首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentrations of Cr, Cd, Pb, Hg, and As in water, poultry meat, fish, vegetables, and rice plants obtained from the area adjacent to the Hazaribag tannery campus, Dhaka, Bangladesh, were estimated and compared with permissible levels established by the WHO and FAO and levels reported previously by other authors. The metal contents were in the following order according to the concentration in contaminated irrigation water: Cr?>?Pb?>?As?>?Hg?>?Cd. Mean concentrations of Cr, Pb, Hg, and As in irrigated water were above the permissible levels, whereas the results were below the permissible levels for Cd. The metal concentrations in poultry meat, fish, rice, and vegetables were in the following orders: Pb?>?Cr?>?Cd?>?Hg?>?As, Pb?>?Cr?>?Cd?>?As?>?Hg, Pb?>?As, and Cr?>?Pb?>?Cd?>?As?>?Hg, respectively. The mean concentrations of metals in poultry meat, fish, rice, and vegetables were much higher than the permissible levels. The trends of weekly intake of heavy metals (WIMs) from poultry meat, fish, rice, and vegetables were as follows: Pb?>?Cr?>?Cd?>?Hg?>?As, Pb?>?Cr?>?Cd?>?As?>?Hg, Pb?>?As, and Cr?>?Pb?>?Cd?>?As?>?Hg, respectively. WIMs for all the metals were lower than the provisional maximum weekly intake recommended by WHO/FAO and USNAS.  相似文献   

2.
This study was conducted to determine status of heavy metals in agricultural soils under different patterns of land use. A total of 38, 40 and 45 soil samples for bare vegetable field, greenhouse vegetable field, and grain crop field were respectively taken from surface layer (0–20 cm) from selected experimental areas away from suburbs of ten counties (or districts or cities) in four provinces or municipalities of Huabei plain in north China. Information of crop production history, including varieties, rotation systems and fertilizer use, at the corresponding sampling sites was surveyed. Soil total Cu, Zn, Cd, Pb, Cr, As and Hg were measured. The results showed that the contents of total Cu, Zn, Cd, Pb, Cr, As, and Hg in the soil samples, especially soil total Cu and Zn contents, were higher in the bare vegetable field and the greenhouse vegetable field than that in the grain crop field. Long-term use of excessive chemical fertilizers and organic manures in the bare vegetable field and the greenhouse vegetable field contributed to the accumulation of Cu, Zn, and other heavy metals in the soils. The contents of total Cu, Zn, and other heavy metals in soils increased with increasing vegetable production history of the research areas. In comparison with the grain crop field, the comprehensive pollution indices of the seven soil heavy metals and the single-factor pollution indices of soil Zn, Cu, Cd, Cr, and Hg based on the second criterion of Environmental Quality Standard for Soils were significantly higher in the bare vegetable field and the greenhouse vegetable field. Soils from the greenhouse vegetable field were slightly contaminated according to the comprehensive pollution index, and soils from the bare vegetable field and the grain crop field were at the warning heavy metal pollution level. The soils were contaminated with Cd according to the single-factor pollution index. The Cd pollution was relatively more serious in the bare vegetable field and the greenhouse vegetable field than that in the grain crop field. The soils selected with different land use patterns were not contaminated with Zn, Cu, Pb, Cr, As and Hg.  相似文献   

