首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Synthetic-based drilling muds (SBMs) offer excellent technical characteristics while providing improved environmental performance over other drilling muds. The low acute toxicity and high biodegradability of SBMs suggest their discharge at sea would cause minimal impacts on marine ecosystems, however, chronic toxicity testing has demonstrated adverse effects of SBMs on fish health. Sparse environmental monitoring data indicate effects of SBMs on bottom invertebrates. However, no environmental toxicity assessment has been performed on fish attracted to the cutting piles. SBM formulations are mostly composed of synthetic base oils, weighting agents, and drilling additives such as emulsifiers, fluid loss agents, wetting agents, and brine. The present study aimed to evaluate the impact of exposure to individual ingredients of SBMs on fish health. To do so, a suite of biomarkers [ethoxyresorufin-O-deethylase (EROD) activity, biliary metabolites, sorbitol dehydrogenase (SDH) activity, DNA damage, and heat shock protein] have been measured in pink snapper (Pagrus auratus) exposed for 21 days to individual ingredients of SBMs. The primary emulsifier (Emul S50) followed by the fluid loss agent (LSL 50) caused the strongest biochemical responses in fish. The synthetic base oil (Rheosyn) caused the least response in juvenile fish. The results suggest that the impact of Syndrill 80:20 on fish health might be reduced by replacement of the primary emulsifier Emul S50 with an alternative ingredient of less toxicity to aquatic biota. The research provides a basis for improving the environmental performance of SBMs by reducing the environmental risk of their discharge and providing environmental managers with information regarding the potential toxicity of individual ingredients.  相似文献   

2.
During the 1994/1995 EMAP-Estauries program in the Carolinian Province we investigated the feasibility of using parasites of fish as response indicators. Parasites of fish are an indigenous component of healthy ecosystems. Within the EMAP-E design, the suite of environmental parameters which may affect parasite abundance, richness, prevalence, and diversity can be divided into three categories: 1) the physical and chemical characteristics of the water and sediment (including contaminants) external to the fish; 2) the internal environment defined by the physical condition (physiological) of individual fish; and 3) the presence and relative abundance of benthic macroinvertebrates, many of which serve as intermediate hosts. The biotic response of parasites to environmental stressors is also reflected in the health of fish. Parasite assemblages of silver perch Bairdiella chrysura respond to both natural and anthropogenic stressors. Our results showed that particular environmental stressors and specific parasites that respond include: temperature and monogeneans; contaminants and nematodes; low dissolved oxygen and protists; and salinity, together with a mixture of metal and organic contaminants and crustacea. Parasites of fish are useful biomarkers and appear to be more sensitive to environmental stressors than are the fish themselves. Parasite responses to selected environmental stressors may be used to discriminate polluted and unpolluted sites. The use of parasites of fish as biomarkers has relevant application to fisheries management and coastal monitoring programs.  相似文献   

3.
Biomarkers in fish can be a useful tool for environmental monitoring of aquatic ecosystems when diffuse pollution is becoming more important and new chemicals are being created continuously. There are, however, a number of drawbacks with this method. Because of environmental variability, health status of wild fish populations may differ between years, leading to unrepresentative results in long term studies. Furthermore, genetic or adaptive differences between populations complicate the interpretation of studies on different sites. The use of farmed fish, placed in cages, can reduce these problems. However, experimental conditions are likely to differ between sites. For practical reasons it may, e.g., be neccesary to use different types of caging. Here, the use of net cages and flow through tanks has been compared for a number of biomarkers. Rainbow trout (Oncorhynchus mykiss) were placed in net cages and flow through tanks in the river G?ta Alv, in western Sweden, during three different periods in 2004 and 2005. No differences between types of caging were found for any biomarker. Therefore, the results suggest that net cages and flow through tanks can be used and compared in environmental monitoring using biomarkers in caged rainbow trout. However, efforts should be taken to reduce differences in experimental conditions, e.g., light intensity and feeding levels.  相似文献   

