首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A wind tunnel study was performed to determine the dispersion characteristics of vehicle exhaust gases within the urban canopy layer. The results were compared with those from a field monitoring station located in a street canyon with heavy traffic load. The agreement found was fair. In the second part of the paper it is shown how wind tunnel data can be utilized to supplement and thereby enhance the value of field data for model validation purposes. Uncertainty ranges were quantified which are inherent to mean concentration values measured in urban streets.  相似文献   

2.
In urban conditions, car exhaust gases are often emitted inside poorly ventilated street canyons. One may suppose however that moving cars can themselves produce a certain ventilation effect in addition to natural air motions. Such ventilation mechanism is not sufficiently studied so far. A similarity criterion relating the vehicle- and wind-induced components of turbulent motion in an urban street canyon was proposed in 1982 by E. J. Plate for wind tunnel modelling purposes. The present study aims at further evaluation of the criterion and its applicability for a variety of wind and traffic conditions. This is accomplished by joint analyses of data from numerical simulations and wind tunnel measurements.  相似文献   

3.
A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s?1, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.  相似文献   

4.
The flow and dispersion of stack-gas emitted from different elevated point source around flow obstacles in an urban environment have been investigated, using computational fluid dynamics models (CFD). The results were compared with the experimental results obtained from the diffusion wind tunnel under different conditions of thermal stability (stable, neutral or unstable). The flow and dispersion fields in the boundary layer in an urban environment were examined with different flow obstacles. Gaseous pollutant was discharged in the simulated boundary layer over the flat area. The CFD models used for the simulation were based on the steady-state Reynolds-Average Navier-Stoke equations (RANS) with kappa-epsilon turbulence models; standard kappa-epsilon and RNG kappa-epsilon models. The flow and dispersion data measured in the wind tunnel experiments were compared with the results of the CFD models in order to evaluate the prediction accuracy of the pollutant dispersion. The results of the CFD models showed good agreement with the results of the wind tunnel experiments. The results indicate that the turbulent velocity is reduced by the obstacles models. The maximum dispersion appears around the wake region of the obstacles.  相似文献   

5.
Numerical dispersion models developed and validated in different European countries were applied to data sets from wind tunnel and field measurements. The comparison includes the Danish Operational Street Pollution Model (OSPM) and the microscale flow and dispersion model MISKAM. The latter is recommended for application in built-up areas in the draft of the new German guideline VDI 3782/8. In a first step the models were applied to simplified street configurations. Different parameters as length and height of adjacent buildings and the angle of the incoming flow were varied. The results were compared to recent wind tunnel measurements. In a second step the models were applied to two extensively investigated field data sets from Jagtvej, Copenhagen and G ttinger Straße, Hannover. Intensified and more transparent and accessible validation procedures would be helpful for the thorough user.  相似文献   

6.
The impact of the street configurations on pollutants dispersion from vehicles exhausts within urban canyons was numerically investigated using a computational fluid dynamics (CFD) model. Three-dimensional flow and dispersion of gaseous pollutants were modeled using standard kappa - epsilon turbulence model, which was numerically solved based on Reynolds-averaged Navier-Stokes equations by the commercial CFD code FLUENT. The concentration fields in the urban canyons were examined in three cases of street configurations: (1) a regular-shaped intersection, (2) a T-shaped intersection and (3) a Skew-shaped crossing intersection. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against wind tunnel results in order to optimize the turbulence model. Numerical predictions agreed reasonably well with wind tunnel results. The results obtained indicate that the mean horizontal velocity was very small in the center near the lower region of street canyon. The lowest turbulent kinetic energy was found at the separation and reattachment points associated with the corner of the down part of the upwind and downwind buildings in the street canyon. The pollutant concentration at the upwind side in the regular-shaped street intersection was higher than that in the T-shaped and Skew-shaped street intersections. Moreover, the results reveal that the street intersections are important factors to predict the flow patterns and pollutant dispersion in street canyon.  相似文献   