3.
The heavy metals (Fe, Zn, Pb, Ni, Cr, Co, and Cd) burden in wastewater, soil, and vegetable samples from a wastewater irrigated farm located at KorleBu, Accra has been investigated. Flame atomic absorption spectrometry after microwave digestion using a combination of HNO3, HCl, and H2O2 (for water), and HNO3 and HCl (for soil and vegetables). The mean concentrations (in milligrams per kilogram) of heavy metals in the soil samples were in the order of Fe (171?±?5.22)?>?Zn (36.06?±?4.54)?>?Pb (33.35?±?35.62)?>?Ni (6.31?±?8.15)?>?Cr (3.40?±?3.63)?>?Co (1.36?±?0.31)?>?Cd (0.43?±?0.24), while the vegetables were in the order of Fe (183.11?±?161.2)?>?Zn (5.38?±?3.50)?>?Ni (3.52?±?1.27)?>?Pb (2.49?±?1.81)?>?Cr (1.46?±?0.51)?>?Co (0.66?±?0.25)?>?Cd (0.36?±?0.15). The bioconcentration factors suggest environmental monitoring for the heavy metals as follows: Cd (0.828), Cr (0.431), Ni (0.558), Co (0.485), and Fe (1.067). Estimated daily intakes were very low for both children and adults except Fe (0.767 mg/kg/day) in children. The population that consume vegetables from the study area were, however, estimated to be safe based on the results obtained from the health risk index, which were all?<?<1. The sodium absorption ratio according to FAO (1985) classifications indicate that the wastewater in the study area is unsuitable for irrigation purposes.  相似文献   

4.
分析和评价典型涉污企业周边土壤环境质量,对于加强企业用地环境风险管控,实施土壤重金属污染精准防控,进一步保障农产品质量安全具有重要意义。以18类典型涉污企业周边土壤为研究对象,对475家企业周边的2 017个监测样点进行土壤重金属Cd、As、Pb、Hg、Cr、Cu、Zn和Ni元素含量测定,并采用主成分分析法、Hakanson 潜在生态风险指数法进行分析及评价。结果表明:典型涉污企业周边土壤重金属污染以Cd、Pb和As元素为主,各元素含量超过土壤污染风险筛选值的样品比例为9.82%~31.0%,超过土壤污染风险管控值的样品比例为4.46%~13.1%,其次是Zn、Cu、Hg和Ni,Cr无明显污染;主要污染元素Cd、Pb、As、Zn和Cu来自相同污染源且主要分布在有色金属矿采选业(B9)、黑色金属冶炼和压延加工业(C31)、有色金属冶炼和压延加工业(C32)、生态保护和环境治理业(N77)等行业企业周边;黑色金属冶炼和压延加工业(C31)、有色金属矿采选业(B9)、有色金属冶炼和压延加工业(C32)等行业企业周边土壤重金属潜在生态风险等级较高,中等风险及以上比例分别为76.0%、53.0%和54.1%。可见,典型涉污企业周边土壤重金属存在一定程度的污染,尤其是有色金属矿采选业(B9)等采矿业以及黑色金属冶炼和压延加工(C31)等制造业等,污染程度高,潜在生态风险大,需要加强监测和管控。  相似文献   

5.
This study investigated the extent of heavy metal accumulation in leaf vegetables and associated potential health risks in agricultural areas of the Pearl River Delta (PRD), South China. Total concentrations of mercury (Hg), cadmium (Cd), lead (Pb), chromium (Cr) and arsenic (As) were determined in 92 pairs of soil and leaf vegetable (flowering Chinese cabbage, lettuce, pakchoi, Chinese cabbage, loose-leaf lettuce, and Chinese leaf mustard) samples collected from seven agricultural areas (cities). The bioconcentration factors (BCF) of heavy metals from soil to vegetables were estimated, and the potential health risks of heavy metal exposure to the PRD residents through consumption of local leaf vegetables were assessed. Results showed that among the six leaf vegetables, pakchoi had the lowest capacity for heavy metal enrichment, whereas among the five heavy metals, Cd had the highest capacity for transferring from soil into vegetables, with BCF values 30-fold those of Hg and 50-fold those of Cr, Pb and As. Sewage irrigation and fertilization were likely the main sources of heavy metals accumulated in leaf vegetables grown in agricultural areas of the PRD region. Different from previous findings, soil pH had no clear effect on metal accumulation in leaf vegetables. Despite a certain degree of metal enrichment from soil to leaf vegetables, the PRD residents were not exposed to significant health risks associated with consumption of local leaf vegetables. Nevertheless, more attention should be paid to children due to their sensitivity to metal pollutants.  相似文献   

