首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
  国内免费   2篇
综合类   9篇
基础理论   1篇
评价与监测   6篇
  2021年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2011年   3篇
  2003年   1篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
运用SWAT和HEC-RAS模型分别构建流溪河流域水文模型和流溪河水动力水质模型,采用改进的分区达标控制法计算流溪河COD的天然及背景环境容量。结果显示,流溪河的COD天然和背景环境容量分别为53 141.59 t/a和43 988.64 t/a。  相似文献   
2.
为了解广州地区灰霾天气成因,基于城市超级站,对2013年12月1日—12月8日期间2次灰霾天气过程的水溶性无机离子污染特征进行研究。结果表明:监测期间二次离子(SNA)SO_4~(2-)、NO_3~-、NH_4~+分别占PM_(2.5)质量浓度的15.8%、7.4%、7.0%;2次污染过程SNA对PM_(2.5)贡献显著,机动车排放和燃煤是PM_(2.5)的主要污染来源。广州冬季属于富氨区,2次污染过程都伴随着NH_4~+显著增加,NH_4~+主要以(NH_4)_2SO_4和NH_4NO_3形式存在。  相似文献   
3.
为了阐明大城市中心城区不同高度的空气质量差异及其成因,为大气污染防治工作提供科学支撑,该研究基于广州塔大气污染物垂直梯度观测平台的监测数据,采用环境空气质量综合指数和环境空气质量指数(AQI),分别对广州城区近地面层不同高度的空气质量进行评价。结果表明,2015年广州塔4个高度(地面、118 m、168 m和488 m)的空气质量综合指数分别为4.96、5.01、4.83和3.64,AQI超标率分别为27%、30%、25%和40%。总体上,中、低层(168 m以下)的空气质量差异较小,其中118 m点位的综合指数和AQI超标率相对较高;高层(488 m)因O_3污染尤其显著导致其AQI超标率为各高度最高,但O_3质量浓度上升的贡献被其他污染物质量浓度的大幅下降所抵消,故其综合指数反而最低。随着高度增加,PM_(2.5)和NO_2超标程度下降,O_3超标程度上升,导致高层的PM_(2.5)和NO_2几乎不超标,而O_3超标率达40%且其超标天数占AQI超标天数的比例高达99%。随着污染级别上升,PM_(2.5)和NO_2成为首要污染物的比例减少,O_3比例增加,O_3成为各高度AQI超标时最主要的首要污染物。当低层空气质量处于优或重度污染级别时,各层等级一致性相对较好;但在其他情况下,低层与高层的空气质量最多可相差3个级别。因PM_(2.5)和NO_2以低矮源排放贡献为主,而O_3来源于复杂的二次反应,使PM_(2.5)和NO_2质量浓度随高度上升而递减,而O_3质量浓度随高度上升而递增,最终形成了中、低层以PM_(2.5)、NO2和O_3复合污染为主、高层以O_3单一污染为主的空气质量垂直分布特征。  相似文献   
4.
近地面臭氧(O_3)污染已日益成为我国城市群地区空气质量难题。基于近年广州国控空气质量观测站点及广州塔的在线观测数据,结合代表性站点典型时间段VOCs的离线采样观测,探讨了广州市O_3浓度的时空变化和污染特征,并初步分析了O_3生成对前体物VOCs和NOx的敏感性。结果表明:2009—2014年广州市近地面O_3浓度年均值波动上升,每年6~10月份O_3浓度最高,一般以10月份污染最严重;O_3浓度日变化呈单峰特征,高值在14:00左右;空间分布上O_3浓度呈现中心城区低、南北郊区高的特征,而2015年1~5月份广州塔观测发现488m高度O_3浓度显著高于168m、118m和6m高度,且其峰值相对延迟1h左右;广州中心城区O_3生成属VOCs敏感型,秋季南部近郊区以VOCs敏感型为主,北部和离中心城区较远的南部郊区属于过渡型;夏季南部远郊属于过渡型但偏NOx敏感型。  相似文献   
5.
通过利用近地面在线监测、塔基点式梯度在线监测、地基雷达遥感在线监测等技术方法构建臭氧浓度立体在线监测系统,并将其应用于对臭氧浓度分布、传输及变化的分析研究。结合臭氧前体物挥发性有机物(VOCs)监测现状,研究开展VOCs离线监测,完善VOCs在线监测体系,并将其应用于对广州市VOCs组分的分区分时段监测。上述监测系统业务化应用于广州市臭氧污染分布的长期监测,可为开展臭氧来源解析提供基础性的监测平台。  相似文献   
6.