7.
Flow and Pollutant Dispersion in Street Canyons using FLUENT and ADMS-Urban   总被引:1,自引:0,他引:1  
This paper is devoted to the study of flow within a small building arrangement and pollutant dispersion in street canyons starting from the simplest case of dispersion from a simple traffic source. Flow results from the commercial computational fluid dynamics (CFD) code FLUENT are validated against wind tunnel data (CEDVAL). Dispersion results from FLUENT are analysed using the well-validated atmos pheric dispersion model ADMS-Urban. The k − ε turbulence model and the advection-diffusion (AD) method are used for the CFD simulations. Sensitivity of dispersion results to wind direction within street canyons of aspect ratio equal to 1 is investigated. The analysis shows that the CFD model well reproduces the wind tunnel flow measurements and compares adequately with ADMS-Urban dispersion predictions for a simple traffic source by using a slightly modified k − ε model. It is found that a Schmidt number of 0.4 is the most appropriate number for the simulation of a simple traffic source and in street canyons except for the case when the wind direction is perpendicular to the street canyon axis. For this last case a Schmidt number equal to 0.04 gives the best agreement with ADMS-Urban. Overall the modified k − ε turbulence model may be accurate for the simulation of pollutant dispersion in street canyons provided that an appropriate choice for coefficients in the turbulence model and the Schmidt number in the diffusion model are made.  相似文献   

8.
Odor and odorant emission rates from freshly dewatered biosolids in a dewatering building of a Water Reclamation Plant (WRP) are measured using the EPA flux chamber and wind tunnel methods. Experimental results are compared statistically to test whether the two methods result in similar emission rates when experiments are performed under field conditions. To the best of our knowledge the literature is void of studies comparing the two methods indoors. In this paper the two methods are compared indoors where the wind velocity and air exchange rate are pertinent field conditions and can be measured. The difference between emission rates of odor and hydrogen sulfide measured with the two methods is not statistically significant (P values: 0.505 for odor, 0.130 for H(2)S). It is concluded that both methods can be used to estimate source emissions but selection of the most effective or efficient method depends on prevailing environmental conditions. The wind tunnel is appropriate for outdoor environments where wind effects on source emissions are more pronounced than indoors. The EPA flux chamber depends on the air exchange rate of the chamber, which simulates corresponding conditions of the indoor environment under investigation and is recommended for estimation of indoor pollution sources.  相似文献   

9.
In recent years, high-molecular-weight anionic polyacrylamide (PAM) have been widely tested on a variety of soils, primarily in water erosion control. However, little information is available regarding the effectiveness of PAM on preventing soil loss from wind erosion. The research adopted room wind tunnel experiment, two kinds of soils were used which were from the agro-pastoral area of Inner Mongolia, the northwest of China, the clay content of soils were 22.0 and 13.7%, respectively. For these tests, all the treatments were performed under the condition of wind velocity of 14 m s(-1) and a blown angle of 8.75%, according to the actual situation of experimented area. The study results indicated that using PAM on the soil surface could enhance the capability of avoiding the wind erosion, at the same time, the effect of controlling wind soil erosion with 4 g m(-2) PAM was better than 2 g m(-2) PAM's. Economically, the 2 g m(-2) PAM used in soil surface can control wind erosion effectively in this region. The prophase PAM accumulated in soil could not improve the capability of avoiding the wind erosion, owing to the degradation of PAM in the soil and the continual tillage year after year. The texture of soil is a main factor influencing the capability of soil avoiding wind erosion. Soil with higher clay content has the higher capability of preventing soil from wind erosion than one with the opposite one under the together action of PAM and water.  相似文献   

10.
An understanding of the scaling laws governing aerosol sampler performance leads to new options for testing aerosol samplers at small scale in a small laboratory wind tunnel. Two methods are described in this paper. The first involves an extension of what is referred to as the "conventional" approach, in which scaled aerosol sampler systems are tested in a small wind tunnel while exposed to relatively monodisperse aerosols. Such aerosols are collected by test and reference samplers respectively and assessed gravimetrically. The new studies were carried out for a modified, low flowrate version of the IOM personal inhalable aerosol sampler. It was shown that such experiments can be carried out with a very high level of repeatability, and this supported the general validity of the aerosol sampler scaling laws. The second method involves a novel testing system and protocol for evaluating the performances of aerosol samplers. Here, scaled aerosol samplers of interest are exposed to polydisperse aerosols, again in a small wind tunnel. In this instance, the sampled particles are counted and sized using a direct-reading aerodynamic particle sizer (the APS). A prototype automated aerosol sampler testing system based on this approach was built and evaluated in preliminary experiments to determine the performance of another modified version of the IOM personal inhalable aerosol sampler. The design of the new test system accounts for the complex fluid mechanical coupling that occurs near the sampler inlet involving the transition between the external flow outside the sampler and the internal airflow inside the sampler, leading in turn to uncontrolled particle losses. The problem was overcome by the insertion of porous plastic foam plugs. where the penetration characteristics are well understood, into the entries of both the test and the reference samplers. Preliminary experiments with this new system also supported the general validity of the aerosol sampler scaling laws. In addition, they demonstrated high potential that this approach may be applied in a standardised aerosol testing method and protocol.  相似文献   

