首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treated effluents become one of the most significant sources for irrigation and other activities in arid and semi arid countries such as Oman. This study focuses on characterizing the quality of domestic wastewater in chosen three regions: Muscat, Sohar, and Salalah. The knowledge on treatment processes, quality, and proper management of domestic wastewater reuse for various purposes is essential. Wastewater samples were collected from six different sewage treatment plants (STPs) over a period of 1 year in 2009 on a monthly basis. The raw sewage (RS) and treated effluent (TEs) samples were collected from different sampling points in each STP. Both types of samples were analyzed for physicochemical and microbiological assessment. All tests were conducted according to the standard method for the examination of water and wastewater. The results revealed that the TEs electrical conductivity, biological oxygen demand, chemical oxygen demand, heavy metals, sodium, potassium, and total dissolved solids values were found within Omani Standards (OS). The RS in all STPs was categorized as high strength concentration and samples exceeded the acceptable range for ammonia in most of the selected plants except Sohar and Salalah. Nitrate values in RS were also observed in higher concentrations. In general, the produced TEs have met most of regulatory limits stated by OS except for nitrate, Escherichia coli and total suspended solids (TSS). Furthermore, it should be noted that the performance of Salalah and Darsayt STPs can be classified as the best compared to the other four STPs studied in Oman.  相似文献   

2.
Composite samples of septage discharging at the Khirbit As-Samra municipal wastewater treatment plant were analyzed during the period from February to the end of October 2007. Septage showed difference in concentrations of pollutants between summer and winter. The average total chemical oxygen demand (COD) of 6,425 mg/L during summer was 2.16 times greater than that in winter, which is 2,969 mg/L. The total biochemical oxygen demand (5 d) represented 45% of total COD in both winter and summer. Anaerobic biodegradability was 75% after 81 d of digestion at 35°C with a biodegradation rate constant (k) of 0.024 d???1, which was lower compared with 0.103 d???1 calculated for wastewater with domestic origin in Jordan. Aerobic biodegradability for septage was 48%??COD basis??after 7 d of digestion at 35°C. The lower anaerobic biodegradation rate of septage compared with that of raw wastewater of domestic origin suggested that septage could have a negative effect on the performance of a domestic wastewater treatment plant if septage discharges are not taken into account in the original design of the treatment plant.  相似文献   

3.
Textile industry needs to recover and reuse its wastewater as to fulfil the demand of increasingly strict regulations. The characterization of dyeing wastewater samples according to textile fiber and final textile effluent enables the application of different treatment methods. This study aims to characterize dyeing wastewater in black color of polyamide, polyester, and viscose fibers and final textile effluent. Samples were collected and characterized completely for major pollution indicator parameters. Dyeing wastewater of polyester showed higher values for some parameters, e.g., 4994.44% (49,944,400 mg L?1 and 917 NTU) of turbidity and 4100.00% of phenol when compared to dyeing wastewater of other fibers. Other parameters such as pH, alkalinity, color, phosphorus, nitrogen, sulfides, chlorides, oil and grease, dissolved solids, and chemical and biochemical oxygen demand were also assessed. In addition to individual characterization, this study also presents a correlation of the contribution of each parameter to the final textile effluent. Although dyeing wastewater of polyamide contributes the most in terms of quantity for the final effluent, this study revealed that dyeing wastewater of polyester influenced the most on the final composition of the textile wastewater when evaluating color, turbidity, total iron, biochemical oxygen demand, chemical oxygen demand, phenol, mercury, oil and grease, and total phosphorus. The present study is focused on bringing new insights to provide future research with other strategies to improve the treatment of dyeing wastewater. In addition, some suggestions are also given for wastewater treatments according to type of textile fiber.  相似文献   

4.
Water samples from 30 rivers in northern and north-eastern hilly states of India were analysed for bacteriological and physicochemical parameters along with metals and pesticide residues. It was found that 34% of samples had >50 coliforms/100 ml, while 24% of samples demonstrated >50 thermotolerant (faecal) coliforms/100 ml. Among the metals, iron was found to be above maximum permissible limits in the rivers of all the states, while manganese was found to be above the maximum permissible limit in the rivers of Tripura and some northern states. Zinc, lead, nickel, chromium, copper, cobalt and cadmium plus physicochemical parameters and residual pesticides, however, were within their maximum permissible limits.  相似文献   