6.
以长沙某河库兼用型饮用水水源地一、二级保护区土壤为研究对象,于2018年8月采用网格布点法在一级和二级保护区分别布设3个和7个采样点,在水源地历史采样区布设5个采样点,探究土壤中Cd、Pb、Cr、Cu、Zn、Ni、Hg、As的含量分布及污染水平。结果表明:土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的含量均值分别为46.56、4.90、81.87、46.64、0.19、30.11、75.11、237.93 mg/kg。重金属元素含量均值超过农用地污染风险筛选值的样品占比排序为Cd (86.7%)>Zn (60%)>As (53.3%)>Cu (6.7%)=Pb (6.7%)。土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的单因子污染指数分别为1.55、16.34、0.41、0.47、0.08、0.30、0.63、0.95,主要为Cd、As污染。研究区土壤重金属综合污染指数为11.71,属重污染等级。水源地一级保护区、二级保护区、历史采样区2018年、历史采样区2014年土壤重金属综合污染指数分别为20.41、14.94、1.98、1.17。后期应加强对该饮用水水源地土壤中Cd、Pb、Cu、Zn、As的污染控制和治理。  相似文献   

7.
This study is carried out to evaluate potentially toxic metal concentrations (As, Cd, Cr, Cu, Hg, Mo, Ni, Pb, and Zn) together with their spatial distribution, degree of pollution, and potential ecological risk in Kor river sediments (southwest Iran) using sediment quality guidelines, geoaccumulation index (I geo), Hakanson potential ecological risk index (RI), and standard methods of statistical analysis. The study area stretches some 140 km from the Drodzan Dam to Bakhtegan Lake, a stretch of river where different industrial and domestic activities (e.g., petrochemical complex, oil refinery, industrial meat processing complex, Marvdasht city sewage) and ecological value overlap with each other. Calculated geoaccumulation index indicate that 50 % of the stations are moderately to very extremely polluted. The potential ecological risk for nine investigated metals in Kor river is Hg (948)?>?Mo (51.9)?>?Ni (37.8)?>?Cd (29.8)?>?As (22)?>?Cu (16.6)?>?Pb (13.3)?>?Zn (3.3)?>?Cr (1). Results show that sediments in parts of Kor river sediments are heavily affected by effluents discharged from industrial plants and other parts are affected by agriculture and urban runoff from nearby lands. These phenomena may cause a risk of secondary water pollution under sediment disturbance and/or changes in the physical–chemical characteristics of the aquatic system.  相似文献   

8.
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg?1, respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg?1, respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg?1). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg?1, respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.  相似文献   

9.
某铀尾矿库周围农田土壤重金属污染潜在生态风险评价   总被引:6,自引:1,他引:5  
为能够定量评价铀尾矿库周围农田土壤重金属污染程度及其潜在生态危害性,采用Hakanson潜在生态风险指数法对土壤中重金属进行综合污染评价。结果表明,铀尾矿库周围部分农田土壤中重金属Cd、Ni、As、Cu、Hg、Zn含量存在积累和超标情况,尤以Cd的污染最严重,Ni、As次之;Pb、Cr含量能够满足标准限值要求。潜在生态风险评价结果显示,铀尾矿库周围农田土壤重金属潜在生态风险较高,主要潜在生态风险因子为Cd,其次是Hg、As,Cr、Pb、Ni、Cu、Zn并不构成潜在生态风险。铀尾矿库周围农田土壤中较高水平的Cd在构成环境污染的同时,也构成了较严重的生态危害,应加强对重金属Cd、Hg的生态风险防治。  相似文献   

