首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine birds are sensitive indicators of the condition of marine ecosystems in the Arctic, partly because they feed at the top of the arctic food chain. The Northern Ecosystem Initiative (NEI) recently supported four separate studies that investigated aspects of Arctic marine bird science which simultaneously addressed goals of the NEI to better understand northern ecosystems and their response to environmental stressors. The projects used both scientific and traditional knowledge to examine the relationship between sea-ice, contaminants, and the ecology of marine birds, and to transfer environmental knowledge to students. Results from these investigations confirm that changes are occurring in Arctic environments, and that these are captured through marine bird research. Collectively these studies provided new data that supported NEI objectives of monitoring the health of the Arctic ecosystem, and contributed to Canada's international obligations for Arctic science.  相似文献   

2.
The Impact of Climate Change on Mammal Diversity in Canada   总被引:2,自引:0,他引:2  
Current large-scale mammalian diversity patterns in Canada can be accurately explained using various measurements of heat energy. Unfortunately, climatic change is predicted to alter the fundamental climatic basis for contemporary diversity gradients, with the expected consequence that much of the Canadian biota will need to migrate in order to remain within climatically suitable regions. We make predictions regarding future mammal diversity patterns in Canada, and therefore provide a preliminary indication of where management intervention should be directed in order to conserve mammal diversity as climate changes. We also examine the current distributions of individual mammal species in Canada in order to determine which taxa cannot migrate farther north because of the Arctic Ocean barrier. Of the 25 species that fall into this category, we examine the predicted loss of habitat in one keystone species – Dicrostonyx groenlandicus, the collared lemming – and find that this taxon is likely to lose approximately 60% of its habitat with unpredictable but likely detrimental consequences for the arctic biota. We discuss the implications of our findings briefly.  相似文献   

3.
Since the 1980s, lead levels decreased significantly in most marine biota from the Baltic Sea, the Kattegatt and the Skagerrack and in terrestrial biota from south and central Sweden, analysed in the National Swedish Environmental Monitoring Programme. In herring and cod liver, the decrease was 4.2-7.1% annually 1981-2003 and in perch liver and guillemot eggs analysed since the middle of the 1990s the decrease was 10-13%. In kidneys of young starlings from south and central Sweden, lead levels decreased 6.2-12% annually and the annual decrease in liver and kidney from young moose was 8.8% and 6.5%, respectively. In northern Sweden, lead levels decreased in pike liver by 2.8% between 1969 and 1994 and in reindeer liver by 3.5% annually while a significant increase (5% annually 1981-1994) has been detected in arctic char. In some marine biota, there were indications of a larger decrease during the last ten years compared to the whole period. The large decline in lead emission to the atmosphere during the last twenty years, mainly because of decreasing use of leaded gasoline has obviously resulted in decreasing lead levels in biota.  相似文献   

4.
One of the primary goals of any monitoring program is to detect anthropogenic changes; however natural variability can be so high that it prevents detection of human-induced effects. This project synthesized existing data to identify patterns of temporal variation within nearshore marine habitats in the Gulf of Alaska and was motivated by the need for monitoring in this environment vulnerable to oil spills, such as the Exxon Valdez. I collected 786 time series that were greater than 2 years in length from unimpacted (control) sites for 226 species. Temporal variability (CV) varied widely from 1% to 447%, averaged 89%, and was not significantly different among marine populations of birds, mammals, fish, algae and invertebrates. Temporal variability of invertebrates and algae were not significantly different when abundance was measured as biomass, percent cover or density. Both invertebrates and algae showed higher variability in low intertidal habitat compared to high intertidal habitat. For invertebrates, populations on bedrock substrates had greater temporal variability than those on cobble or soft sediment substrates, while there was not a significant difference for algae on either cobble or bedrock substrates. Many of these results are surprising, given differences in movement patterns, survey methods, life histories, and so forth. These results suggest that no single group, measure or habitat will be better or worse for monitoring and detecting change. Understanding variability is a difficult task, but until we tackle it, we will likely not understand or have predictive capabilities in ecological populations and communities.  相似文献   