11.
The need to determine occupational exposure to bioaerosols has notably increased in the past decade, especially for microbiology-related workplaces and laboratories. Recently, two new cyclone-based personal bioaerosol samplers were developed by the National Institute for Occupational Safety and Health (NIOSH) in the USA and the Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT & HRB) in Russia to monitor bioaerosol exposure in the workplace. Here, a series of wind tunnel experiments were carried out to evaluate the physical sampling performance of these two samplers in moving air conditions, which could provide information for personal biological monitoring in a moving air environment. The experiments were conducted in a small wind tunnel facility using three wind speeds (0.5, 1.0 and 2.0 m s(-1)) and three sampling orientations (0°, 90°, and 180°) with respect to the wind direction. Monodispersed particles ranging from 0.5 to 10 μm were employed as the test aerosols. The evaluation of the physical sampling performance was focused on the aspiration efficiency and capture efficiency of the two samplers. The test results showed that the orientation-averaged aspiration efficiencies of the two samplers closely agreed with the American Conference of Governmental Industrial Hygienists (ACGIH) inhalable convention within the particle sizes used in the evaluation tests, and the effect of the wind speed on the aspiration efficiency was found negligible. The capture efficiencies of these two samplers ranged from 70% to 80%. These data offer important information on the insight into the physical sampling characteristics of the two test samplers.  相似文献   

12.
Wind tunnel studies, which remain limited, are an important tool to understand the aeolian processes of dried-up riverbeds. The particle size, chemical composition, and the mineral contents of sediments arising from the dried river beds are poorly understood. Dried-up riverbeds cover a wide area in the Hexi Corridor, China, and comprise a complex synthesis of different land surfaces, including aeolian deposits, pavement surfaces, and Takyr crust. The results of the present wind tunnel experiment suggest that aeolian transport from the dried-up riverbeds of the Hexi Corridor ranges from 0 to 177.04 g/m2/min and that dry riverbeds could be one of the main sources of dust emissions in this region. As soon as the wind velocity reaches 16 m/s and assuming that there are abundant source materials available, aeolian transport intensity increases rapidly. The dried-up riverbed sediment and the associated aeolian transported material were composed mainly of fine and medium sands. However, the transported samples were coarser than the bed samples, because of the sorting effect of the aeolian processes on the sediment. The aeolian processes also led to regional elemental migration and mineral composition variations.  相似文献   

13.
This paper presents a mathematical model of local pollutant dispersion designed to compute the concentration field above and around the Marcoule nuclear site. The model is based on integrating the classical turbulent diffusion equation, corrected (prior to integration) by experimental wind tunnel data obtained for a scaled-down model of the site. The computed results are compared with full-scale experimental observations at Marcoule in the case of neutral atmosphere. A comparison with the standard Gaussian model is also made. Finally, a critical analysis of the model is presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
运用大气扩散理论,得到了隧道内自然通风和纵向通风状态下的可吸入颗粒物(PM10)扩散模型,并由隧道口PM10浓度、隧道截面积、隧道内风速,以及车流量和类型等参数,获得了整条隧道内的不同PM10浓度分布.模型表明,随着隧道深度的增加,PM10浓度逐渐增大.通过采用纵向通风的玄武湖隧道各参数,得到了3组不同条件下的PM10扩散模型,并用所得模型计算了隧道内不同深度处PM10的浓度.沿隧道不同深度测得的PM10浓度值的比较结果表明,实际测定值围绕计算值上下波动,两者之间具有良好的一致性.  相似文献   

15.
It is well known that the commonly used k- turbulence models yield inaccurate predictions for complex flow fields. One reason for this inaccuracy is the misrepresentation of Reynolds stress differences. Nonlinear turbulence models are capable to overcome this weakness while being not considerably more complex. However no comprehensive studies are known which analyze the performance of nonlinear turbulence models for three-dimensional flows around building-shaped structures. In the present study the predictions of the flow around a surface-mounted cube using three nonlinear two-equation turbulence models are discussed. The results are compared with predictions of the standard k- turbulence model and wind tunnel measurements. It is shown that the use of nonlinear turbulence models can be beneficial in predicting wind flows around buildings.  相似文献   