10.
通过在丰水期对贵州省某流域城市河段悬浮物和沉积物中的重金属含量进行测定,运用单因子指数法、生态风险评价法、因子分析法,初步探讨了该河段Cu、Zn、Pb、Hg、Cd、Cr、Ni及As等8种重金属元素的含量分布、污染特征、潜在生态风险及主要来源。检测结果显示,沉积物和悬浮物中Hg、Cd、Zn、Pb、As的平均含量较高,是贵州省土壤背景值的1.02~16.97倍。单因子指数评价结果表明:在沉积物中,Zn、Pb、As为轻度污染,Hg和Cd为重度污染;在悬浮物中,Cu、Pb、As为轻度污染,Zn为中度污染,Hg和Cd为重度污染。潜在生态风险指数评价结果显示,Hg和Cd的生态风险最大,为主要污染元素。研究区沉积物样品综合生态风险指数(RI)介于183.27~1 393.96,平均值为912.06,总体处于严重生态风险等级;悬浮物样品RI值介于341.53~612.38,平均值为436.85,总体处于重度生态风险等级。其中,沉积物样品重金属平均生态风险等级高于悬浮物样品,支流样品重金属生态风险等级总体上低于干流下游样品。根据因子分析法分析结果,初步推测沉积物及悬浮物Hg、Cd、Cr、Ni含量主要受工...  相似文献   

11.
以重庆市某工业园区表层土壤为研究对象,探讨了土壤重金属在不同季节的污染特征,利用污染指数法、健康风险模型和主成分/绝对主成分得分受体模型进行风险评价和源分析。结果表明:不同季节土壤样品间各重金属含量差异显著。35.5%的样品中汞含量超出土壤污染风险筛选值,其他元素未超标。与土壤背景值相比,各元素表现出不同程度的富集,汞超标约110~1300倍。内梅罗指数显示土壤整体和汞元素处于轻度污染及以下,其他元素为安全。潜在生态危害指数显示,土壤整体和汞属于极强污染,镉属于轻微~强污染,其他元素为轻微污染。土壤重金属总致癌风险为2.6×10-7~1.0×10-5,总非致癌风险熵均小于1,砷存在致癌风险,主要通过经口摄入暴露。秋季中,汞、六价铬、铅、镍、砷和铜来自工业源,镉主要来源于自然成因。春季中,镉和铅来自交通、冶金和燃煤等排放,镍、砷和铜源于冶炼和金属表面处理等排放,汞主要来自化工生产和燃料燃烧。交通运输、工业生产和燃料燃烧等污染的排放是土壤重金属的主要来源,今后应加强园区内汞、砷和镉的源头减排和治理。  相似文献   

12.
The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L?1; Zn = 5.00 μg L?1; Pb = 0.03 μg L?1; Cd = 0.05 μg L?1; Hg = 0.05 μg L?1); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.  相似文献   

13.
A long history of urbanization and industrialization has affected trace elements in New York City (NYC) soils. Selected NYC pedons were analyzed by aqua regia microwave digestion and sequential chemical extraction as follows: water soluble (WS); exchangeable (EX); specifically sorbed/carbonate bound (SS/CAR); oxide-bound (OX); organic/sulfide bound (OM/S). Soils showed a range in properties (e.g., pH 3.9 to 7.4). Sum of total extractable (SUMTE) trace elements was higher in NYC parks compared to Bronx River watershed sites. NYC surface horizons showed higher total extractable (TE) levels compared to US non-anthropogenic soils. TE levels increased over 10 year in some of the relatively undisturbed and mostly wooded park sites. Surface horizons of park sites with long-term anthropogenic inputs showed elevated TE levels vs. subsurface horizons. Conversely, some Bronx River watershed soils showed increased concentrations with depth, reflective of their formation in a thick mantle of construction debris increasing with depth and intermingled with anthrotransported soil materials. Short-range variability was evident in primary pedons and satellite samples (e.g., Pb 253?±?143 mg/kg). Long-range variability was indicated by PbTE (348 versus 156 mg/kg) and HgTE (1 versus 0.3 mg/kg) concentrations varying several-fold in the same soil but in different geographic locations. Relative predominance of fractions: RES (37 %)?>?SS/CAR (22 %)?>?OX (20 %)?>?OM/S (10 %)?>?EX (7 %)?>?WS (4 %). WS and EX fractions were greatest for Hg (7 %) and Cd (14 %), respectively. RES was predominant fraction for Co, Cr, Ni, and Zn (41 to 51 %); SS/CAR for Cd and Pb (40 and 63 %); OM/S for Cu and Hg (36 and 37 %); and OX for As (59 %).  相似文献   