5.
Total mercury (THg), methylmercury (MeHg) and stable isotopes of nitrogen (delta(15)N) and carbon (delta(13)C) were measured in three invertebrate, five fish, three seabird and three marine mammal species of central West Greenland to investigate trophic transfer of mercury in this Arctic marine food web. The food web magnification factor (FWMF) estimated as the slope of the regression between the natural logarithm of THg or MeHg concentrations (mg kg(-1) dw) and tissue delta(15)N ( per thousand) was estimated to 0.183 (SE = 0.052) for THg and 0.339 (SE = 0.075) for MeHg. The FWMFs were not only comparable with those reported for other Arctic marine food webs but also with quite different food webs such as freshwater lakes in the sub-Arctic, East Africa and Papua New Guinea. This suggests similar mechanisms of mercury assimilation and isotopic (delta(15)N) discrimination among a broad range of aquatic taxa and underlines the possibility of broad ecosystem comparisons using the combined contaminant and stable isotope approach.  相似文献   

6.
In contrast to the large body of data on naturally-occurring arsenic compounds in marine organisms, relatively little is known about arsenic speciation in freshwater biota. We report an investigation using HPLC-ICPMS into the arsenic compounds in five species of freshwater mussels collected from five sites from the Danube in Hungary. Total arsenic concentrations in the mussels ranged from 3.8-12.8 mg As kg(-1). The arsenic speciation patterns were broadly similar for mussels representing each of the five species and five sites, but quite different from those reported for marine mussels. The major extractable arsenicals were two oxo arsenosugars (glycerol sugar and phosphate sugar), and their thio analogues (thio glycerol sugar and thio phosphate sugar). Arsenobetaine, usually the major arsenical in marine organisms, was not a significant compound in the freshwater mussels and was detected in only three of the 11 samples. This is the first report of thio arsenosugars in freshwater biota and suggests that these compounds may be common and widespread naturally-occurring arsenicals.  相似文献   

7.
The rehabilitation of contaminated sites is becoming a rising preoccupation which requires the knowledge of their past before realization of a suitable remediation. Physicochemical analysis must be realized jointly with the use of bioindicator organisms, which, owing to their bioaccumulation capacities, will reveal the bioavailability of metals in soils. Among terrestrial invertebrates, gastropods like Helix aspersa aspersa possess an important organotropism for metals in their digestive gland and they can be used in active biomonitoring. During in situ monitoring, two parameters are tested: growth and accumulation of Fe, Mn, Zn, Cu, Cd, Ni, Pb, and Cr in viscera of snails. Environmental conditions, like humidity or autochthonous vegetation, are able to modify growth or bioaccumulation. In order to remove the variation of these factors, microcosms previously used must be improved: they were equipped with porous candles, which continually humidify soil. Concerning vegetation, an experimental plan was realized to determine the combination of food with the best compromise between growth and bioaccumulation: the combination clover-snail feed was chosen. Thus, in situ, the experimental environment will be repeated in all investigated sites and used to allow follow up of their contamination levels and intercomparison between different sites.  相似文献   

8.
Some of the people living in the Chukotka Peninsula of Russia depend heavily on marine mammals, but little is known of the exact dietary patterns and plasma levels of POPs among these populations. In this study, POPs levels in plasma from 50 participants from the isolated community of Uelen (Bering Strait) were determined and related to dietary information obtained through a food frequency questionnaire. The intake of marine mammals was high and the combined intake of blubber from walrus, seal and whale was a significant predictor (p < 0.01) of plasma concentrations of sum PCBs and borderline for sum CDs (p = 0.02) and sum DDTs (p = 0.04). There was a significant gender difference in the levels of POPs, and among women there was a significant increase with age. Extensive breastfeeding and lower blubber intake among women could be possible explanations for this gender difference. Despite the high intake of blubber the plasma levels of PCBs and DDTs were lower than some of those reported for the East Coast of Greenland. The geometric mean values for sum PCBs (17 congeners) and sum DDTs were 1316 ng g(-1) lipids and 563 ng g(-1) lipids, respectively. PCB 163, which partly co-eluted with PCB 138, was found in high concentrations (40% of PCB 138). This raises questions regarding the validity of using PCB 138 and PCB 153 to calculate the level of Arochlor 1260. The geometric mean of sum CDs was 518 ng g(-1) lipids. Concentrations of beta-HCH (geometric mean; 410 ng g(-1) lipids) were higher than observed for other native populations depending on marine mammals. Transportation of beta-HCH by ocean currents through the Bering Strait into the Arctic Ocean or regional point sources might explain these elevated levels.  相似文献   