4.
Bioassays as well as biochemical responses (biomarkers) in ecosystems due to environmental stress provide us with signals (environmentally signalling) of potential damage in the environment. If these responses are perceived in this early stage in ecosystems, the eventual damage can be prevented. Once ecosystem damage has occurred, the remedial action processes for recovery could be expensive and pose certain logistical problems. Ideally, “early warning signals” in ecosystems using sensing systems of biochemical responses (biomarkers) would not only tell us the initial levels of damage, but these signals will also provide us with answers by the development of control strategies and precautionary measures in respect to the European Water Framework Directive (WFD). Clear technical guidelines or technical specifications on monitoring are necessary to establish and characterise reference conditions for use in an ecological status classification system for surface water bodies. For the Ecotoxicological Risk Assessment (ERA) of endocrine effects we used an approach of the exposure – dose – response concept. Based on the “Ecototoxicological Classification System of Sediments” that uses pT-values to classify effects in different river systems, we transferred the bio-monitoring data to the five-level ecological system of the WFD. To understand the complexity of the structure of populations and processes behind the health of populations, communities and ecosystems an ERA should establish links between natural factors, chemicals, and biological responses so as to assess causality. So, our ecological monitoring assessment has incorporated exposure & effects data.  相似文献   

5.
Aquatic ecosystems around the world, lake, estuaries and coastal areas are increasingly impacted by anthropogenic pollutants through different sources such as agricultural, industrial and urban discharges, atmospheric deposition and terrestrial drainage. Lake Victoria is the second largest lake in the world and the largest tropical lake. Bordered by Tanzania, Uganda, and Kenya, it provides a livelihood for millions of Africans in the region. However, the lake is under threat from eutrophication, a huge decline in the number of native fish species caused by several factors including loss of biodiversity, over fishing and pollution has been recently documented. Increasing usage of pesticides and insecticides in the adjacent agricultural areas as well as mercury contamination from processing of gold ore on the southern shores are currently considered among the most emergent phenomena of chemical contamination in the lake. By the application of globally consistent and comprehensive geospatial data-sets based on remote sensing integrated with information on heavy metals accumulation and insecticides exposure in native and alien fish populations, the present study aims at assessing the environmental risk associated to the contamination of the Lake Victoria water body on fish health, land cover distribution, biodiversity and the agricultural area surrounding the lake. By the elaboration of Landsat 7 TM data of November 2002 and Landsat 7 TM 1986 we have calculated the agriculture area which borders the Lake Victoria bay, which is an upland plain. This process has greatly enhanced nutrient loading to the soil, which is subsequently transported to the lake by rain or as dry fall. All the data has been insert in the Geographical information System (ARCGIS) to be upgraded and consulted. Heavy metals in fish fillets showed concentrations rather low except for mercury being higher than others as already described in previous investigations. In the same tissue, cholinesterases activity (ChE) as an indicator of insecticides exposure showed significant differences among fish species in both activity and sensitivity of selected inhibitor insecticides. This integrated approach aims at identifying and quantifying selected aquatic environmental issues which integrated with monitoring techniques such as contaminant concentrations and biological responses to insecticides exposure in fish populations will provide a scientific basis for aquatic zones management and assist in policy formulations at the national and international levels.  相似文献   

6.
One objective of environmental monitoring programs is documentation of qualitative and quantitative environmental changes in response to external stresses, including chemical contamination. Chemical contaminant, biological, and ecological measurements have been used as environmental monitors. Contaminant monitoring allows estimation of exposures; biological and ecological monitoring allow estimation of uptake and effects.Measurements of ecosystem homeostasis such as nutrient cycling processes have been shown to be good ecosystem level monitors. The rate of dissolved nutrient loss from ecosystems has been conclusively shown to increase as a function of chemical contamination until a new equilibrium is reached, the pollutant input has become negligible, or until nutrient pools have been depleted. Consequently, nutrient pools in environmental strata and in biota are altered and eventually depleted by chemical stress.The use of nutrient cycling to determine sensitive responses to and long-term changes for chemical contamination is an essential monitoring strategy for environmental management and compliance purposes. Measurements of export (rapid response) and pools (long-term consequences) are within current technology, are cost-effective, and allow rapid implementation of remedial measures or environmental controls.Paper presented at a Symposium held on 20–21 April 1982, in Edmonton, Alberta, Canada.  相似文献   