14.
An intensive investigation was conducted to study the accumulation, speciation, and distribution of various heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in sediments from the Yangtze River catchment of Wuhan, China. The potential ecological risks posed by these heavy metals also were estimated. The median concentrations of most heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) were higher than the background values of soils in Wuhan and were beyond the threshold effect level (TEL), implying heavy metal contamination of the sediments. Carbonate-bound Cd and exchangeable Cd, both of which had high bioavailability, were 40.2% and 30.5% of the total for Cd, respectively, demonstrating that Cd poses a high ecological risk in the sediments. The coefficients of the relationship among Pb, Hg, and Cu were greater than 0.797 using correlation analysis, indicating the highly positive correlation among these three elements. Besides, total organic carbon content played an important role in determining the behaviors of heavy metals in sediments. Principal component analysis was used to study the distribution and potential origin of heavy metals. The result suggested three principal components controlling their variability in sediments, which accounted for 36.72% (factor 1: Hg, Cu, and Pb), 28.69% (factor 2: Cr, Zn, and Ni), and 19.45% (factor 3: As and Cd) of the total variance. Overall, 75% of the studied sediment samples afforded relatively low potential ecological risk despite the fact that generally higher concentrations of heavy metals relative to TEL were detected in the sediments.  相似文献   

15.
徽县铅锌冶炼区土壤中重金属的空间分布特征   总被引:4,自引:3,他引:1  
采集甘肃省徽县铅锌冶炼区域土壤样品,分析该区域内重金属污染分布规律及污染特征。结果表明,表层土壤中Pb、Cd、Cu、Zn的平均含量分别为214、3.12、25.8、79.5 mg/kg。研究区域内重金属的分布特征显示,污染浓度由冶炼厂中心向四周递减。纵向0~30 cm范围内重金属含量逐渐降低,大部分重金属污染物集中在土壤表层的0~20 cm区域,其中0~2 cm区域内含量较高,Pb和Cd的最高含量分别达到3 877、24.8 mg/kg,与国家土壤环境质量二级标准(p H 6.5~7.5)(GB 15618—1995)相比,分别超标13、82倍,属于重度污染。重金属元素的分布与土壤有机碳含量及p H相关。冶炼厂周围的重金属污染应引起有关部门的高度重视,严格控制污染源,尽快采取措施以防止污染范围进一步扩大。  相似文献   

16.
The heavy metal concentrations of soil and dust samples from roadside, residential areas, parks, campus sport grounds, and commercial sites were studied in Guangzhou, South China. Heavy metals in samples were determined by inductively coupled plasma atomic emission spectrophotometer following acidic digestion with HClO4 + HF + HNO3. High concentrations, especially of Cd, Pb, and Zn, were found with mean concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the urban dusts being 4.22?±?1.21, 62.2?±?27.1, 116?±?30, 31.9?±?12.6, 72.6?±?17.9, and 504?±?191 mg/kg dry weight, respectively. The respective levels in urban soils (0.23?±?0.19, 22.4?±?13.8, 41.6?±?29.4, 11.1?±?5.3, 65.4?±?40.2, and 277?±?214 mg/kg dry weight, respectively), were significantly lower. The integrated pollution index of six metals varied from 0.25 to 3.4 and from 2.5 to 8.4 in urban soils and dusts, respectively, with 61 % of urban soil samples being classified as moderately to highly polluted and all dust samples being classified as highly polluted. The statistical analysis results for the urban dust showed good agreement between principal component analysis and cluster analysis, but distinctly different elemental associations and clustering patterns were observed among heavy metals in the urban soils. The results of multivariate statistic analysis indicated that Cr and Ni concentrations were mainly of natural origin, while Cd, Cu, Pb, and Zn were derived from anthropogenic activities.  相似文献   

