首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
Nonpoint source pollution loading from an undistributed tropic forest area   总被引:1,自引:0,他引:1  
Water quality and unit nonpoint sources (NPS) pollution load from a forest area were studied in a mountainous watershed in Taiwan. The flow rates were measured with rectangular weirs and samples taken for water quality analysis in both non-rainy and rainy days for 2 years. The subroutine of the Hydrological Simulation Program--FORTRAN was used to simulate runoff for additional 3 years. Total annual loads of various water quality parameters were then estimated by a regression model. Most of the parameter concentrations are higher during the rainy days; their values are typically higher as compared to data from other undisturbed forest areas. Nevertheless, the concentration ratio of dissolved inorganic nitrogen to TN or PO4(3-) -P to TP shows TN or TP no correlations with the flow rates, whereas the concentrations of SS and TP are positively correlated with the flow rate. The fluctuation of annual load from this watershed is significant. For example, six major events of the entire year, for which the total duration is merely 6.4 days, contribute 42% of the annual precipitation and at least 40% of the annual NPS loads. The management for controlling the NPS pollution from this forest watershed is discussed.  相似文献   

2.
Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.  相似文献   

3.
流域模型技术应用是当前开展面源污染防治的重要工具,而水文过程的准确模拟是进行污染负荷估算的首要环节和关键步骤。为了弄清近年来于桥水库入库河流氮、磷输入负荷,选取GWLF模型对水平口子流域的水文过程进行模拟,首先利用2006—2018年气象、水文资料率定模型水文参数,然后将参数推广到整个流域,对2019—2020年3条主要入库河流流量进行模拟,最后乘以相应河流断面的总氮、总磷浓度估算氮磷输入负荷。结果显示:GWLF模型适用于研究区的水文过程模拟,校准期和验证期的纳氏系数分别为0.89和0.91,平均相对误差分别为12.2%和13.1%;2020年总氮入库负荷为3 977.0 t,其中引滦调水贡献占57.0%,3条入库河流共贡献43.0%;总磷入库负荷为48.8 t,其中引滦调水贡献占68.6%,3条入库河流共贡献31.4%。GWLF模型输入数据需求量较少,模型参数较少,模拟效果较好,适用于中小型流域的水资源和水环境管理,具有一定的推广应用前景。  相似文献   

4.
The objective of this paper is to study the impact of the mesh size of the digital elevation model (DEM) on terrain attributes within an Annualized AGricultural NonPoint Source pollution (AnnAGNPS) Model simulation at watershed scale and provide a correction of slope gradient for low resolution DEMs. The effect of different grid sizes of DEMs on terrain attributes was examined by comparing eight DEMs (30, 40, 50, 60, 70, 80, 90, and 100 m). The accuracy of the AnnAGNPS stimulation on runoff, sediments, and nutrient loads is evaluated. The results are as follows: (1) Rnoff does not vary much with decrease of DEM resolution whereas soil erosion and total nitrogen (TN) load change prominently. There is little effect on runoff simulation of AnnAGNPS modeling by the amended slope using an adjusted 50 m DEM. (2) A decrease of sediment yield and TN load is observed with an increase of DEM mesh size from 30 to 60 m; a slight decrease of sediment and TN load with the DEM mesh size bigger than 60 m. There is similar trend for total phosphorus (TP) variation, but with less range of variation, the simulation of sediment, TN, and TP increase, in which sediment increase up to 1.75 times compared to the model using unadjusted 50 m DEM. In all, the amended simulation still has a large difference relative to the results using 30 m DEM. AnnAGNPS is less reliable for sediment loading prediction in a small hilly watershed. (3) Resolution of DEM has significant impact on slope gradient. The average, minimum, maximum of slope from the various DEMs reduced obviously with the decrease of DEM precision. For the grade of 0~15°, the slopes at lower resolution DEM are generally bigger than those at higher resolution DEM. But for the grade bigger than 15°, the slopes at lower resolution DEM are generally smaller than those at higher resolution DEM. So it is necessary to adjust the slope with a fitting equation. A cubic model is used for correction of slope gradient from lower resolution to that from higher resolution. Results for Dage watershed showed that fine meshes are desired to avoid large underestimates of sediment and total nitrogen loads and moderate underestimates of total phosphorus loads even with the slopes for the 50 m DEM adjusted to be more similar to the slopes from the 30 m DEM. Decreasing the mesh size beyond this threshold does not substantially affect the computed runoff flux but generated prediction errors for nitrogen and sediment yields. So the appropriate DEM will control error and make simulation at acceptable level.  相似文献   