5.
Emergent plant species growing in Andean natural wetlands have shown efficient phytoremediation capabilities in wetlands polluted by acid mine drainage. However, the types and amounts of heavy metals accumulated by native plant species are not well understood. In this study, we focused on determining heavy metal concentrations and bioaccumulation factors in Calamagrostis ligulata and Juncus imbricatus. Two acid wetlands located above 3,500 m a.s.l. in Ancash, Peru were assessed. Physico-chemical parameters and heavy metals concentrations in control and experimental plant samples were measured in dry and rainy seasons. Results indicated that C. ligulata and J. imbricatus aerial parts accumulated higher amounts of Fe, Zn, As and Al. Also, bioaccumulation factors revealed notable increases in As, Pb and Al, but less so in Cd, Fe and Zn. On the other hand, physico-chemical parameters of water quality (pH, temperature, dissolved oxygen, sulphides) between inflow and outflow of wetlands indicated significant differences in the presence of metals in comparison with their maximum permissible limits. Both emergent plant species showed an accumulation of heavy metals and thus the ability to recovery of water quality in wetland outflows.  相似文献   

6.
An extensive field survey was employed for assessing the impacts of long-term wastewater irrigation of forage crops and orange orchards in three suburban agricultural areas in Cyprus (areas I, II, and III), as compared to rainfed agriculture, on the soil geochemical properties and the bioaccumulation of heavy metals (Zn, Ni, Mn, Cu, Co) to the agricultural products. Both ryegrass fields and orange orchards in areas I and II were continuously wastewater irrigated for 10 years, whereas clover fields in area III for 0.5, 4, and 8 years. The results revealed that wastewater reuse for irrigation caused a slight increase in soil salinity and Cl? content in areas I and II, and a remarkable increase, having strong correlation with the period in which wastewater irrigation was practiced, in area III. Soil salinization in area III was due to the high electrical conductivity (EC) of the wastewater applied for irrigation, attributed to the influx of seawater to the sewage collection network in area III. In addition, the wastewater irrigation practice resulted in a slight decrease of the soil pH values in area III, while a subtle impact was identified regarding the CaCO3, Fe, and heavy metal content in the three areas surveyed. The heavy metal content quantified in the forage plants’ above-ground parts was below the critical levels of phytotoxicity and the maximum acceptable concentration in dairy feed, whereas heavy metals quantified in orange fruit pulp were below the maximum permissible levels (MPLs). Heavy metal phytoavailability was confined due to soil properties (high pH and clay content), as evidenced by the calculated low transfer factor (TF).  相似文献   

7.
The reuse of treated municipal wastewater should be one of the new water resource target areas. The suitability of the reuse of wastewater for agricultural irrigation has to consider health risk, soil contamination and the influence of the reclaimed water on crop growth. In this work the aim is to use quantitative risk analysis to assess the health effects related to reclaimed water quality and to calculate the loading capacity of reclaimed wastewater in terms of the heavy metal accumulation. The results of chemical risk assessment show there would be slightly significant health risk and what risk there is can be limited within an acceptable level. The following exposure pathway: reclaimed water-->surface water-->fish (shellfish)-->human, and arsenic risks are of more concern. In terms of reuse impact in soil contamination, the most possible heavy metal caused accumulation is arsenic. The irrigative quantity has to reach 13,300 m(3)/ha to cause arsenic accumulation. However, only 12,000 m(3)/ha is essential for rice paddy cropland. The high total nitrogen of reclaimed water from secondary treatment makes it unfavorable for crop growth. The recommended dilution ratio is 50% during the growth period and 25% during the maturity period.  相似文献   

8.
An attempt has been made in this study to evaluate the groundwater quality in two industrial blocks of Ghaziabad district. Groundwater samples were collected from shallow wells, deep wells and hand pumps of two heavily industrialized blocks, namely Bulandshahar road industrial area and Meerut road industrial area in Ghaziabad district for assessing their suitability for various uses. Samples were collected from 30 sites in each block before and after monsoon. They were analyzed for a total of 23 elements, namely, Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Se, U, V, and Zn. In addition to these elements, some other parameters were also studied viz: color, odor, turbidity, biological oxygen demand, chemical oxygen demand (COD), dissolved oxygen, total dissolved solids and total suspended solid. The water quality index was also calculated based on some of the parameters estimated. Out of the 23 elements, the mean values of 12 elements, namely, Al, As, Ca, Cd, Cr, Mg, Mn, Na, Ni, Pb, Se, and U, were higher than the prescribed standard limits. The concentrations (in milligram per liter) of highly toxic metals viz., Al, As, Cd, Cr, Ni, Pb, Se, and U, ranged from 1.33–6.30, 0.04–0.54, 0.005–0.013, 4.51–7.09, 0.14–0.27, 0.13–0.32, 0.16–2.11, and 0.10–1.21, respectively, in all groundwater samples, while the permissible limits of these elements as per WHO/BIS standards for drinking are 0.2, 0.01, 0.003, 0.05, 0.07, 0.01, 0.04, and 0.03 mg L?1, respectively. The EC, pH, and COD in all samples varied from 0.74–4.21, 6.05–7.72, and 4.5–20.0 while their permissible limits are 0.7 dS m?1, 6.5–8.5, and 10 mg L?1, respectively. On the basis of the above-mentioned parameters, the water quality index of all groundwater samples ranged from 101 to 491, and 871 to 2904 with mean value of 265 and 1,174 based on two criteria, i.e., physico-chemical and metal contaminations, respectively while the prescribed safe limit for drinking is below 50. The results revealed that the groundwater in the two blocks is unfit for drinking as per WHO/BIS guidelines. The presence of elements like As, Se, and U in toxic amounts is a matter of serious concern.  相似文献   

