首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
安全科学   1篇
综合类   1篇
污染及防治   4篇
评价与监测   6篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2004年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier–Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H?=?1/2, 3/4, and 1) and wind directions (θ?=?90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H?=?1/2 and 1 and wind directions θ?=?112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.  相似文献   
2.
This paper presents a model for coupling the statistics of wind velocity distribution and atmospheric pollutant dispersion. The effect of wind velocity distribution is modeled as a three-dimensional finite-impulse response (3D-FIR) filter. A phase space representation of the 3D-FIR filter window is discussed. The resulting pollutant dispersion is the multiplication in the phase space of the 3-D Fourier transform of the pollutant concentration and the volume described by the filter window coefficients. The shape of the filter window in the phase space enables representing such effects as vortex shedding thermal currents, etc. The impact of spatial distribution of the sensors on the resulting pollutant spatial distribution and the 3-D FIR filter model employed also discuss. The case of a neutrally buoyant plume emitted from an elevated point source in a turbulent boundary layer considers. The results show that wind turbulence is an important factor in the pollutant dispersion and introduces expected random fluctuations in pollutant distribution and leads to spreading the distribution due to wind mixing.  相似文献   
3.
The behavioral distribution of the atmospheric turbulence flow over the terrain with changes in a rough surface has become one of the most important topics of air pollution research, among such other topics as transportation and dispersion pollutants. In this study, a computational model on atmospheric turbulence flow over a terrain hill shaped with rough surface was investigated under neutral atmospheric conditions. The flow was assumed to be 2D and modeled using computational fluid dynamics (CFD) models, which were numerically solved using Reynolds-averaged Navier-Stokes equations. Rough surface conditions were modeled using a number of windbreak fences regularly spaced on the hill. The mean velocity and turbulent structures such as turbulence intensity and turbulent kinetic energy were investigated in the upwind and downwind regions over the hill, and the numerical models were validated against the wind-tunnel results to optimize the turbulence model. The computational results agreed well with the results obtained from the wind tunnel experiments. The computational results indicate that the mean velocity was observed to increase dramatically around the crest of the upwind slope of the hill. A thick internal boundary layer was observed with a fence on the crest and downwind region of the hill. The reversed flow and recirculation zone were formed in the wake region behind the hill. It was thus determined that turbulent kinetic energy decreases as the mean velocity increases.  相似文献   
4.
The purpose of this study was to examine the effectiveness of the revised scaffold safety standard in the construction industry and to evaluate time trend analyses on scaffold-related fatalities and injuries, as well as inspections conducted and cited violations of the scaffold safety standard set forth in Title 29 of the Code of Federal Regulations Part 1926, Subpart L. Data on scaffold-related fatalities, injuries, and lost workdays, as well as cited violations of scaffold safety, were assembled from sources such as the US Department of Labor's Occupational Safety and Health Administration (OSHA) Integrated Management Information System, and Bureau of Labor Statistics. Data for the period prior to the revision of the standard were compared with data from the period after the revision. We used autoregressive analyses to evaluate the percentage of change in the mean scaffold-related fatalities, injuries and lost workdays and in the OSHA inspections and cited violations of scaffold safety. Effectiveness analysis was conducted to assess the effectiveness of the revised scaffold safety standard in preventing fatal or nonfatal injuries in the construction industry. Complying with the revised scaffold safety standard would prevent approximately 4.6 fatalities, 404 nonfatal injuries, and 2896 lost workdays per year. A total cost savings associated with compliance was estimated at $5.8 million (2001 US$) per year. Compliance with the revised scaffold safety standard would provide a safer workplace and generate a significant cost saving in the construction industry.  相似文献   
5.
Environmental Science and Pollution Research - Agriculture faces many challenges such as climate change, droughts, and salinity, which requires urgent interventions for fast adaptation and...  相似文献   
6.