9.
Chemical monitoring of aquatic ecosystems describes the chemical exposures of aquatic biota and measures the success of pollution control. However, meeting water quality criteria cannot assure that aquatic biota are protected from the effects of unexpected chemicals, mixtures and interactions between toxicity and environmental stressors.Biological monitoring is an obvious solution since aquatic biota integrate spatial and temporal variations in exposure to many simultaneous stressors. Top predators, typical of specific ecosystems (e.g. lake trout in cold water oligotrophic lakes) indicate whether environmental criteria have been met. The presence of naturally reproducing, self-sustaining and productive stocks of edible fish demonstrates a high quality environment. If these conditions are not met, there is a clear sign of environmental degradation. Specific changes in population structure and performance may also diagnose which life stage is affected and the nature of the stressor.Unfortunately, environmental managers cannot rely solely on populations, communities or ecosystems to indicate chmical effects. The lag between identifying a problem and finding a cause may destroy the resource that we wish to protect, particularly where chemicals are persistent.A solution to this dilemma is the measurement of primary or secondary responses of individual organisms to chemical exposure. Since toxicity at any level of organization must start with a reaction between a chemical and a biological substrate, these responses are the most sensitive and earliest sign of chemical exposure and effect.Application of this idea requires research on molecular mechanisms of chemical toxicity in aquatic biota and adaptation of existing mammalian diagnostic tools. Since relevance of biochemical responses to populations and ecosystems is not obvious, there is a need to study the links between chemical exposure and responses of individuals, populations and ecosystems.The recognition of chemical problems and cause-effect relationships requires the integration of chemical and biological monitoring, using the principles of epidemiology to test the strength of relationships and to identify specific research needs. The contamination of a reservoir with selenium and impacts on fish populations provide an excellent example of this approach.  相似文献   

10.
Few data are available to quantify the transfer of both natural and anthropogenic radionuclides to detritivorous invertebrates to facilitate estimation of the internal dose to such biota in models used to assess radiation exposure. To enhance the available data, activity concentrations of 137Cs, 40K, 90Sr, 239?+?240Pu, 241Am, 235U and 238U were measured in ants (Formicidae) and corresponding undisturbed soil collected from the Zlatibor mountain in Serbia and ant/soil concentration ratios (CR) calculated. The 241Am concentration ratios for ants were fourfold higher than those calculated for ants in a previous study whereas they are similar to the more numerous data previously reported for a range of detritivorous invertebrates in other studies. CR values for 137Cs in ants were similar to the few other reported values and slightly lower than those for a range of detritivorous invertebrates. Those for 239?+?240Pu were slightly higher than those for ants in two other studies but they were close to upper limit of a range of data reported for detritivorous invertebrates. All the CR values will be included in a future revision of the ERICA Tool database and will particularly improve the information available for uranium.  相似文献   

11.
Climatic change will result in great changes in vegetation. In this paper, a biogeographical model, the BIOME1, was used to predict potential vegetation distribution in China under climate change. Firstly, the BIOME1 was validated according to the climate–vegetation relationships in China. Kappa statistics showed that the validated BIOME1 was able to capture the geographical patterns of vegetation more accurately. Then, the validated BIOME1 was used to predict the distribution of vegetation of China under two climatic scenarios produced by a Regional Circulation Model, RegCM2/CN. The simulation results showed obvious northward shifts of the boreal, temperate deciduous and evergreen and tropical forests, a large expansion of tropical dry forest/savanna and reduction of tundra on the Tibetan Plateau. Three vulnerable regions sensitive to climate changes are pointed out, i.e., Northern China, the Tibetan Plateau and Southwestern China (mainly Hengduan Mountains in Yunnan Province and west of Sichuan Province). In recent decades, China has experienced dramatic industrialization and population growth, which exert strong pressure on the environment of China. The consequences of climate changes warrant more attention for maintaining a sustainable environment for China.  相似文献   

