首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Use of industrial and wastewater for irrigation is on the rise in India and other developing countries because of scarcity of good-quality irrigation water. Wastewaters contain plant nutrients that favour crop growth but leave a burden of heavy metals which can enter the food chain and is a cause of great concern. The present study was undertaken on the long-term impact of irrigation with treated sewage water for growing vegetables and the potential health risk associated with consumption of such vegetable. Treated sewage water (TSW), groundwater (GW), soil and plant samples were collected from peri urban vegetable growing areas of Northern India (Varanasi) and analysed to assess the long-term effect of irrigation with TSW on Cd, Cr, Ni and Pb build-up in soils and its subsequent transfer into commonly grown vegetable crops. Results indicate that TSW was richer in essential plant nutrients but contained Cd, Cr and Ni in amounts well above the permissible limits for its use as irrigation water. Long-term application of TSW resulted in significant build-up of total and DTPA extractable Cd, Cr, Ni and Pb over GW irrigated sites. TSW also resulted in slight lowering in pH, increase in organic carbon (1.6 g kg − 1) and cation exchange capacity (5.2 cmol kg − 1). The tissue metal concentration and relative efficiency of transfer of heavy metals from soil to plant (transfer factor) for various groups of vegetables were worked out. Radish, turnip and spinach were grouped as hyper accumulator of heavy metals whereas brinjal and cauliflower accumulated less heavy metals. Health risk assessment by consumption of vegetables grown with TSW indicated that all the vegetables were safe for human consumption. However, significant accumulation of these heavy metals in soil and plant needs to be monitored.  相似文献   

2.
Thane district is one of the most industrialized districts in Maharashtra. The heavy industrialization and the increasing urbanization are responsible for the rapidly increasing stress on the water and soil environment of the area. Therefore, an attempt has been made through comprehensive study on the groundwater contamination and soil contamination due to heavy metals in Thane region of Maharashtra. The area undertaken for the study was Thane and its suburbans Kalwa, Divajunction, Dombivali, Kalyan, and Ulhasnagar. Industrialization and urbanization lead to generation of large volumes of wastewater from domestic, commercial, industrial, and other sources, which discharged in to natural water bodies like river and creek in this region. Groundwater samples and soil samples were collected from residential, commercial, agriculture, and industrial areas. Groundwater samples were analyzed for various water quality parameters. The analytical data shows very high concentration of total dissolved solids, total hardness, total alkalinity, chemical oxygen demand, chloride etc. Groundwater and soil samples were analyzed for ten heavy metals by inductively coupled plasma (ICPE-9000) atomic emission spectroscopy. The analytical data reveal that, very high concentration level of arsenic, cadmium, mercury, and nickel throughout the industrial area. The random dumping of hazardous waste in the industrial area could be the main cause of the groundwater and soil contamination spreading by rainwater and wind. In the residential areas the local dumping is expected to be the main source for heavy metals. A comparison of the results of groundwater with WHO guidelines show that most of the groundwater sampling station are heavily contaminated with organic matter and heavy metals. Groundwater samples are heavily contaminated by arsenic, cadmium, mercury, and nickel. Similarly, the results of heavy metals in soil compared with Swedish soil guideline values for polluted soil show that soil samples collected from residential, commercial and industrial areas are heavily contaminated by arsenic, cadmium, mercury, and nickel.  相似文献   

3.
The use of sewage-contaminated municipal water for irrigation of crops is an old practice in many big cities of Pakistan. Since the wastewater is rich in nutrients, it increases crops yield substantially but at the cost of food quality. The objective of this study was to investigate sewage water irrigation as a source of accumulation of heavy metals in soil and its subsequent transfer to crops and underground water. Sewage water, soil, groundwater, and crop samples were collected from selected areas around Peshawar city and analyzed for heavy metals concentration by atomic absorption spectroscopic method. Analysis of data revealed a considerable impact of the irrigation practices in the peri-urban Peshawar. Statistical analysis of the data showed a positive correlation between heavy metals concentration and soil carbon contents on the one hand and cation exchange capacity on the other. A strongly negative correlation was observed between metal contents and soil pH. The vertical movement of heavy metals from contaminated soil has polluted crops and underground water. The results indicated higher concentration of toxic metals in soil accumulated due to long-term sewage-contaminated water irrigation and their subsequent transfer to our food chain. The practice, if continued un-noticed may pose a threat of phytotoxicity to the local population.  相似文献   

