首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this paper is to evaluate total and bioavailable concentration of heavy metals in agricultural soils in order to estimate their distribution, to identify the possible correlations among toxic elements and the pollution sources, to distinguish the samples in relation to sampling site or to sampling depth, and to evaluate the available fraction providing information about the risky for plants. In particular, we reinvestigated total concentrations of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V, and Zn and available concentrations of As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, and Zn in soil from Apulia (Southern Italy). Analytical results showed that total concentrations, for all soils, are in the range permitted by regulations in force in Italy, but some soils evidence slight enrichment of Cd, Cr, Cu, Pb, and Zn. All the heavy metals in the available fraction were below the detection limits of the analytical techniques used except Cu, Ni, Pb, and Zn.  相似文献   

2.
This study was conducted to determine status of heavy metals in agricultural soils under different patterns of land use. A total of 38, 40 and 45 soil samples for bare vegetable field, greenhouse vegetable field, and grain crop field were respectively taken from surface layer (0–20 cm) from selected experimental areas away from suburbs of ten counties (or districts or cities) in four provinces or municipalities of Huabei plain in north China. Information of crop production history, including varieties, rotation systems and fertilizer use, at the corresponding sampling sites was surveyed. Soil total Cu, Zn, Cd, Pb, Cr, As and Hg were measured. The results showed that the contents of total Cu, Zn, Cd, Pb, Cr, As, and Hg in the soil samples, especially soil total Cu and Zn contents, were higher in the bare vegetable field and the greenhouse vegetable field than that in the grain crop field. Long-term use of excessive chemical fertilizers and organic manures in the bare vegetable field and the greenhouse vegetable field contributed to the accumulation of Cu, Zn, and other heavy metals in the soils. The contents of total Cu, Zn, and other heavy metals in soils increased with increasing vegetable production history of the research areas. In comparison with the grain crop field, the comprehensive pollution indices of the seven soil heavy metals and the single-factor pollution indices of soil Zn, Cu, Cd, Cr, and Hg based on the second criterion of Environmental Quality Standard for Soils were significantly higher in the bare vegetable field and the greenhouse vegetable field. Soils from the greenhouse vegetable field were slightly contaminated according to the comprehensive pollution index, and soils from the bare vegetable field and the grain crop field were at the warning heavy metal pollution level. The soils were contaminated with Cd according to the single-factor pollution index. The Cd pollution was relatively more serious in the bare vegetable field and the greenhouse vegetable field than that in the grain crop field. The soils selected with different land use patterns were not contaminated with Zn, Cu, Pb, Cr, As and Hg.  相似文献   

3.
Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd?>?Cu?>?Ni?>?Zn?>?As?>?Cr?>?Hg?>?Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP)?>?urban land (UL)?>?manufacturing industries (MI)?>?agricultural land (AL)?>?woodland (WL)?>?water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL?>?MI?>?AL?>?WP?>?WL?>?WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.  相似文献   

4.
杭州地区农业土壤中重金属的分布特征及其环境意义   总被引:1,自引:0,他引:1  
为了分析杭州地区农业土壤重金属的分布特征及其环境意义,通过现场采样和室内分析检测的方法,对杭州市各区县不同作物农业土壤表层土中的Hg、As、Cu、Pb、Cr、Cd 6种重金属元素进行检测,并对其分布特征进行了分析。结果表明,杭州地区农业土壤中除As外,其他5种重金属的平均含量均低于且接近浙江省土壤背景值,个别采样点的重金属含量超过了土壤环境质量国家二级标准。总体上,杭州地区农业土壤处于安全水平。通过重金属的区域分布特征分析表明,余杭区和富阳市农业土壤中重金属平均含量普遍高于其他区域。萧山区和建德市部分农业土壤则存在Cu和Hg含量较高的情况,而淳安县农业土壤中重金属含量差异较大,土壤中出现了As、Cr和Cd含量最大值。不同作物的农业土壤重金属含量存在一定的差异,但不明显。水稻田和蔬菜地的土壤中,重金属含量较其他作物种植类型的土壤中含量高;叶菜类(蔬菜、茶叶)作物土壤中的Cd含量要比根茎类(水稻)、茄果类(水果)及其他作物种植类型的土壤中的含量低。目前杭州地区土壤中6种重金属含量均对作物的直接危害不大,但由于萧山区个别采样点Cu含量严重超标,淳安县土壤中Cd受外源性来源影响也已较明显,需要相关部门加大监管力度,防止污染事件发生。同时,为防止农业土壤中重金属含量进一步升高,需要加大大气降尘监测与治理、废气污染监管与控制治理。  相似文献   