近年来,各类环保评价标准和监督管理技术规范不断推陈出新,其中对环境监测的要求不断明晰。本文结合环境管理要求,围绕着环保评价标准和监督管理技术规范的特点,对其中的环境监测信息进行分析,提出确认思路和程序,并选取实例进行应用效果分析。  相似文献   
7.
广州城区近地面层大气污染物垂直分布特征   总被引:7,自引:1,他引:6       下载免费PDF全文
为更好地了解广州城区近地面层大气污染物的扩散与输送过程,利用广州塔4层大气污染物垂直梯度观测平台(高度分别为地面、118、168和488 m)于2014年1月—2015年12月对多种大气污染物进行连续观测,分析了广州城区近地面层大气污染物的垂直分布特征.结果表明:①ρ(PM10)、ρ(PM2.5)、ρ(PM1)、ρ(NO2)和ρ(NO)随高度的上升而降低,其中ρ(PM10)、ρ(PM2.5)和ρ(PM1)在低层(地面点位)—高层(488 m点位)的递减率分别为35%、30%和26%,ρ(NO2)和ρ(NO)分别为75%和84%;ρ(O3)随高度上升而增加,其低层—高层的增长率为135%;ρ(SO2)和ρ(CO)则随高度上升先增后减.②除ρ(O3)外,其余污染物浓度均符合“冬强夏弱”的季节特征,ρ(O3)则在夏秋季较高,春冬季较低.冬季ρ(PM10)、ρ(PM2.5)、ρ(NO2)和ρ(NO)高、低层间差异为全年各季最大,分别为38.6、18.5、49.4和31.9 μg/m3.③各污染物小时浓度日变化特征均不同程度地受混合层发展过程的影响,各高度污染物浓度在一天中混合层高度最高的时段(12:00—17:00)最接近,而在其余时段分层较明显.除O3外,其余污染物质量浓度在中、低层大致呈早晚双峰分布,而在高层大致呈单峰分布.ρ(O3)则在各层均保持单峰分布,峰值一致出现在14:00.④对一次典型污染过程分析发现,不同高度的ρ(PM2.5)和ρ(NO2)最大差值分别可达183.0和148.0 μg/m3,ρ(PM2.5)显著地受到本地近地面污染源的影响,污染物高浓度区域主要集中在488 m以下.   相似文献   
8.
本介绍绿色食品标志认证中的环境监测工作.同时根据其实际操作过程中遇到的问题提出了进一步完善的建议.  相似文献   
9.
广州市空气可吸入性颗粒物的污染水平   总被引:10,自引:1,他引:9  
报告了中美合作“广州市大气污染对儿童肺功能影响研究”课题可吸入性颗粒物的两年监测结果。用安德森双道采样器、Teflon膜采集细颗粒物(<25μm,PM25)和粗颗粒物(25≤<10μm,PM2510),两者之和为PM10,每季度采15天,每天采一个24小时样品。结果表明,广州市城区大气可吸入性颗粒物的污染相当严重,尤其是细颗粒物(PM25)的污染,应引起公众和政府有关部门的重视。  相似文献   
10.
利用2020年春节期间(1月21~28日)广州市21个空气质量监测站气象和空气污染物数据及其中4个监测点位的单颗粒气溶胶质谱仪(single particle aerosol mass spectrometer,SPAMS)数据,研究烟花爆竹燃放对广州市及11个行政区空气质量的影响,并基于SPAMS建立了烟花爆竹快速溯源方法,分析了烟花爆竹源单颗粒化学成分.结果表明,烟花爆竹燃放对燃放区及禁止燃放区的空气质量都造成显著影响,广州市PM2.5、PM10和SO2质量浓度在除夕夜间迅速升高.烟花爆竹集中燃放时段(1月25日01:00~06:00),主要影响了增城区、白云区、黄埔区及天河区部分区域的空气质量.建立了基于SPAMS以Al+为示踪物及最快5 min时间分辨率的烟花爆竹快速溯源方法.烟花爆竹源颗粒主要颗粒类型是左旋葡聚糖、富钾和矿物质类颗粒.烟花爆竹源颗粒含有丰富的硝酸盐,但不利于铵盐的形成.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号