12.
The National Biomonitoring Specimen Bank (NBSB), established in 1979 at the NIST Neutron Research Facility, Gaithersburg, Maryland, was specifically designed to store environmental specimens over long periods of time (50-100 years). This bank contains specimens (e.g., human livers, marine sediments, fish tissues, mussels, oysters, human diet samples, and marine mammal tissues) collected as part of several monitoring and research programs supported by U.S. Federal agencies. In 2002, NIST completed the construction of a second environmental specimen bank facility specifically designed for supporting monitoring and research on marine environmental health issues. This facility, the Marine Environmental Specimen Bank (Marine ESB) is located at the Hollings Marine Laboratory in Charleston, South Carolina, in partnership with a U.S. Federal resource agency, two universities, and a State of South Carolina resource agency. The Marine ESB provides a resource of research specimens that are used to address questions regarding temporal and geographic trends in environmental contamination, genetic separation of populations of animals, and the health status of various types of marine animals. Specimens banked include marine mammal tissues, bird tissues, mussels, and oysters. Plans are underway to establish protocols and initiate banking procedures for other types of marine organisms and environmental materials as part of an expanded effort to support research on the health of marine biota.  相似文献   

13.
Anthropogenic effect on the World Ocean in the course of exploiting its resources has led to a significant contamination of some ocean areas in the latest decades and to diminution of the natural capacity of marine ecosystems to reproduction and self-regulation. Thus, the most urgent problem of today has become evident: the problem of the World Ocean pollution and its negative ecological effects. Local pollutions and their ecological effects on the World Ocean go on acquiring large-scale regional and even global character since the elements of ocean ecosystems and the ocean properties are interrelated and interconditioned. Looking into pollutant transfer and transformation in the marine environment we can distinguish four subsystems: ocean-land, ocean-atmosphere, and water-bottom sediments interfaces as well as ocean water mass. Ocean-atmosphere and water-floor subsystems require special consideration since their coefficients of pollutant accumulation are much greater than that of the water mass. Besides water exchange, the processes of pollutant transfer in the water mass effect the interference between the solute and suspended matter on the one hand, and water mass-biota interaction on the other. Atmospheric transport and deposition of chemical toxicants are considerable sources of the World Ocean pollution; their share in the total balance of the anthropogenic pollution influx into marine environment is commensurable with the river runoff. The most dangerous, among various pollutants entering the World Ocean, are oil, hydrocarbon chlorides (pesticides, polychloride bifenyls), toxic metals (mercury, cadmium, lead), i.e. globally occurring chemical compounds continuously entering the marine environment and effecting marine organisms and their populations. Still new and new pollutants are being discovered now in the oceans: chloride and polychloride terpenes, nitrosamines, chlordane, etc. The problems of eutrophication and microbiological contamination of the inland seas and ocean coastal zones are becoming still more urgent. Accumulation of aromatic polycyclic carcinogenous hydrocarbons. BaP in particular, is pregnant with unexpected ecological effects. The highest PAH concentrations have been observed in the sea coast areas and in the zones of intensive navigation. Rather high coefficients (102–104) of BaP accumulation in the sea biota and bottom sediments are marked. Ecological and biological effects of changes in the chemical composition of the ocean make up the chain of interrelated reactions; transformation of natural biogeocenoses, disturbance of the cycle of carbon, nitrogen, sulphur and other elements, reduction of biological productivity and cell genome affection present the most essential effects of these reactions. Stresses in the abiotic component of the ecosystem are expressed through disturbances in the chemical balance, changes in the evaporation from the sea surface, oil aggregate formation (floatable biocenoses), disturbances in reducing reactions of biogenous elements, salinity and temperature variation, and so on. Population-biocenotic effects of the man-made impact, actually important for the level of ecosystem stability, include the following processes of the structural and functional character:
  1. alteration of the mean biomass of plankton and benthos populations, in particular in semi-enclosed seas and off-shore ocean areas;
  2. alteration of the number of higher taxons-genera or families of the sea organisms, in particular replacement of the dominant populations of mass species, and emergence of hydrobionts new for the marine environment;
  3. alteration of the relations between the numbers of some taxonomic groups of hydrobionts and abundant development of indicator species of the sea biota, e.g. BaP and PCB oxidizing microorganisms;
  4. disturbances in production/destruction processes of organic substances;
  5. energy flux changes in the marine ecosystem.
Analysis of the current knowledge on the ocean environment pollution and its negative effects has enabled to formulate the main directions of the World Ocean ecological monitoring. Investigations of the biogeochemical cycles of pollutants and elements in the marine environment, identification of the effect of pollutants abundant in the ocean on the Earth's climate and hydrochemical regime as well as major geophysical processes in the ocean and atmosphere make up integral parts of the ocean monitoring together with the studies of pollutant impact on the ocean biota which leads to biological regime alterations and affection of the sea organisms genofond.  相似文献   

