water quality indices were investigated: WQI (considering 18 water quality parameters), WQI(min) and WQI(m) (considering five water quality parameters: temperature, pH, DO, EC and TSS) and WQI(DO) (considering a single parameter, DO). The water quality indices WQI(min), WQI(m) and WQI(DO) could be of particular interest for the developing countries because of the minimum analytical cost involved. As a case study, water quality indices were used to evaluate spatial and temporal changes of the water quality in the Bagmati river basin (Nepal) for the study period 1999-2003. The results allowed us to determine the serious negative effects of the city urban activity on the river water quality. In the studied section of the river, the water quality index (WQI) was 71 units (classified as good) at the entry station and 47.6 units (classified as bad) at the outlet station. For the studied period, a significant decrease in water quality (mean WQI decrease = 11.6%, p = 0.042) was observed in the rural areas. A comparative analysis revealed that the urban water quality was significantly bad as compared with rural. The analysis enabled to classify the water quality stations into three groups: good water quality, medium water quality and bad water quality. WQI(min) resulted in overestimation of the water quality but with similar trend as with WQI and is useful for the periodic routine monitoring program. The correlation of WQI with WQI(min) and DO resulted two new indices WQI(m) and WQI(DO), respectively. The classification of waters based on WQI(m) and WQI(DO) coincided in 90 and 93% of the samples, respectively.  相似文献   

13.
Belgaum city is a developmental hub of Karnataka State in India. In the recent time, the Government of Karnataka has planned to set up many processing industries in the vicinity of Belgaum to meet the growing needs of the region and to ease out the pressure on the already existing industrial hubs in Karnataka State. Ghataprabha, a tributary of river Krishna, is one of the major sources of water supply to Belgaum city and adjoining areas. During the last decade, a lot of anthropogenic activities such as unplanned agricultural activities are ongoing in many parts of the catchment. Therefore, people of Belgaum are more concerned about the quality of water in Ghataprabha river. Considering the significance of water quality of the river, surface water samples were collected during Pre- and Post-monsoon season from selected locations and analyzed for both physical and chemical constituents in the laboratory. The results indicate that the chemical parameters such as bicarbonates, sulphates, chlorides, sodium, potassium, calcium and magnesium are within the permissible limits. QUAL2E model was applied to assess the impact of point and non-point sources of pollution on the river water quality. Results show that the water quality conditions are highly acceptable all along the river stretch. Further, the variation of DO–BOD5 with river discharge was also estimated. Also, a significant variations in DO (decrease in DO) with the increase in river flow was observed. However, at the downstream end, considerable improvement in DO was noticed which is attributed to the damming effect of the reservoir.  相似文献   

14.
于2018—2021年对南京市及国考断面七桥瓮进行水质调查,分析其溶解氧变化特征,采用水质水量联合评价及皮尔逊相关分析法,并结合水文气象等相关信息,对南京市地表水溶解氧分布特征及国考七桥瓮断面低氧成因进行研究分析。结果表明,南京市地表水溶解氧浓度夏季最低,中心主城区及附近区域溶解氧浓度均相对较低。七桥瓮断面溶解氧浓度在2.25~11.07 mg/L,其中5—9月溶解氧易出现超标波动。溶解氧浓度昼间高于夜间,与pH值呈正相关关系,与水温、高锰酸盐指数、氨氮、总磷均呈负相关关系。水温和上游来水带入的耗氧污染物是七桥瓮断面溶解氧偏低的主要成因,其中,溶解氧浓度与水温相关性最为显著。研究结论可为七桥瓮断面稳定达标提供基础支撑,为秦淮河流域精准治污提供技术依据,为南京市水环境多源同治提供治理思路。  相似文献   

15.
A modified Streeter–Phelps equation and the Hydrological Engineering Centers River Analysis System (HEC-RAS) were combined to assess water quality of the Tan-Sui River and its tributaries. The Tan-Sui River is the main source of water supply for northern Taiwan, and the water quality of its stream is significantly affected by tides. In this study, HEC-RAS was employed to assess the impact of tides on water quality and to calculate reoxygenation coefficients. The modified Streeter–Phelps equation was used to calculate water quality in terms of contaminant degradation and reoxygenation. Biochemical oxygen demand (BOD) and ammonia nitrogen (NH3–N), the most important identified sources of water pollution in the rivers investigated, were evaluated. Dissolved oxygen (DO) was also simulated, since it is often used as a staple of water quality. Results showed that employing HEC-RAS for hydraulic calculations improves the modified Streeter–Phelps simulation. In river sections without tidal influence, water quality was sensitive to the BOD and NH3–N degradation constants. Downstream of Chin-Mei Creek, while the BOD degradation constant decreased by 80%, BOD and DO concentrations increased from 7.1?mg/L to 10.7?mg/L and 5.0?mg/L to 7.2?mg/L, respectively, indicating that water quality was not as sensitive to variations of the BOD degradation constant as expected. The concentrations of DO and BOD at the river mouth had a significant impact on water quality for the tidal sections of the investigated rivers due to mixing of tidal and river waters. The BOD and NH3–N degradation constants in the tidal sections had little impact on water quality simulations. This study demonstrated the innovative combination of the modified Streeter–Phelps equation and HEC-RAS to assess the impact of tidal variation and to simulate the water quality of a tidal river when available data is rather limited.  相似文献   