5.
根据2021年5月—2022年4月合溪新港河流水量、水质(TN和TP)的同步监测数据,利用通量模型核算了合溪新港污染物(TN和TP)通量。通过测算合溪新港TN、TP通量与断面降雨强度、水质的响应关系,分析了该区域的污染类型及特点,为后期水质污染调查及通量研究提供了新思路。结果表明:合溪新港流量与降雨量存在明显相关关系,在强降雨期(7—8月)水体流量最高,占监测周期总流量的57.77%;少雨期则流量最低,且会出现湖水倒灌现象(11—12月)。通过分析合溪新港TN、TP通量与流量、水质的相关关系,确定了该流域污染类型为点源污染及农业面源污染共存的混合型污染,且在高强度降雨时污染物负荷量较大。综上,可针对农业面源污染对该流域治理提出相关对策,建立农业面源污染防治体系,以有效降低TN和TP污染物的入湖通量,减少太湖TN和TP污染物负荷量。  相似文献   

6.
运用SWAT和HEC-RAS模型分别构建流溪河流域水文模型和流溪河水动力水质模型,采用改进的分区达标控制法计算流溪河COD的天然及背景环境容量。结果显示,流溪河的COD天然和背景环境容量分别为53 141.59 t/a和43 988.64 t/a。  相似文献   

7.
Identifying areas that are susceptible to soil erosion is crucial for water resource planning and management efforts. Furthermore, modeling has proven helpful in recognizing and monitoring high-risk areas at the watershed scale. The Water Erosion Prediction Project (WEPP) geospatial interface (GeoWEPP) software integrates GIS with the WEPP to analyze the spatial variation in soil loss, and it has been used as a modeling tool to determine the areas that are most prone to soil erosion and to evaluate best management practices for the Kasilian watershed in Iran. As much as 62.4 % of the agronomic land in the Kasilian watershed is affected by a high magnitude of erosion (>5 t/ha). On the basis of this study, by using soybeans, high fertilization levels, and the drill-no-tillage system, reductions of erosion by almost 32.68–34.02 % are perceivable in three critical subwatersheds that are located in the cultivated lands. Also, it is projected that reductions in the production of sediment in the range of about 36.7–47.1 % are achievable by structural management within two critical, upland subwatersheds. So, by utilizing the best management strategies, sediment yield can be lowered and the conservation of soil and water is feasible at the watershed scale. These results objectively indicate that GeoWEPP can be efficaciously used for evaluating effective management practices for developing watershed conservation.  相似文献   

8.
近年来甘肃渭河桦林断面月度水质不稳定达标的问题引起了管理部门的广泛关注,掌握桦林断面汇水范围面源污染现状,对控制流域面源污染和促进水质稳定达标具有重要意义。采用遥感分布式污染估算(DPeRS)面源污染评估模型,对2018年黄河流域甘肃桦林断面汇水区面源污染空间分布特征进行分析,开展多类型污染量产排特征解析。结果表明:农业面源污染量方面,2018年甘肃桦林断面汇水区总氮(TN)、总磷(TP)、氨氮(NH+4-N)、重铬酸盐指数(CODCr)面源污染排放量分别为11 591,2 697,7 141和1 458 t,入河量分别为2 184,512,1347,263 t;空间分布上,氮型(TN和NH+4-N)排放负荷高值区主要分布在陇西县、武山县县段和岷县县段;武山县县段TP排放负荷较为突出;CODCr型面源污染高负荷区主要分布在陇西县、渭源县县段和武山县县段。农业面源污染物入河排放负荷空间分布差异明显,氮磷型(TN、NH+4-N和TP)入河高负荷区主要分布在武山县县段、陇西县、临洮县县段;CODCr型面源污染入河高负荷区呈分散分布。漳县西部地区水土流失量较高,漳县西部、陇西县和渭源县县段北部局部地区泥沙负荷量较高。枯水期污染治理仍是保障水质稳定达标的关键期,农田径流是渭河桦林断面所在汇水区氮磷型面源污染的首要污染类型,畜禽养殖是CODCr型面源污染的首要污染类型。  相似文献   