7.
Using Multiple Taxonomic Groups to Index the Ecological Condition of Lakes   总被引:6,自引:0,他引:6  
Biological indicators of communitiestypically reflect a common environmental signalreflecting the general condition of the ecosystem, as well asindividual signals by indicators differentiallysensitive to particular environmental conditions. Wedescribe here a method of integrating and interpretingsuch indicators from 19 New England lakes for fivetaxonomic groups (diatoms, benthos, zooplankton, fish,and birds). Our approach provides a systematicstandardized way to integrate multiple metrics fromdifferent taxonomic groups by addressing four elementscrucial to analyzing data from multiple indicators: covariate control, re-scaling of data, standardizing the sign of responses, and dimensional reduction. We evaluated the biologicalmetrics against individual environmental stressors andagainst multivariate physicochemical metricscharacterizing general anthropogenic stress among thelakes. The method detected a response to variationin the gross environmental condition of the lakes thatwas correlated across taxa and metrics. In addition,a differential response to near shore conditions wasdemonstrated for fish. The success of the approach inthis study lends support to its general application toecological monitoring involving complex data sets.  相似文献   

8.
鱼类是水生生态系统生物多样性的重要组成部分,为了解江苏省地表水监测断面鱼类群落结构特征,利用环境DNA宏条形码技术对2020年4-5月江苏省148个地表水监测断面的鱼类群落进行了调查.在环境DNA样品中共检测到鱼类可操作分类单元(OTU)418个,共注释到10目14科32属46种,其中鲤形目的鱼类有27种,序列占比达8...  相似文献   

9.
We provide an overview of research related to environmental effects of disposal of coal combustion residues (CCR) in sites in the United States. Our focus is on aspects of CCR that have the potential to negatively influence aquatic organisms and thehealth of aquatic ecosystems. We identify major issues of concern, as well as areas in need of further investigation.Intentional or accidental release of CCR into aquatic systemshas generally been associated with deleterious environmental effects. A large number of metals and trace elements are presentin CCR, some of which are rapidly accumulated to high concentrations by aquatic organisms. Moreover, a variety of biological responses have been observed in organisms following exposure to and accumulation of CCR-related contaminants. In some vertebrates and invertebrates, CCR exposure has led to numerous histopathological, behavioral, and physiological (reproductive, energetic, and endocrinological) effects. Fish kills and extirpation of some fish species have been associatedwith CCR release, as have indirect effects on survival and growth of aquatic animals mediated by changes in resource abundance or quality. Recovery of CCR-impacted sites can be extremely slow due to continued cycling of contaminants withinthe system, even in sites that only received CCR effluents forshort periods of time. The literature synthesis reveals important considerations for future investigations of CCR-impacted sites. Many studies have examined biological responses to CCR with respect to Se concentrations and accumulation because of teratogenic andreproductively toxic effects known to be associated with thiselement. However, the complex mixture of metals and traceelements characteristic of CCR suggests that biologicalassessments of many CCR-contaminated habitats should examine avariety of inorganic compounds in sediments, water, and tissuesbefore causation can be linked to individual CCR components. Most evaluations of effects of CCR in aquatic environments havefocused on lentic systems and the populations of animalsoccupying them. Much less is known about CCR effects in loticsystems, in which the contaminants may be transported downstream,diluted or concentrated in downstream areas, and accumulated bymore transient species. Although some research has examinedaccumulation and effects of contaminants on terrestrial and avianspecies that visit CCR-impacted aquatic sites, more extensiveresearch is also needed in this area. Effects in terrestrial orsemiaquatic species range from accumulation and maternal transferof elements to complete recruitment failure, suggesting that CCReffects need to be examined both within and outside of theaquatic habitats into which CCR is released. Requiring specialattention are waterfowl and amphibians that use CCR-contaminatedsites during specific seasons or life stages and are highlydependent on aquatic habitat quality during those periods.Whether accidentally discharged into natural aquatic systems or present in impoundments that attract wildlife, CCR appears topresent significant risks to aquatic and semiaquatic organisms. Effects may be as subtle as changes in physiology or as drasticas extirpation of entire populations. When examined as a whole,research on responses of aquatic organisms to CCR suggests thatreducing the use of disposal methods that include an aquaticslurry phase may alleviate some environmental risks associatedwith the waste products.  相似文献   