9.
Wastewater reuse can significantly reduce environmental pollution and save the water sources. The study selected Cheng-Ching Lake water treatment plant in southern Taiwan to discuss the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. The treatment units of this plant include wastewater basin, sedimentation basin, sludge thickener and sludge dewatering facility. In this study, the treatment efficiency of SS and turbidity were 48.35–99.68% and 24.15–99.36%, respectively, showing the significant removal efficiency of the wastewater process. However, the removal efficiencies of NH3–N, total organic carbon (TOC) and chemical oxygen demand (COD) are limited by wastewater treatment processes. Because NH3–N, TOC and COD of the mixing supernatant and raw water are regulated raw water quality standards, supernatant reuse is feasible and workable during wastewater processes at this plant. Overall, analytical results indicated that supernatant reuse is feasible.  相似文献   

10.
Kasur is one of the hubs of leather industry in the Punjab, Pakistan, where chrome tanning method of leather processing is extensively being used. Chromium (Cr) accumulation levels in the irrigation water, soil, and seasonal vegetables were studied in three villages located in the vicinity of wastewater treatment plant and solid waste dumping site operated by the Kasur Tanneries Waste Management Agency (KTWMA). The data was interpreted using analysis of variance (ANOVA), clustering analysis (CA), and principal component analysis (PCA). Interpolated surface maps for Cr were generated using the actual data obtained for the 30 sampling sites in each of the three villages for irrigation water, soil, and seasonal vegetables. The level of contamination in the three villages was directly proportional to their distance from KTWMA wastewater treatment plant and the direction of water runoff. The highest level of Cr contamination in soil (mg kg?1) was observed at Faqeeria Wala (37.67), intermediate at Dollay Wala (30.33), and the least in Maan (25.16). A gradational variation in Cr accumulation was observed in the three villages from contaminated wastewater having the least contamination level (2.02–4.40 mg L?1), to soil (25.16–37.67 mg kg?1), and ultimately in the seasonal vegetable crops (156.67–248.33 mg kg?1) cultivated in the region, having the highest level of Cr contamination above the permissible limit. The model used not only predicted the current situation of Cr contamination in the three villages but also indicated the trend of magnification of Cr contamination from irrigation water to soil and to the base of the food chain. Among the multiple causes of Cr contamination of vegetables, soil irrigation with contaminated groundwater was observed to be the dominant one.  相似文献   

11.
A total of 60 drinking water samples collected from Erode district, Tamilnadu, India were analysed for fluoride contamination, besides water quality parameters such as pH, electrical conductivity, total dissolved solids, total alkalinity, total hardness, fluoride, bicarbonates, calcium, magnesium, nitrate, sulphate, phosphate, sodium and potassium. The results obtained were found to exceed the permissible limits. The concentration of fluoride in the water samples ranged between 0.5 and 8.2 mg/l and revealed that 80% of the water samples contain fluoride above the maximum permissible limit. Similarly, the concentrations of nitrate, hardness, calcium and magnesium in some samples were also more than the permissible level. Pearson’s correlation coefficient among the parameters showed a positive correlation of fluoride with total hardness and calcium. It is inferred from the study that these water sources can be used for potable purpose only after prior treatment.  相似文献   

12.
Seven representative sampling stations were selected from Indus Delta comprising of (1) Keti Bander, (2) Darya Peer, (3) Kharo Chanr, (4) Jati, (5) Shah Bander, (6) Nariri Dhand and (7) Left Bank Outfall Drain (LBOD) near Rupa Mari. The sampling scheme was repeated seven times during 2014–2015 for 1 year. The samples were analysed for temperature, conductivity, pH, hardness, chloride, alkalinity, dissolved oxygen, biological oxygen demand, chemical oxygen demand, sulphate, orthophosphate-P, nitrite-N, nitrate-N, Na, K, Fe, Ni, Cr, Co, Cd, Zn, Cu, Pb and As. The analysis was carried out using standard analytical procedures. A number of parameters crossed the WHO permissible limits and water quality guidelines for aquatic life and indicated pollution within coastal region. Coefficient of correlation (r) among physicochemical parameters and metal ions were examined and a number of parameters did not correlate positively and did not indicate natural origin and may indicate their presence due to human activity. The samples were examined for cluster analysis, and principal component analysis. The samples also indicated the presence of Presumptive Coliform, Faecal coliform and E. coli.  相似文献   