9.
In order to resolve the spatial component of the design of a water quality monitoring network, a methodology has been developed to identify the critical sampling locations within a watershed. This methodology, called Critical Sampling Points (CSP), focuses on the contaminant total phosphorus (TP), and is applicable to small, predominantly agricultural-forested watersheds. The CSP methodology was translated into a model, called Water Quality Monitoring Station Analysis (WQMSA). It incorporates a geographic information system (GIS) for spatial analysis and data manipulation purposes, a hydrologic/water quality simulation model for estimating TP loads, and an artificial intelligence technology for improved input data representation. The model input data include a number of hydrologic, topographic, soils, vegetative, and land use factors. The model also includes an economic and logistics component. The validity of the CSP methodology was tested on a small experimental Pennsylvanian watershed, for which TP data from a number of single storm events were available for various sampling points within the watershed. A comparison of the ratios of observed to predicted TP loads between sampling points revealed that the model's results were promising.  相似文献   

10.
滇池污染底泥环保疏浚一期工程实施后环境效益评估   总被引:2,自引:0,他引:2  
通过对滇池草海污染底泥环保疏浚一期工程实施前后水质、底质及水生生物的监测和分析,评价工程实施后对改善草海水质,减轻内源负荷及对水生态恢复的环境效益。结果表明,疏浚工程直接去除了草海污染底泥层,随污染层分别去除TN、TP20 538 t和1 716 t。疏浚后草海水体透明度由0.37 m提高到0.80 m,水体中的TN和TP由疏挖前的8.91 mg/L和1.07 mg/L降低到疏挖后的8.15 mg/L和0.69 mg/L。疏浚后新生界面层促使形成新的水—沉积物的平衡,水质与底质条件改善以及水下光照条件超过沉水植物恢复的需求,是疏浚后水生态呈现恢复趋势的机理。  相似文献   

11.
Using a spatially extensive database from the Maryland Biological Stream Survey (MBSS), we describe nutrient relationships of small-order, non-tidal streams to Maryland watershed basins, Maryland Tributary Strategy basins, and stream order. In addition, we estimate the number of stream km affected by nutrient loading, using derived nutrient criteria. Based on the MBSS spring water quality sampling, we determined several important factors relating to nutrient levels in non-tidal streams. There are strong linear relationships of nutrients to the percentage of agriculture and forested land present within MBSS sampling strata. Both mean total nitrogen (TN) and mean total phosphorus (TP) levels for watershed basins by stream order show exceedances of derived nutrient reference criteria for Maryland. Four Maryland basins have over 85% of their stream kilometers exceeding the TN criterion, with three basins over 90% of the TP criterion. To protect small stream integrity in Maryland, we recommend an upper stream TN criterion between 1.34 and 1.68 mg/L and an upper stream TP criterion between 0.025 and 0.037 mg/L, based on quantile analyses. Elevated levels of both TN and TP are present in non-tidal streams, with subsequent nutrient inputs into the upper freshwater tidal reaches of the Chesapeake Bay.  相似文献   

12.
总氮、总磷监测中存在的有关问题   总被引:7,自引:2,他引:7  
文章简要介绍了我国部分地表水总氮、总磷的浓度现状和相关标准,重点讨论了总氮、总磷监测中存在的问题并提出相应的解决办法.  相似文献   