14.
The condition of 25 stream sites in the Yakima River Basin, Washington, were assessed by the U.S. Geological Survey's National Water-Quality Assessment Program. Multimetric condition indices were developed and used to rank sites on the basis of physical, chemical, and biological characteristics. These indices showed that sites in the Cascades and Eastern Cascades ecoregions were largely unimpaired. In contrast, all but two sites in the Columbia Basin ecoregion were impaired, some severely. Agriculture (nutrients and pesticides) was the primary factor associated with impairment and all impaired sites were characterized by multiple indicators of impairment. All indices of biological condition (fish, invertebrates, and algae) declined as agricultural intensity increased. The response exhibited by invertebrates and algae suggested a threshold response with conditions declining precipitously at relatively low levels of agricultural intensity and little response at moderate to high levels of agricultural intensity. This pattern of response suggests that the success of mitigation will vary depending upon where on the response curve the mitigation is undertaken. Because the form of the community condition response is critical to effective water-quality management, the National Water-Quality Assessment Program is conducting studies to examine the response of biota to gradients of land-use intensity and the relevance of these responses to water-quality management. These land-use gradient pilot studies will be conducted in several urban areas starting in 1999.  相似文献   

15.
In lakes, the littoral habitat and its invertebrate communities are often exposed to water-level fluctuations. We examined the effects of seasonal changes on water level, substrata availability and benthic fauna in the littoral zone of Peri Lake, a shallow lake that has experienced a strong reduction in water level due to changes in rainfall. In this study, we also examined whether the abundance and composition of aquatic invertebrates differed among the four substrata. Our main objective was to assess the effect of seasonal changes on water level and benthic invertebrates inhabiting the different types of substrata. Benthic invertebrates were sampled four different substrata (Schoenoplectus californicus, sand and stones, allochthonous leaf litter, and macrophyte stands), and we also measured meteorological, physical and chemical variables. We found that complex habitats, such as allochthonous leaf litter and aquatic macrophyte, stand to be colonised by a larger number of macroinvertebrates because they provide more habitats or potential niches for colonisation by different species. In addition, we observed that during periods of low water level, the presence of substrata in the littoral zone decreased, as did the associated biota. Therefore, our results suggest that water level changes have a major functional impact on the littoral zone of the lake, and can affect substratum availability, which also impacts invertebrate communities.  相似文献   