16.
Various physico-chemical characteristics of the River Yamuna flowing in Haryana through Delhi were studied in the summer (April 1998) and winter (Jan.-Feb. 1999). Ecological parameters like dissolved oxygen (DO), pH, nitrate (NO3-), sulfate (SO4(2-)), and phosphate (PO4(3-)), were analyzed and compared with standard permissible limits to assess the best-designated use of the river water for various purposes. The river in Delhi upstream was of better quality whereas the Delhi downstream stretch was polluted as indicated by very low DO and high total dissolved solids (TDS), electric conductivity (EC), total hardness, Na+, K+, Cl-, F- and SO4(2-). The differences in various parameters were statistically significant (p < 0.01) when compared for the Delhi upstream and downstream stretches of the river, particularly in summer. DO and TDS were found to be two important parameters, which showed strong correlation with several other parameters and hence can serve as good indices of river water quality. The river tended to recover from the pollution stress after flowing through a distance of about 80 km downstream of Delhi.  相似文献   

17.
We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Poznań (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74 % exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water.  相似文献   

18.
To determine the possible contributions of point and non-point sources to carbon and nutrient loading in the Ganga River, we analyzed N, P, and organic carbon (OC) in the atmospheric deposits, surface runoff, and in the river along a 37-km stretch from 2013 to 2015. We also assessed the trophic status of the river as influenced by such sources of nutrient input. Although the river N, P, and productivity showed a declining trend with increasing discharge, runoff DOC and dissolved reactive phosphorus (DRP) increased by 88.05 and 122.7% between the Adpr and Rjht sites, indicating contributions from atmospheric deposition (AD) coupled with land use where agriculture appeared to be the major contributor. Point source input led to increased river concentrations of NO3 ?, NH4 +, DRP, and DOC by 10.5, 115.9, 115.2, and 67.3%, respectively. Increases in N, P, and productivity along the gradient were significantly negatively correlated with river discharge (p < 0.001), while river DOC and dissolved silica showed positive relationships. The results revealed large differences in point and non-point sources of carbon and nutrient input into the Ganga River, although these variations were strongly influenced by the seasonality in surface runoff and river discharge. Despite these variations, N and P concentrations were sufficient to enhance phytoplankton growth along the study stretch. Allochthonous input together with enhanced autotrophy would accelerate heterotrophic growth, degrading the river more rapidly in the near future. This study suggests the need for large-scale inter-regional time series data on the point and non-point source partitioning and associated food web dynamics of this major river system.  相似文献   

19.
Tayrona National Natural Park (TNNP) is a hotspot of coral reef biodiversity in the Colombian Caribbean, located between the city of Santa Marta (>455,000 inhabitants) and several smaller river mouths (Rio Piedras, Mendihuaca, Guachaca). The region also experiences a strong seasonal variation in physical parameters (temperature, salinity, wind, and water currents) due to alternating dry seasons with coastal upwelling and rainy seasons. However, the spatial and temporal effects on water quality parameters relevant for coral reef functioning have not been investigated. Therefore, inorganic nutrient, chlorophyll a, and particulate organic carbon (POC) concentrations along with biological O2 demand (BOD), pH, and water clarity directly above local coral reefs (~10 m water depth) were monitored for 25 months in four bays along a distance gradient (12–20 km) to Santa Marta in the southwest and to the first river mouth (17–27 km) in the east. This is by far the most comprehensive coral reefs water quality dataset for the region. Findings revealed that particularly during non-upwelling, chlorophyll a and POC concentrations along with BOD significantly increased with decreasing distance to the rivers in the east, suggesting that the observed spatial water quality decline was triggered by riverine runoff and not by the countercurrent-located Santa Marta. Nitrate, nitrite, and chlorophyll a concentrations significantly increased during upwelling, while pH and water clarity decreased. Generally, water quality in TNNP was close to oligotrophic conditions adequate for coral reef growth during non-upwelling, but exceeded critical threshold values during upwelling and in relation to riverine discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号