13.
Effective water resources management programs have always incorporated detailed analyses of hydrological and water quality processes in the upland watershed and downstream waterbody. We have integrated two powerful hydrological and water quality models (SWAT and CE-QUAL-W2) to simulate the combined processes of water quantity and quality both in the upland watershed and downstream waterbody. Whereas the SWAT model outputs water quality variables in its entirety, the CE-QUAL-W2 model requires inputs in various pools of organic matter contents. An intermediate program was developed to extract outputs from SWAT at required subbasin and reach outlets and converts them into acceptable CE-QUAL-W2 inputs. The CE-QUAL-W2 model was later calibrated for various hydrodynamic and water quality simulations in the Cedar Creek Reservoir, TX, USA. The results indicate that the two models are compatible and can be used to assess and manage water resources in complex watersheds comprised of upland watershed and downstream waterbodies.  相似文献   

14.
This paper presents simulations of climate change impacts on water quality in the upstream portion of the Cau River Basin in the North of Vietnam. The integrated modeling system GIBSI was used to simulate hydrological processes, pollutant and sediment wash-off in the river basin, and pollutant transport and transformation in the river network. Three projections for climate change based on emission scenarios B1, B2, and A2 of IPCC Special Report on Emission Scenarios (SRES) were considered. By assuming that the input pollution sources and watershed configuration were constant, based on 2008 data, water quality in the river network was simulated up to the terminal year 2050. For each climate change scenario, patterns of precipitation in wet and dry year were considered. The change in annual and monthly trends for dissolved oxygen (DO), biochemical oxygen demand (BOD), and ammonium ions (NH4+) load and concentration for different portions of the watershed have been analyzed. The results of these simulations show that climate change has more impact on changing the seasonal water quality parameters than on altering the average annual load of the pollutants. The percent change and change pattern in water quality parameters are different for wet and dry year, and the changes in wet year are smaller than those in dry year.  相似文献   

15.
对疏浚后的南京南湖底泥的TP、TN和COD释放规律、补水后的水质状况以及藻类演替规律进行了调查。结果表明,上覆水中TP平均质量浓度基本不随自来水补入量的增加而发生变化,TN和COD质量浓度随自来水补入量的增加而增大;水体中的TP、TN和COD含量总体呈上升趋势;从2005年3月中旬起,出现藻类的大量繁殖,在2005年7月发生水华,藻类优势种由裸藻、隐藻和小环藻演替为裸藻、栅藻和韦斯藻,藻类总量由2005年3月的3.7×106L-1上升到2006年4月的1.5×107L-1。  相似文献   

16.
This study presents an integrated k-means clustering and gravity model (IKCGM) for investigating the spatiotemporal patterns of nutrient and associated dissolved oxygen levels in Tampa Bay, Florida. By using a k-means clustering analysis to first partition the nutrient data into a user-specified number of subsets, it is possible to discover the spatiotemporal patterns of nutrient distribution in the bay and capture the inherent linkages of hydrodynamic and biogeochemical features. Such patterns may then be combined with a gravity model to link the nutrient source contribution from each coastal watershed to the generated clusters in the bay to aid in the source proportion analysis for environmental management. The clustering analysis was carried out based on 1 year (2008) water quality data composed of 55 sample stations throughout Tampa Bay collected by the Environmental Protection Commission of Hillsborough County. In addition, hydrological and river water quality data of the same year were acquired from the United States Geological Survey's National Water Information System to support the gravity modeling analysis. The results show that the k-means model with 8 clusters is the optimal choice, in which cluster 2 at Lower Tampa Bay had the minimum values of total nitrogen (TN) concentrations, chlorophyll a (Chl-a) concentrations, and ocean color values in every season as well as the minimum concentration of total phosphorus (TP) in three consecutive seasons in 2008. The datasets indicate that Lower Tampa Bay is an area with limited nutrient input throughout the year. Cluster 5, located in Middle Tampa Bay, displayed elevated TN concentrations, ocean color values, and Chl-a concentrations, suggesting that high values of colored dissolved organic matter are linked with some nutrient sources. The data presented by the gravity modeling analysis indicate that the Alafia River Basin is the major contributor of nutrients in terms of both TP and TN values in all seasons. With this new integration, improvements for environmental monitoring and assessment were achieved to advance our understanding of sea-land interactions and nutrient cycling in a critical coastal bay, the Gulf of Mexico.  相似文献   