16.
17.
Adopting recently developed clean laboratory techniques, antimony (Sb) and scandium (Sc) deposition were measured in a 63.72 m-long ice core (1842-1996) and a 5 m deep snow pit (1994-2004) collected on Devon Island, Canadian High Arctic. Antimony concentrations ranged from 0.07 to 108 pg g(-1) with a median of 0.98 pg g(-1)(N= 510). Scandium, used as a conservative reference element, revealed that dust inputs were effectively constant during the last 160 years. The atmospheric Sb signal preserved in the ice core reflects contamination from industrialisation, the economic boom which followed WWII, as well as the comparatively recent introduction of flue gas filter technologies and emission reduction efforts. Natural contributions to the total Sb inventory are negligible, meaning that anthropogenic emissions have dominated atmospheric Sb deposition throughout the entire period. The seasonal resolution of the snow pit showed that aerosols deposited during the Arctic winter, when air masses are derived mainly from Eurasia, show the greatest Sb concentrations. Deposition during summer, when air masses come mainly from North America, is still enriched in Sb, but less so. Snow and ice provide unambiguous evidence that enrichments of Sb in Arctic air have increased 50% during the past three decades, with two-thirds being deposited during winter. Most Sb is produced in Asia, primarily from Sb sulfides such as stibnite (Sb2S3), but also as a by-product of lead and copper smelting. In addition there is a growing worldwide use of Sb in automobile brake pads, plastics and flame retardants. In contrast to Pb which has gone into decline during the same interval because of the gradual elimination of gasoline lead additives, the enrichments of Sb have been increasing and today clearly exceed those of Pb. Given that the toxicity of Sb is comparable to that of Pb, Sb has now replaced Pb in the rank of potentially toxic trace metals in the Arctic atmosphere.  相似文献   

18.
The dose rates for six marine organisms, pelagic fish, benthic fish, mollusks, crustaceans, macroalgae, and polychaete worms, representative in marine ecosystems, have been predicted by the equilibrium model with the measured seawater activity concentrations at three locations around the Fukushima Daiich nuclear power plant after the accident on March 11, 2011. Model prediction showed that total dose rates for the biota in the costal sea reached 4.8E4 μGy/d for pelagic fish, 3.6E6 μGy/d for crustaceans, 3.8E6 μGy/d for benthic fish, 5.2E6 μGy/d for macroalgae, 6.6E6 μGy/d for mollusks, and 8.0E6 μGy/d for polychaete worms. The predicted total dose rates remained above the UNSCEAR’s (United Nations Scientific Committee on the Effect of Atomic Radiation) benchmark level (1.0E4 μGy/d for an individual aquatic organism), for only the initial short period, which seems to be insufficiently long to bring about any detrimental effect on the marine biota at the population level. Furthermore, the total dose rates for benthic fish and crustaceans approximated using the measured activity concentration of the biota and bottom sediment was well below the benchmark level. From these results, it may be concluded that the impact of the ionizing radiation on the marine biota around the Fukushima NPP as a consequence of the accident would be insignificant.  相似文献   

19.
Biological monitoring of a pulp and paper mill wastewater   总被引:1,自引:0,他引:1  
The physico-chemical testing required under the E.P.A. licence enables one to gauge the chemical effects of the APM wastewater on the Latrobe River, but it tells us nothing about likely effects on the aquatic biota. The APM bio-monitoring programme was instigated to provide evidence of any effects of wastewater discharges on the rivers biota. To date the programme has shown no adverse impact downstream. The laboratory bioassays on fish and algae have recently given way to the river fauna surveys as the regular monitor of wastewater quality. It is intended to continue with regular river surveys using the river's residents as indicators of water quality and future surveys will investigate reasons for the presently obscure variation in macro-invertebrate populations.  相似文献   

20.
Strontium-90 (90SR) released to the ground near the N Reactor at the U.S. Department of Energy's Hanford Site enters the Columbia River through shoreline seeps. The 90Sr is then potentially available for uptake by plants and animals. The life history and foraging behavior of nesting Canada geese is such that female geese could ingest 90Sr while foraging on shoreline plants. Radichemical analyses showed that goose eggshells taken from an island, downstream from the N Reactor, contained more 90Sr than did eggshells collected from other downstream islands. Reed canary grass samples taken from shoreline areas immediately downstream from the N Reactor contained higher concentrations of 90Sr than samples from other downstream areas. All goose eggshells did not contain enhanced levels of 90Sr, and all reed canary grass samples did not contain enhanced levels of 90Sr, but a relationship exists between the releases of 90Sr to the Columbia River and the enhanced levels of 90Sr in some of the environmental samples analyzed.Pacific Northwest Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-ACO6-76RLO 1830.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号