4.
Irrigation with polluted water from the upper Yellow River (YR) channel of Northwest China has resulted in agricultural soil being contaminated by heavy metals (HMs). This causes major concerns due to the potential health risk to the residents in this area. The present study aims to assess the efficiency of constructed wetland (CW) in reducing the heavy metal contamination in irrigation water and food crops, thus in reduction of potential health risk to the residents. The associated risk was assessed using hazard quotient (HQ) and hazard index (HI). The results showed a potential health risk to inhabitants via consumption of wheat grain irrigated with untreated water from YR. However CW could greatly reduce the human health risk of HMs contamination to local residents through significantly decreasing the concentrations of HMs in wheat grain. In theory, the reduction rate of this risk reached 35.19% for different exposure populations. Therefore, CW can be used as a system to pre-treat irrigation water and protect the residents from the potential HMs toxicity.  相似文献   

5.
Rapid infiltration basins (RIBs) are effective tools for wastewater treatment and groundwater recharge, but continuous application of wastewater can increase soil P concentrations and subsequently impact groundwater quality. The objectives of this study were to (1) investigate the effects of reclaimed water infiltration rate and "age" of RIBs on soil P concentrations at various depths, and (2) estimate the degree (percentage) of sorption equilibrium reached between effluent P and soil attained during reclaimed water application to different RIBs. The study was conducted in four contrasting cells of a RIB system with up to a 25 year history of secondary wastewater application. Soil samples were collected from 0 to 300 cm depth at 30 cm intervals and analyzed for water extractable phosphorus (WEP) and oxalate extractable P, Al, and Fe concentrations. Water extractable P and P saturation ratio (PSR) values were generally greater in the cells receiving reclaimed water compared to control soils, suggesting that reclaimed water P application can increase soil P concentrations and the risk of P movement to greater depths. Differences between treatment and control samples were more evident in cells with longer histories of reclaimed water application due to greater P loading. Data also indicated considerable spatial variability in WEP concentrations and PSR values, especially within cells from RIBs characterized by fast infiltration rates. This occurs because wastewater-P flows through surface soils much faster than the minimum time required for sorption equilibrium to occur. Studies should be conducted to investigate soil P saturation at deeper depths to assess possible groundwater contamination.  相似文献   

6.
对南通市51个沉积物样品中重金属Cu、Pb、Cr、Hg、As、Cd的质量浓度进行了测试,并用地积累指数法评价了河流沉积物的重金属污染。结果表明:南通市沉积物重金属基本上未受污染,只有元素As受到轻度污染。  相似文献   

7.
The pot experiments were conducted to evaluate the effect of different concentrations of arsenic, chromium and zinc contaminated soils, amended with biosludge and biofertilizer on the growth of Jatropha curcas which is a biodiesel crop. The results further showed that biosludge alone and in combination with biofertilizer significantly improved the survival rates and enhanced the growth of the plant. With the amendments, the plant was able to grow and survive upto 500, 250 and 4,000 mg kg(-1) of As, Cr and Zn contaminated soils, respectively. The results also showed that zinc enhanced the growth of J. curcas more as compared to other metals contaminated soils. The heavy metal accumulation in plant increased with increasing concentrations of heavy metals in soil, where as a significant reduction in the metal uptake in plant was observed, when amended with biosludge and biofertilizer and biosludge alone. It seems that the organic matter present in the biosludge acted as metal chelator thereby reducing the toxicity of metals to the plant. Findings suggest that plantation of J. curcas may be promoted in metal contaminated soils, degraded soils or wasteland suitably after amending with organic waste.  相似文献   