17.
Surface water quality is vulnerable to pollution due to human activities. The upper reach of the Hun River is an important water source that supplies 52 % of the storage capacity of the Dahuofang Reservoir, the largest reservoir for drinking water in Northeast China, which is suffering from various human-induced changes in land use, including deforestation, reclamation/farming, urbanization and mine exploitation. To investigate the impacts of land use types on surface water quality across an anthropogenic disturbance gradient at a local scale, 11 physicochemical parameters (pH, dissolved oxygen [DO], turbidity, oxygen redox potential, conductivity, biochemical oxygen demand [BOD5], chemical oxygen demand [COD], total nitrogen [TN], total phosphorus [TP], NO 3 ? -N, and NH 4 + -N) of water from 12 sampling sites along the upper reach of the Hun River were monitored monthly during 2009–2010. The sampling sites were classified into four groups (natural, near-natural, more disturbed, and seriously disturbed). The water quality exhibited distinct spatial and temporal characteristics; conductivity, TN, and NO 3 ? -N were identified as key parameters indicating the water quality variance. The forest and farmland cover types played significant roles in determining the surface water quality during the low-flow, high-flow, and mean-flow periods based on the results of a stepwise linear regression. These results may provide incentive for the local government to consider sustainable land use practices for water conservation.  相似文献   

18.
This study investigates six water quality monitoring stations in the watershed of the Feitsui Reservoir. It uses nine parameters of water quality collected in an interval of two and half years for factor analyses, which was first conducted to determine four types of factors, respectively, those for organic pollution, eutrophication, seasonal influence, and sediment pollution. The analysis results effectively help to determine water quality in the watershed of the reservoir. The authors reutilize analysis of moment structures (AMOS) to acquire further results in order to confirm the goodness of fit of the previous factor analysis model. During the confirmation, we examine the hypothesized orthogonal results as well as utilize oblique rotation to explore the goodness of fit of the reflective indicators of the orthogonal rotation. As shown in the algorithm results, as long as the covariance curve is included in the four factors, no related issues are detected in the goodness of fit of reflective indicators and interior and external quality is reported with excellence. The orthogonal model, thus, stands. Additionally, when the analysis of structural equation modeling (SEM) is conducted, sample data mismatches the hypotheses of multivariate normality. Therefore, this study adopts the generalized least square (GLS) for an algorithm. Research results of this study have been submitted to the reservoir management authorities in Taiwan for the improvement of statistical application and strategic evaluation of water quality monitoring data in order to strengthen the managerial effectiveness of water quality in watersheds.  相似文献   

19.
Phosphorus (P) fractions and the effect of phytoremediation on nitrogen and phosphorus removal from eutrophicated water and release from sediment were investigated in the eco-remediation experiment enclosures installed in the Hua-jia-chi pond (Hangzhou city, Zhejiang province, China). The main P fraction in the sediment was inorganic phosphorus (IP). For the mesotrophic sediments, IP mainly consisted of HCl-extractable P (Ca-P). The annual-average concentration of total nitrogen (TN), total phosphorus (TP) in water and the content of TN, TP in different vertical depth of sediment in the experiment enclosures with hydrophyte were always much lower than those in the control enclosure without hydrophyte and those outside of experiment enclosures. It is suggested that phytoremediation was an effective technology for N and P removal from eutrophicated water and release from sediment.  相似文献   

20.
长春南湖底泥疏浚前后水因子分析及动态变化   总被引:9,自引:1,他引:9  
监测了长春南湖底泥疏浚后的DO、NH4_N、NO2_N、NO3_N、BOD5、CODCr、TN、TP、SS、pH、SD和水温等12项水化学指标。用因子分析方法找出了底泥疏浚前后影响南湖水质的主要因子,分析了底泥疏浚前后南湖水质变化的特征和底泥疏浚对南湖水质的影响,分析结果表明,南湖疏浚前主要污染物是总磷,疏浚后总磷对水质的影响降低,悬浮物作用增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号