10.
Biomarkers in feral fish can be a useful tool for environmental monitoring of aquatic ecosystems. Drawbacks, however, are that suitable fish species are not always available and that natural variations can bias the results. An alternative strategy is to use farmed fish placed in cages. There is, however, still a risk that factors other than pollution level could have an impact on the biomarkers and the observed responses in the fish. The present study evaluates the effects of feeding procedure on biomarkers in caged fish. Two feeding rations (2% and 8% weekly feeding) have been examined for a large number of biomarkers in caged rainbow trout (Oncorhynchus mykiss). Significant effects of feeding rations were found on hepatic ethoxyresorufin-O-deethylase (EROD) and catalase activity, PAH metabolites in bile, plasma ion concentrations and the presence of immature red blood cells. The influence on EROD activity and PAH metabolites seems to be caused by elevated uptake of pollutants when feeding ratios are higher. The effects on other biochemical and physiological variables are more likely caused by stress due to insufficient feeding. According to these results, valid comparison of fish groups in environmental monitoring requires standardized feeding levels.  相似文献   

11.
The ecological risks of polynuclear aromatic hydrocarbons (PAH) in aquatic sediments will vary with both toxicity and bioavailability to aquatic biota. While there are standardized protocols to test the acute toxicity of sediment-borne compounds to aquatic invertebrates, there are none for assessing bioavailability to fish. We found that sediment-borne PAH caused an exposure-dependent induction of cytochrome P450 (CYP1A) enzymes in rainbow trout (Oncorhynchus mykiss) fingerlings exposed in semi-static 96 h bioassays, as shown by increased activity of ethoxyresorufin-o-deethylase (EROD). Assuming that PAH are taken up by trout due to partitioning from organic and inorganic constituents of sediments, we tested the effect of different test variables on bioaccumulation using induction as an index of exposure. EROD activity increased with exposure of fish to increasing volumes of sediments containing PAH, i.e., with increasing ratios of sediment to water. Uptake of single compounds from sandy sediments did not differ from uptake from clay or low organic (7% LOI — loss on ignition) sediments, but decreased when organic content was very high (58% LOI). Maximum induction was observed within 24~h of exposure and at 7.5^C relative to 15, 22, or 28^C. Storage and handling techniques had minor effects on sediment EROD induction potency. Absolute EROD activity was greater in white sucker (Catostomus commersoni) a benthic species, than in trout, a pelagic species. However, when basal (negative control) activity was accounted for, there was no difference in response between the species. Together, these experiments provide a basis for developing a standard protocol to test the bioavailability to fish of sediment-borne PAH.  相似文献   

12.
Unknown chemicals, emerging contaminants, and the resulting reactions among them make early detection and warning of acute water toxicity extremely challenging. The conventional approach using small fish for toxicity monitoring normally requires a designated species of fish and over a week's time to complete, including dilution of the wastewater, a pre-test, and a full test. It often increases chances for error and delays emergency management. This paper reports a novel approach, based on grassroots knowledge and field and lab experience in Jilin, China. This approach uses a combination of different species of aquarium fish to achieve fast and reliable monitoring. It tests the original source water directly without going through the dilution procedure, while paying attention to the time factor. The approach does not require a pre-test and may shorten the time needed for detecting acute toxicity to a few minutes, using a new classification of aquatic toxicity levels. It is inexpensive to use and may be easily adopted by grassroots organizations. The approach is "greener" and more financially and socially sustainable than traditional approaches. The wide use of the approach has the potential to encourage policy innovations for making toxicity monitoring grassroots based and more effective in reducing acute contamination emergencies.  相似文献   

13.
开展快速可靠的水生态监测并预测其变化趋势,对保护水生态环境具有重要的价值。近年来,环境DNA宏条形码技术(简称环境DNA技术)的快速发展弥补了传统形态学生物监测的缺陷,显著提升了水生生物群落的监测能力。与机器学习、遥感和云服务等技术结合,环境DNA技术不仅能大尺度、高频率、高灵敏度、自动化地获取生态监测信息,而且能准确地识别水生态系统的变化趋势,进而改变对水生态系统的认识与管理方式。因此,研究着重总结了环境DNA技术在水生态监测中的应用,分析了环境DNA技术与机器学习、卫星遥感等跨学科合作的潜在机遇,基于环境DNA技术简单、便捷的优势,提出了社会公民参与水环境保护的生态监测新思路。  相似文献   