8.
We researched the behavior of pathogenic microbes in a treated wastewater reuse system to acquire knowledge for establishing new standards for the reuse of treated wastewater. Based on the results that showed occasional growth of total coliforms but barely any growth of Escherichia coli in the supply tank, we found that the total coliform, which includes bacteria that also breed in the soil, etc., is not necessarily suitable as the index bacteria for indicating pollution by excrement. We also clarified that it is possible to decrease the heterotrophic plate count to a specified level in cases where combined residual chlorine is more than 0.3 mg/l, and that the standard value for residual chlorine should be set at 0.3 mg/l or more. At the same time, we found that applying sand filtration treatment to water used for toilet flushing, sprinkling and landscaping, and sand filtration treatment plus coagulation treatment to water for recreational use lowers the annual risk of infection by Cryptosporidium to less than 10−4. The standard for viruses must be examined in the future because Noroviruses were sometimes detected even in the reclaimed water, although we could not establish the standard at this time due to problems with the virus detection method.  相似文献   

9.
Four crop plants Oryza sativa (rice), Solanum melongena (brinjal), Spinacea oleracea (spinach) and Raphanus sativus (radish) were grown to study the impact of secondary treated municipal waste water irrigation. These plants were grown in three plots each of 0.5 ha, and irrigated with secondary treated waste water from a sewage treatment plant. Sludge from the same sewage treatment plant was applied as manure. Cultivated plants were analyzed for accumulation of heavy metals and pesticides. Results revealed the accumulation of six heavy metals cadmium (Cd), chromium (Cr), iron (Fe), copper (Cu), nickel (Ni), and zinc (Zn) as well as two pesticides [1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane; DDT] and benzene hexa chloride (BHC). Order of the plants for the extent of bioaccumulation was S. oleracea > R. sativus > S. melongena > O. sativa. The study has shown the secondary treated waste water can be a source of contamination to the soil and plants.  相似文献   

10.
In the present study, the magnitude of contamination of vegetables with heavy metals (Pb, Zn, Cd, Cr, Cu and Zn) was determined in a long-term wastewater-irrigated agricultural land. Heavy metal concentrations in vegetables were several folds higher in wastewater-irrigated site compared to clean water-irrigated area. The wastewater-irrigated crops analysed in this study are heavily contaminated with heavy metals. Concentrations of Pb, Zn, Cd and Cr in all the sewage-fed vegetables were beyond the safe limit of FAO/WHO and Indian standard. Contamination is at its highest level in radish and spinach. Daily intake values of Pb, Cd and Ni through consumption of sewage-fed vegetables exceeded the recommended oral dose of metal for both adult and children. The study concludes that wastewater irrigation led to accumulation of heavy metals in vegetables causing potential health risk to consumers.  相似文献   

11.
白银市土壤重金属污染源分析及防治措施   总被引:4,自引:1,他引:3  
通过对白银市土壤调查结果进行评价分析,发现东大沟土壤重金属污染较为严重。同时对土壤重金属污染来源进行讨论,认为大面积土壤重金属来源主要是农民节流灌溉所引起的,小范围的土壤污染可能由于固体废弃物(如铬渣等)的堆存造成。其他污染源对土壤造成的污染较轻,但长期的污染物积累也会造成很大的污染。在此基础上提出防治重金属污染的措施。  相似文献   

12.
This study investigated the extent of heavy metal accumulation in leaf vegetables and associated potential health risks in agricultural areas of the Pearl River Delta (PRD), South China. Total concentrations of mercury (Hg), cadmium (Cd), lead (Pb), chromium (Cr) and arsenic (As) were determined in 92 pairs of soil and leaf vegetable (flowering Chinese cabbage, lettuce, pakchoi, Chinese cabbage, loose-leaf lettuce, and Chinese leaf mustard) samples collected from seven agricultural areas (cities). The bioconcentration factors (BCF) of heavy metals from soil to vegetables were estimated, and the potential health risks of heavy metal exposure to the PRD residents through consumption of local leaf vegetables were assessed. Results showed that among the six leaf vegetables, pakchoi had the lowest capacity for heavy metal enrichment, whereas among the five heavy metals, Cd had the highest capacity for transferring from soil into vegetables, with BCF values 30-fold those of Hg and 50-fold those of Cr, Pb and As. Sewage irrigation and fertilization were likely the main sources of heavy metals accumulated in leaf vegetables grown in agricultural areas of the PRD region. Different from previous findings, soil pH had no clear effect on metal accumulation in leaf vegetables. Despite a certain degree of metal enrichment from soil to leaf vegetables, the PRD residents were not exposed to significant health risks associated with consumption of local leaf vegetables. Nevertheless, more attention should be paid to children due to their sensitivity to metal pollutants.  相似文献   