16.
The possibility of marine discharge of a negatively buoyant industrial waste was evaluated by a modeling study using Killworth 3-D, which is the first version of the Modular Ocean Model (MOM). The Model was run with the recorded wind direction and speed on the cruise dates and the circulation patterns for surface and subsurface were found to be similar with the current meter measurements. Model scenarios have been set-up in order to estimate the intensity and direction of the currents in the Nemrut Bay under the condition of wind blowing from a definite direction for a long time. MOM model has been run for four major wind directions, each having duration of 10 days and the behavior of the discharge plume in the worst case has been traced. Also, the behavior of the discharge plume in the real case has been estimated by using the wind data of the region. According to the model results, impact of trace elements that compose the discharge effluent is limited both in time and space. It is concluded that trace elements will leave the Bay in a short time due to the short residence times.  相似文献   

17.
An experimental system was developed for the rapid measurement of the aspiration/transfer efficiency of aerosol samplers in a wind tunnel. We attempted to measure the aspiration and particle transfer characteristics of two inlets commonly used for sampling airborne Particulate Matter (PM): the 'Total Suspended Particulate' or TSP inlet, and the louvered 'dichotomous sampler inlet' typically used in sampling PM10 or PM2.5. We were able to determine the fraction of the external aerosol that enters the inlet and is transferred through it, and hence is available for collection by a filter, or further size fractionation into PM10 or PM2.5. This 'sampling efficiency' was analysed as a function of dimensionless aerodynamic parameters in order to understand the factors governing inlet performance. We found that for the louvered inlet the sampling efficiency increases as the external wind increases. Under all conditions expected in practical use the louvered inlet aspirates sufficient PM to allow either PM10 or PM2.5 to be selected downstream. The TSP inlet's sampling efficiency decreases with increasing external wind, and the TSP inlet is likely to under-sample the coarse end of the PM10 fraction at moderate and high external winds. As this inlet is generally not used with a downstream size fractionator, changes in sampling efficiency directly affect the measured aerosol concentration. We also investigated whether it is possible to dimensionally scale the PM inlets to operate at either higher or lower flow rates, while preserving the same sampling characteristics as the current full-scale, 16.67 L min(-1) versions. In the case of the louvered inlet, our results indicate that scaling to lower flow rates is possible; scaling to higher flow rates was not tested. For the TSP sampler, the sampling efficiency changes if the sampler is scaled to operate at smaller or larger flow rates, leading to unreliable performance.  相似文献   

18.
The dispersion of pollutants from naturally ventilated underground parking garages has been studied in a boundary layer wind tunnel. Two idealized model setups have been analysed, one was simulating pollutant dispersion around an isolated rectangular building and one was representing dispersion in a finite array of idealized building blocks. Flow and dispersion close to modelled ground level emission sources was measured. The results illustrate the complexity of the flow around buildings and provide insight in pollutant transport from ground level sources located directly on building surfaces. As a result, areas critical with respect to high pollutant concentrations could be visualized. Particularly, the results show high concentration gradients on the surface of the buildings equipped with modelled emission sources. Inside the boundary layers on the building walls, a significant amount of pollutants is transported to upwind locations on the surface of the building. The paper documents the potential of physical modelling to be used for the simulation and measurement of dispersion close to emission sources and within complex building arrangements.  相似文献   

19.
The purpose of the study was to evaluate potential locations for the installation of small wind turbines in urban areas. Four study sites in An-Ping, Tainan were chosen for measurement in this empirical study. The measurement data were used to verify the computational fluid dynamics (CFD) model. The weather information was gathered in order to understand the overall wind environment in the studied area. CFD software was used to simulate the wind environment in the study area from 16 directions. The distribution of wind environment was first presented, and then the distribution of exceedance probability in each grid, which was based on an exceedance probability assessment, was obtained. In addition to the installation heights of the turbines, the influence of surrounding buildings was taken into consideration. Finally, a wind energy potential map indicating the potential regions and non-potential regions for installing small wind turbines was illustrated by the ArcGIS system. A wind energy potential map, superimposed with locations of buildings of different floor heights, was used to evaluate the possible sites for the installment of small wind turbines at heights of 10, 20, and 30 m. The results proved that installing micro wind turbines in open spaces and on the roofs of three-, four-, and five-story buildings at a height of 20 m is relatively beneficial for coastal urban areas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号