14.
A procedure is given for evaluating the toxic threat of selenium to fish and wildlife. Toxic threat is expressed as hazard, and is based on the potential for food-chain bioaccumulation and reproductive impairment in fish and aquatic birds, which are the most sensitive biological responses for estimating ecosystem-level impacts of selenium contamination. Five degrees of hazard are possible depending on the expected environmental concentrations of selenium, exposure of fish and aquatic birds to toxic concentrations, and resultant potential for reproductive impairment. The degree of hazard is given a numerical score: 5 = high hazard, 4 = moderate hazard, 3 = low hazard, 2 = minimal hazard, and 1 = no identifiable hazard. A separate hazard score is given to each of five ecosystem components; water, sediments, benthic macroinvertebrates, fish eggs, and aquatic bird eggs. A final hazard characterization is determined by adding individual scores and comparing the total to the following evaluation criteria: 5 = no hazard, 6–8 = minimal hazard, 9–11 = low hazard, 12–15 = moderate hazard, 16–25 = high hazard. An example is given to illustrate how the procedure is applied to selenium data from a typical contaminant monitoring program.  相似文献   

15.
Biological monitoring of a pulp and paper mill wastewater   总被引:1,自引:0,他引:1  
The physico-chemical testing required under the E.P.A. licence enables one to gauge the chemical effects of the APM wastewater on the Latrobe River, but it tells us nothing about likely effects on the aquatic biota. The APM bio-monitoring programme was instigated to provide evidence of any effects of wastewater discharges on the rivers biota. To date the programme has shown no adverse impact downstream. The laboratory bioassays on fish and algae have recently given way to the river fauna surveys as the regular monitor of wastewater quality. It is intended to continue with regular river surveys using the river's residents as indicators of water quality and future surveys will investigate reasons for the presently obscure variation in macro-invertebrate populations.  相似文献   

16.
It is now possible to formulate diagnostic selenium concentrations in four distinct ecosystem-level components; water, food-chain, predatory fish (consuming fish or invertebrate prey), and aquatic birds. Waterborne selenium concentrations of 2 µg/l or greater (parts per billion; total recoverable basis in 0.45 filtered samples) should be considered hazardous to the health and long-term survival of fish and wildlife populations due to the high potential for food-chain bioaccumulation, dietary toxicity, and reproductive effects. In some cases, ultra-trace amounts of dissolved and particulate organic selenium may lead to bioaccumulation and toxicity even when total waterborne concentrations are less than 1 µg/l.Food-chain organisms such as zooplankton, benthic invertebrates, and certain forage fishes can accumulate up to 30 µg/g dry weight selenium (some taxa up to 370 µg/g) with no apparent effect on survival or reproduction. However, the dietary toxicity threshold for fish and wildlife is only 3 µg/g; these food organisms would supply a toxic dose of selenium while being unaffected themselves. Because of this, food-chain organisms containing 3 µg/g (parts per million) dry weight or more should be viewed as potentially lethal to fish and aquatic birds that consume them.Biological effects thresholds (dry weight) for the health and reproductive success of freshwater and anadromous fish are: whole body=4 µg/g; skeletal muscle=8 µg/g; liver=12 µg/g; ovaries and eggs=10 µg/g. Effects thresholds for aquatic birds are: liver=10 µg/g; eggs=3 µg/g. The most precise way to evaluate potential reproductive impacts to adult fish and aquatic bird populations is to measure selenium concentrations in gravid ovaries and eggs. This single measure integrates waterborne and dietary exposure, and allows an evaluation based on the most sensitive biological endpoint. Resource managers and aquatic biologists should obtain measurements of selenium concentrations present in water, food-chain organisms, and fish and wildlife tissues in order to formulate a comprehensive and conclusive assessment of the overall selenium status and health of aquatic ecosystems.  相似文献   