13.
Microbial risk was quantified to assess human health risk as a result of exposure to E. coli in reclaimed wastewater irrigation. Monitoring data on E. coli were collected from pond water in paddy rice plots during the growing season. Five treatments were used and each was triplicated to evaluate the changes in E. coli concentrations in experiments performed in 2003 and 2004. The Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion among farmers and neighboring children. A Monte Carlo simulation (10,000 trials) was conducted to estimate the risk associated with uncertainty. In this study, risk values ranged from 10−4 to 10−8. UV-disinfected irrigation water showed a lower risk value than others, and its level was within the range of the actual paddy rice field with surface water. Agricultural activity was thought to be safer after 1–2 days, when the paddy field was irrigated with reclaimed wastewater. Also, children were found to have a greater risk of infection with E. coli. This paper should be viewed as a first step in the application of quantitative microbial risk assessment of wastewater reuse in paddy rice culture.  相似文献   

14.
The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in agricultural soils. Seventy soil samples collected from surface layers (0-20 cm) and horizons of five selected pedons in the vicinity area of petrochemical complex in Guangzhou, China were analyzed for Zn, Cu, Pb, Cd, Hg and As concentrations, the horizontal and vertical variation of these metals were studied and geographic information system (GIS)-based mapping techniques were applied to generate spatial distribution maps. The mean concentrations of these heavy metals in the topsoils did not exceed the maximum allowable concentrations in agricultural soil of China with the exception of Hg. Significant differences between land-use types showed that Cu, Pb, Cd, Hg and As concentrations in topsoils were strongly influenced by agricultural practices and soil management. Within a radius of 1,300 m there were no marked decreasing trends for these element concentrations (except for Zn) with the increase of distance from the complex boundary, which reflected little influence of petroleum air emission on soil heavy metal accumulation. Concentrations of Zn, Cu, Pb, Cd, Hg and As in the five pedons, particularly in cultivated vegetable field and orchard, decreased with soil depth, indicating these elements mainly originated from anthropogenic sources. GIS mapping was a useful tool for evaluating spatial variability of heavy metals in the affected soil. The spatial distribution maps allowed the identification of hot-spot areas with high metal concentration. Effective measures should be taken to avoid or minimize heavy metal further contamination of soils and to remediate the contaminated areas in order to prevent pollutants affecting human health through agricultural products.  相似文献   

15.
官厅水库重金属污染状况调查研究   总被引:3,自引:1,他引:2  
为确保北京市饮用水源安全,2007年对官厅水库中重金属进行了筛选性调查.采用电感耦合等离子体质谱仪(ICP-MS),对官厅水库枯水期和丰水期水体中的金属元素含量进行了全面的分析.监测结果表明,水库在丰水期砷含量偏高,整体水质状况良好,重金属污染程度轻微.  相似文献   

16.
包头某铝厂周边土壤重金属污染及健康风险评价   总被引:2,自引:0,他引:2  
以包头市某铝业周边500 m内土壤为研究对象,测定其东北、东南、西北、西南4个方向不同水平距离及深度处土样中Cu、Cd、Pb、Zn、Ni和Cr的含量,并采用地累积指数法和健康风险评价法对重金属污染状况进行评价。结果表明,该区域表层土壤中6种重金属普遍高于内蒙古土壤背景值,且在西南方向50 m处含量最高,人类活动对该区域重金属干扰强烈,而风向对重金属分布影响不大;铝厂周围土壤中Cd、Pb处于中污染-重污染,Cu和Ni处于无污染-中污染,Zn和Cr为无污染,各金属污染程度随土壤深度的增加而减轻;健康风险评价表明,研究区域内Cu、Pb、Ni和Cd均不存在非致癌健康风险,而Cd的致癌危害虽在可接受范围内,但已存在潜在致癌风险,Ni的致癌健康风险指数已超过预警值,应予以高度重视和防治。  相似文献   