13.
Pulp and paper mills generate varieties of pollutants depending upon type of the pulping process being used. This paper presents the characteristics of wastewater from South India Paper Mill, Karnataka, India which is using recycled waste paper as a raw material. The raw wastewater consists of 80?C90 mg L???1 suspended solid and 1,010?C1,015 mg L???1 dissolved solid. However, pH varied from 5.5?C6.8. The biochemical oxygen demand and chemical oxygen demand ranged from 200?C210 and 1,120?C1,160 mg L???1, respectively. Aerobic treatment of raw effluent attribute to significant reduction in suspended solid (range between 25 to 30 mg L???1) and total dissolved solid (range between 360 to 390 mg L???1). However, pH, temperature, and electrical conductivity were found superior after treatment. Copper, cadmium, iron, lead, nickel, and zinc were found in less quantity in raw effluent and were almost completely removed after treatment. The dendrogram of the effluent quality parameters clearly indicate that South India Paper Mill does not meet Minimal National Standard set by central Pollution Control Board to discharge in agricultural field.  相似文献   

14.
Use of industrial and wastewater for irrigation is on the rise in India and other developing countries because of scarcity of good-quality irrigation water. Wastewaters contain plant nutrients that favour crop growth but leave a burden of heavy metals which can enter the food chain and is a cause of great concern. The present study was undertaken on the long-term impact of irrigation with treated sewage water for growing vegetables and the potential health risk associated with consumption of such vegetable. Treated sewage water (TSW), groundwater (GW), soil and plant samples were collected from peri urban vegetable growing areas of Northern India (Varanasi) and analysed to assess the long-term effect of irrigation with TSW on Cd, Cr, Ni and Pb build-up in soils and its subsequent transfer into commonly grown vegetable crops. Results indicate that TSW was richer in essential plant nutrients but contained Cd, Cr and Ni in amounts well above the permissible limits for its use as irrigation water. Long-term application of TSW resulted in significant build-up of total and DTPA extractable Cd, Cr, Ni and Pb over GW irrigated sites. TSW also resulted in slight lowering in pH, increase in organic carbon (1.6 g kg − 1) and cation exchange capacity (5.2 cmol kg − 1). The tissue metal concentration and relative efficiency of transfer of heavy metals from soil to plant (transfer factor) for various groups of vegetables were worked out. Radish, turnip and spinach were grouped as hyper accumulator of heavy metals whereas brinjal and cauliflower accumulated less heavy metals. Health risk assessment by consumption of vegetables grown with TSW indicated that all the vegetables were safe for human consumption. However, significant accumulation of these heavy metals in soil and plant needs to be monitored.  相似文献   

15.
Environmental monitoring of leachate quality from an open municipal solid waste dumping site in Tunceli, Turkey was studied in this research. The most commonly examined pollution parameters were determined on a seasonal basis. The annual average 5-day biological oxygen demand (BOD5) and chemical oxygen demand (COD) values of station points were measured as 70 and 425 mg/L, respectively, and also the average BOD5/COD ratio (a measure of biodegradability) was calculated as 0.20. The low ratio of biodegradability and slightly alkaline pH values in the leachate samples indicated that the site was characterized by methanogenic conditions. The mean ammonium-nitrogen (NH4 +-N) and corresponding phosphate (orthophosphate) values were assayed as 70 and 11 mg/L, respectively. The average solids content in the leachates was measured as 4,681 mg/L (total solids) and 144 mg/L (suspended solids). Very low concentrations of iron, manganese, copper, and zinc in the leachate samples were found and the concentration of cadmium was measured below detection limits. Excessive amount of nutrients and high organic and inorganic pollutant content in the leachates pose serious pollution potential to the environment. Since no drainage system or bio treatment exists in this open dumping site, high permeability of natural soil at the site and in the surrounding area and very fractured and crackled rocks under natural soil are indicators of high groundwater pollution potential in this site.  相似文献   