This study is planned to perform a sanitary survey of the largest sewage treatment plant in Riyadh, KSA, fortnightly for 6 months to examine its effluent quality as an example for the growing dependence on reuse of treated municipal wastewater in agricultural irrigation purposes to cope with increasing water shortage. The biological and physico-chemical parameters of 12 wastewater samples from the plant were examined using standard methods. The physico-chemical analysis indicated that the surveyed municipal wastewater treatment plant contained some of the studied parameters, such as turbidity, total suspended solids, biochemical oxygen demand, chemical oxygen demand and residual chlorine above the maximum permissible wastewater limits set by the Saudi Standards. However, heavy metal concentrations in all samples were lower than the recommended standards. Total and faecal coliform counts were above the permissible limits indicating poor sanitation level. Fifty percent of all wastewater samples were contaminated with faecal coliforms but, surprisingly, Escherichia coli were only detected in 8.3 % of the samples. Regular monitoring and enhancement of microbial and physico-chemical parameters of the wastewater quality served by different wastewater treatment plants for reuse in agricultural irrigation is recommended to preserve the environment and public health.  相似文献   
7.

Introduction  

Identifying geographic locations in urban areas from which air pollutants enter the atmosphere is one of the most important information needed to develop effective mitigation strategies for pollution control.  相似文献   
8.
This paper studies the effects of building orientations on the gaseous pollutant dispersion released from vehicles exhaust in street canyons through computational fluid dynamics (CFD) numerical simulations using three kε turbulence models. Four building orientations of the street canyon were examined in the atmospheric boundary layer. The numerical results were validated against wind-tunnel results to optimize the turbulence models. The numerical results agreed well with the wind-tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height in the street canyon was on the windward side for the building orientations θ?=?112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the building orientation increases from θ?=?90°. The concentration in the cavity region for the building orientation θ?=?90° was higher than for the wind directions θ?=?112.5°, 135°, and 157.5°. The wind velocity and turbulence energy increase as the building orientation increases. The finding from this work can be used to help urban designers and policy-makers in several aspects.  相似文献   
9.
One of the most pressing issues in studying the impacts of sea level rise (SLR) triggered by climate change is understanding the development of the hazard of permanent coastal flooding. The issue persists because available approaches are based on the mapping of the inundated area where they explore the coastal flooding development across terrain elevations, that is—horizontally. In addition, they overlook the existing structures along or in the vicinity of the coastline, which have inherent hydraulic properties that may affect the development of such flooding. The purpose of this study is to develop a novel approach for assessing the development of permanent coastal flooding due to SLR at cross sections along the coastline, that is—vertically, in full consideration of underlying hydraulic properties of the existing coastline. An approach was developed using analogy of existing coastline to a contiguous weir. This approach was named crestline approach and was developed as a four step GIS-based approach that could be applied at any coastal zone. An example application on one of the top ranked cities in the world prone to the SLR threat has been provided to illustrate exactly how to apply the crestline approach. The novelty of this approach lies in its ability to accurately identify the specific locations where coastal flooding will initiate, in full consideration of existing natural/manmade coastal structures. This study is significant for the opportunities it provides to analysts and decision makers to better understand the development of permanent coastal flooding.  相似文献   
10.
The flow and dispersion of stack-gas emitted from different elevated point source around flow obstacles in an urban environment have been investigated, using computational fluid dynamics models (CFD). The results were compared with the experimental results obtained from the diffusion wind tunnel under different conditions of thermal stability (stable, neutral or unstable). The flow and dispersion fields in the boundary layer in an urban environment were examined with different flow obstacles. Gaseous pollutant was discharged in the simulated boundary layer over the flat area. The CFD models used for the simulation were based on the steady-state Reynolds-Average Navier-Stoke equations (RANS) with kappa-epsilon turbulence models; standard kappa-epsilon and RNG kappa-epsilon models. The flow and dispersion data measured in the wind tunnel experiments were compared with the results of the CFD models in order to evaluate the prediction accuracy of the pollutant dispersion. The results of the CFD models showed good agreement with the results of the wind tunnel experiments. The results indicate that the turbulent velocity is reduced by the obstacles models. The maximum dispersion appears around the wake region of the obstacles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号