17.
The long-term application of phosphate fertilizers on vegetable production fields has raised concerns about the potential health risks of heavy metal contamination of crops grown on contaminated soils in the Hamadan province, western Iran. This study found that long-term fertilizer use led to a growing accumulation of heavy metals in soils. High concentrations of elemental As, Cd, Cr, Cu, Pb, and Zn were found in potatoes sampled from overused phosphate-fertilized soils, which increased the daily intake of metals in food. However, the ingestion of potatoes from soils affected by phosphate fertilizers posed a low health risk when compared with the health risk index of <1 for heavy metals. Nevertheless, heavy metal concentrations should be periodically monitored in vegetables grown in these soils. It would also be beneficial to implement effective remediation technologies to minimize possible impacts on human health.  相似文献   

18.
The present study was conducted to determine the heavy metal contamination in soil with accumulation in edible parts of plants and their subsequent changes in biochemical constituents due to wastewater irrigation. Though the wastewater contains low levels of the heavy metals (Fe, Mn, Pb, Cd, and Cr), the soil and plant samples show higher values due to accumulation. The trend of metal accumulation in wastewater-irrigated soil is in the order: Fe > Pb > Mn > Cr > Cd. Of the three species Colocasia esculentum, Brassica nigra, and Raphanus sativus that are grown, the order of total heavy metal accumulation in roots is Raphanus sativus > Colocasia esculentum, while in shoots the order is Brassica nigra > Colocasia esculentumRaphanus sativus. The enrichment factor (EF) of the heavy metals in contaminated soil is in the sequence of Cd (3) > Mn (2.7) > Cr (1.62) > Pb (1.46) > Fe (1.44), while in plants EF varies depending upon the species and plant part. C. esculentum and R. sativus show a higher EF for Cr and Cd. All plants show a high transfer factor (TF > 1) for Cd signifying a high mobility of Cd from soil to plant whereas the TF values for Pb are very low as it is not bioavailable. Results of the biochemical parameters show decrease in total chlorophyll and total amino acid levels in plants and an increase in amounts of soluble sugars, total protein, ascorbic acid, and phenol except B. nigra for protein in plants grown in soil irrigated with wastewater as compared to control site.  相似文献   

19.
This study is planned to perform a sanitary survey of the largest sewage treatment plant in Riyadh, KSA, fortnightly for 6 months to examine its effluent quality as an example for the growing dependence on reuse of treated municipal wastewater in agricultural irrigation purposes to cope with increasing water shortage. The biological and physico-chemical parameters of 12 wastewater samples from the plant were examined using standard methods. The physico-chemical analysis indicated that the surveyed municipal wastewater treatment plant contained some of the studied parameters, such as turbidity, total suspended solids, biochemical oxygen demand, chemical oxygen demand and residual chlorine above the maximum permissible wastewater limits set by the Saudi Standards. However, heavy metal concentrations in all samples were lower than the recommended standards. Total and faecal coliform counts were above the permissible limits indicating poor sanitation level. Fifty percent of all wastewater samples were contaminated with faecal coliforms but, surprisingly, Escherichia coli were only detected in 8.3 % of the samples. Regular monitoring and enhancement of microbial and physico-chemical parameters of the wastewater quality served by different wastewater treatment plants for reuse in agricultural irrigation is recommended to preserve the environment and public health.  相似文献   

20.
Highways and main roads are a potential source of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Nonetheless, investigations of pollutants in roadside soils are still a subject of major interest due to the rapid development of traffic systems and increasing traffic all over the world. The accumulation of the heavy metals Pb, Cd, Cu and Zn in soils along the oldest federal highway of the world has been studied by sampling a roadside transect of 125 by 10?m. In addition, heavy metal concentrations of Pb, Cd, Zn, Cu, Ni and Cr in soil solutions from different distances (2.5, 5 and 10?m) from the hard shoulder of the highway and from three soil depths (10, 30, and 50?cm) were investigated. The results show that heavy metal concentrations are up to 20 times increased compared to the geochemical background levels and a reference site of 800-m distance from the roadside. Soil matrix concentrations in the topsoil (0-10?cm) mostly exceeded the precautionary values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV). The concentrations of Cd, Pb and Zn in the soil matrix tended to decrease with distance from the roadside edge, whereas the concentrations in the soil solution increased at a distance of 10?m onwards due to a lower soil pH. Because of both high pH values and a high sorption capacity of the soils, soil solution concentrations seldom exceeded the trigger values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV) for transferring soil solution to groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号