17.
The traditional approach of coupling estimates of human exposures to individual chemicals with laboratory studies of the toxicity of the chemicals as the basis for quantitative assessments of risk is not adequate when considering problems near hazardous waste sites. For example, there are (a) too many chemicals and mixtures involved, (b) containment uncertainties, and (c) future exposure problems associated with groundwater and soil contamination. Among the items to be considered in expanding the dimensions of risk assessment methodologies of the past are (a) identification of chemical groups or of dominant toxic chemicals of principal concern and the likely man-made as well as natural pathways for environmental migration, (b) the role of biological monitoring in addition to traditional monitoring approaches, and (c) the coupling of monitoring data with past, current, and future population activity patterns and with epidemiological and other health data.Monitoring data is a key in risk assessments since there is little likelihood that materials balances or modelling will provide authoritative information concerning exposure levels. The use of monitoring data from control areas and from nationwide baseline surveys in developing comparative risk assessments is particularly important. Finally, recent experience provides us with a number of practical guidelines for designing and carrying out monitoring programs that will provide authoritative and useful data. *** DIRECT SUPPORT *** AZ802019 00002  相似文献   

18.
Uses of pesticides and related agrochemicals have been regulated in the United States since 1948. The United States government has supported human and environmental monitoring for pesticides and selected toxic chemicals for the past 15 yr. The initial ambient monitoring systems were designed to determine average concentrations of pesticides and related chemicals in human and environmental media on a nationwide basis and determine changes in these concentrations over time. The results of these surveys showed that almost all of the general human population and various environmental components contained low concentrations of chlorinated pesticides. As the Environmental Protection Agency (EPA) restricted many uses of the chlorinated pesticides, the organophosphorous and carbamate pesticides which replaced them were not as easily monitored by ambient surveys. Special monitoring studies had to be done more frequently to produce data on these compounds which were not as persistent or accumulative in the environment. Currently, a re-evalution has begun to determine pesticide monitoring data needs for the next 5 to 10 yr, modify existing ambient surveys, and plan needed short-term studies to efficiently meet regulatory data needs. Ambient monitoring for trends in chemical levels in humans and the environment will continue in the United States at a reduced level, and many exposure data needs will be met with use-specific monitoring studies.Presented at the International Conference on Environmental Hazards of Agrochemicals in Developing Countries, 8–12 November, 1983 in Alexandria, Egypt.  相似文献   

19.
Long-term metal exposure risk assessment for aquatic organism is a challenge because the chronic toxicity of chemical is not only determined by the amount of accumulated chemical but also affected by the ability of biological regulation or detoxification of biota. We quantified the arsenic (As) detoxification ability of tilapia and developed a biologically based growth toxicity modeling algorithm by integrating the process of detoxification and active regulations (i.e., the balance between accumulated dose, tissue damage and recovery, and the extent of induced toxic effect) for a life span ecological risk prediction. Results showed that detoxification rate (k dex) increased with increasing of waterborne As when the accumulated metal exceeded the internal threshold level of 19.1 μg g − 1. The k dex values were comparable to or even higher than the rates of physiological loss and growth dilution in higher exposure conditions. Model predictions obtained from the proposed growth toxicity model were consistent with the measured growth data. The growth toxicity model was also used to illustrate the health condition and growth trajectories of tilapia from birth to natural death under different exposure scenarios. Results showed that temporal trends of health rates and growth trajectories of exposed fish in different treatments decreased with increasing time and waterborne As, revealing concentration-specific patterns. We suggested that the detoxification rate is critical and should be involved in the risk assessments framework. Our proposed modeling algorithm well characterizes the internal regulation activities and biological response of tilapia under long-term metal stresses.  相似文献   

20.
大型蚤在线生物监测系统研究   总被引:1,自引:0,他引:1       下载免费PDF全文
近年来,世界范围内突发性废水泄漏事件频发,在引起人们对水质问题恐慌的同时,也促进了饮用水在线监测与早期污染预警系统的发展。生物监测可以对污染环境下多污染物的联合毒性进行有效评估,具有传统化学监测所不具备的优点,已成为判定水质是否对水生生物存在影响、是否符合人类安全饮用的有效依据和手段。介绍了大型蚤在线生物监测系统的多通道流通生物测试室和生物传感器系统,并对世界范围内的研究与应用情况做了研究综述。目前,采用大型蚤作为指示生物的在线监测系统已在饮用水水质监测方面成功实现,但其在工业废水接管过程中毒性评估和早期预警的研究和应用上尚有不足,有待更加深入地探讨与研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号