17.
The aim of this paper is to evaluate total and bioavailable concentration of heavy metals in agricultural soils in order to estimate their distribution, to identify the possible correlations among toxic elements and the pollution sources, to distinguish the samples in relation to sampling site or to sampling depth, and to evaluate the available fraction providing information about the risky for plants. In particular, we reinvestigated total concentrations of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V, and Zn and available concentrations of As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, and Zn in soil from Apulia (Southern Italy). Analytical results showed that total concentrations, for all soils, are in the range permitted by regulations in force in Italy, but some soils evidence slight enrichment of Cd, Cr, Cu, Pb, and Zn. All the heavy metals in the available fraction were below the detection limits of the analytical techniques used except Cu, Ni, Pb, and Zn.  相似文献   

18.
乌鲁木齐市郊安宁渠区土壤重金属的污染调查   总被引:5,自引:0,他引:5  
胡慧玲 《干旱环境监测》2003,17(2):117-119,122
对乌鲁木齐产莱区安宁渠区的表层土壤及地表下40cm土壤中重金屑Cd、Hg、As、Pb、Cr进行了分析和测定,并对土壤中的重金属污染进行了环境质量评价。结果表明,安宁渠区土壤大部分为轻污染,但个别点已达重度污染,地表的污染较地表下40cm土壤为重。污染为外源性污染,与垃圾肥料的使用有关。  相似文献   

19.
湖北省重点区域及周边表层土壤重金属污染现状及评价   总被引:1,自引:0,他引:1  
对湖北省内9类不同重点区域及周边表层土壤环境质量进行检测,测定重金属镉、汞、砷、铅、铬、铜、镍、锌含量水平,采用内梅罗污染指数法和Hakanson潜在生态风险指数法对检测结果进行评价。结果表明:9类不同重点区域及周边土壤环境质量整体良好,未受重金属污染的土壤监测点位比例为68.2%~92.6%,轻度污染的点位比例为5.8%~20.4%,中度污染为0.0%~8.6%,重度污染为0.0%~9.1%;污染企业周边、油田采矿区周边、固废处置场地周边、工业遗留遗弃场地及周边4类重点区域受重金属污染相对较严重,影响其土壤环境质量的重金属主要是镉、砷、铜、铅;9类不同重点区域周边土壤环境质量的潜在生态风险等级以轻微、中度为主,对应的监测点位比例分别为36.4%~80.5%、18.1%~47.7%,潜在生态风险等级为强度、很强、极强的监测点位比例总和为1.4%~15.9%,主要分布在受重金属污染严重的监测区域。  相似文献   

20.
Soil nematode communities (taxa composition, trophic structure, ecological indices) in the area of metallurgical factory (Oravské ferozliatinárske závody) in ?iroká, Northern Slovakia were investigated in 2009. The factory belongs to main sources of emissions originated by ferroalloy production in this region. Four sites (meadows) were selected in a downwind direction from the factory: site A was located 0.85 km far from the factory, and the other sites were maintained in approximately 2-km intervals from each other. Chemical analysis of soil samples showed low concentrations of heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn), with all values being under Slovak limit concentrations of heavy metals in soils. Only the Cd content in the soil sample from site A slightly exceeded the allowable threshold, but it was decreasing with the distance from the factory, similarly as remaining metals except Cr, with slightly increasing trend of concentration. Within 64 identified nematode genera, the Helicotylenchus, Paratylenchus, Pratylenchus, Acrobeloides, Cephalobus and Rhabditis were most common and eudominant. This was clearly reflected on the trophic structure of nematode communities, where plant feeding nematodes and bacteriovorous prevailed. Significant negative correlation (P?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号