16.
Different water quality management alternatives, including conventional wastewater treatment, transportation of wastewater, flow augmentation, low-cost treatment with reuse, and wetlands, are evaluated by using a verified dissolved oxygen (DO) model for the Ravi River. Biokinetic rate coefficients of the Ravi River for both the carbonaceous and nitrogenous oxygen-demanding wastes are adjusted, keeping in view the type and level of wastewater treatment. The conventional activated sludge process with nitrification comes out to be the most expansive alternative to meet the DO standard of 4 mg/L. Additional treatment cost is required to maintain un-ionized ammonia levels <0.02 mg/L, which corresponds to achieving treatment levels of 5 mg/L of DO in the river. Under critical low-flow conditions (i.e., minimum average seven consecutive days) of 9.2 m3/s, a flow augmentation of 10 m3/s can reduce 30 % of the cost with conventional wastewater treatment. Transportation of wastewater from the city of Lahore is a cost-effective alternative with 2.5 times less cost than the conventional process. Waste stabilization ponds (WSP) technology is a low-cost solution with 3.5 times less cost as compared to the conventional process. Further reduction in pollution loads to the Ravi River can be achieved by reusing WSP effluents for irrigation in the near proximity of Lahore along the Ravi River. The study results show that, for highly polluted rivers with such extreme flow variations as in case of the Ravi River, meeting un-ionized ammonia standards can reduce the efforts required to develop carbonaceous biochemical oxygen demand-based waste load allocations.  相似文献   

17.
The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na+, K+, Ca2+, Mg2+, CO3 ?, HCO3 ?, Cl?, SO4 2?, and NO3 ?. Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902?μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 ? concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 ? concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper’s classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca2+ and Mg2+ over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.  相似文献   

18.
Anthropogenic activities associated with industrialization, agriculture and urbanization have led to the deterioration in water quality due to various contaminants. To assess the status of urban drinking water quality, samples were collected from the piped supplies as well as groundwater sources from different localities of residential, commercial and industrial areas of Lucknow City in a tropical zone of India during pre-monsoon for estimation of coliform and faecal coliform bacteria, organochlorine pesticides (OCPs) and heavy metals. Bacterial contamination was found to be more in the samples from commercial areas than residential and industrial areas. OCPs like α,γ-hexachlorocyclohexane and 1,1 p,p-DDE {dichloro-2, 2-bis(p-chlorophenyl) ethene)} were found to be present in most of the samples from study area. The total organochlorine pesticide levels were found to be within the European Union limit (0.5 μg/L) in most of the samples. Most of the heavy metals estimated in the samples were also found to be within the permissible limits as prescribed by World Health Organization for drinking water. Thus, these observations show that contamination of drinking water in urban areas may be mainly due to municipal, industrial and agricultural activities along with improper disposal of solid waste. This is an alarm to safety of public health and aquatic environment in tropics.  相似文献   

19.
Evaluation of groundwater quality represents significant input for the development and utilization of water resources. Increasing exploitation of groundwater and man-made pollution has seriously affected the groundwater quality of the North China Plain, such as in the Xuzhou region which is the target of this investigation. The assessment of the groundwater quality and sources in the region was based on analyses of water chemistry and 222Rn activity in samples collected from wells penetrating unconfined and confined aquifers. The results indicate that most of the untreated groundwater in the region is not suitable for the long-term drinking based on permissible limits of the Chinese Environmental Agency and the World Health Organization. However, the groundwater can be used as healthy source of drinking water when they can pass the biological test and softening water treatment. Most of the groundwater is suitable for irrigation. Excessive amounts of SO42? and NO3? are attributed to mainly influence of wastewater, irrigation, and dissolution of sulfate minerals in local coal strata. The major source of the groundwater is meteoric recharge with addition from irrigation and wastewater discharges. Variability of the water quality seems to be also reflecting the type of aquifers where the highest concentration of HCO3? occurs in water of the carbonate fractured aquifer, while the highest Cl? concentration in the unconfined aquifer. Source of 222Rn activity is mainly related to the rock-water interaction with possible addition from the agricultural fertilizers. Protection of groundwater is vital to maintain sustainable drinking quality through reducing infiltration of irrigation water and wastewater.  相似文献   

20.
In this study, some heavy metals concentrations (Zn, Pb, Fe, Mn, Cu, Ni) and other physico-chemical parameters were studied during October 2001 to September 2003 in Karanja reservoir, Bidar district. Water quality parameters were collected monthly basis whereas heavy metals were analyzed by Atomic Adsorption Spectrometer (AAS). Heavy metals have shown within the permissible limits, except Fe and Ni were recorded higher values in southwest monsoon, where as Mn has showed higher concentration in northeast monsoon in and summer. All other physico-chemical parameters are with in the permissible limit. Water is moderately hard and reservoir is productive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号