5.
An intensive investigation was conducted to study the accumulation, speciation, and distribution of various heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in sediments from the Yangtze River catchment of Wuhan, China. The potential ecological risks posed by these heavy metals also were estimated. The median concentrations of most heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) were higher than the background values of soils in Wuhan and were beyond the threshold effect level (TEL), implying heavy metal contamination of the sediments. Carbonate-bound Cd and exchangeable Cd, both of which had high bioavailability, were 40.2% and 30.5% of the total for Cd, respectively, demonstrating that Cd poses a high ecological risk in the sediments. The coefficients of the relationship among Pb, Hg, and Cu were greater than 0.797 using correlation analysis, indicating the highly positive correlation among these three elements. Besides, total organic carbon content played an important role in determining the behaviors of heavy metals in sediments. Principal component analysis was used to study the distribution and potential origin of heavy metals. The result suggested three principal components controlling their variability in sediments, which accounted for 36.72% (factor 1: Hg, Cu, and Pb), 28.69% (factor 2: Cr, Zn, and Ni), and 19.45% (factor 3: As and Cd) of the total variance. Overall, 75% of the studied sediment samples afforded relatively low potential ecological risk despite the fact that generally higher concentrations of heavy metals relative to TEL were detected in the sediments.  相似文献   

6.
某铀尾矿库周围农田土壤重金属污染潜在生态风险评价   总被引:6,自引:1,他引:5  
为能够定量评价铀尾矿库周围农田土壤重金属污染程度及其潜在生态危害性,采用Hakanson潜在生态风险指数法对土壤中重金属进行综合污染评价。结果表明,铀尾矿库周围部分农田土壤中重金属Cd、Ni、As、Cu、Hg、Zn含量存在积累和超标情况,尤以Cd的污染最严重,Ni、As次之;Pb、Cr含量能够满足标准限值要求。潜在生态风险评价结果显示,铀尾矿库周围农田土壤重金属潜在生态风险较高,主要潜在生态风险因子为Cd,其次是Hg、As,Cr、Pb、Ni、Cu、Zn并不构成潜在生态风险。铀尾矿库周围农田土壤中较高水平的Cd在构成环境污染的同时,也构成了较严重的生态危害,应加强对重金属Cd、Hg的生态风险防治。  相似文献   

7.
徽县铅锌冶炼区土壤中重金属的空间分布特征   总被引:4,自引:3,他引:1  
采集甘肃省徽县铅锌冶炼区域土壤样品,分析该区域内重金属污染分布规律及污染特征。结果表明,表层土壤中Pb、Cd、Cu、Zn的平均含量分别为214、3.12、25.8、79.5 mg/kg。研究区域内重金属的分布特征显示,污染浓度由冶炼厂中心向四周递减。纵向0~30 cm范围内重金属含量逐渐降低,大部分重金属污染物集中在土壤表层的0~20 cm区域,其中0~2 cm区域内含量较高,Pb和Cd的最高含量分别达到3 877、24.8 mg/kg,与国家土壤环境质量二级标准(p H 6.5~7.5)(GB 15618—1995)相比,分别超标13、82倍,属于重度污染。重金属元素的分布与土壤有机碳含量及p H相关。冶炼厂周围的重金属污染应引起有关部门的高度重视,严格控制污染源,尽快采取措施以防止污染范围进一步扩大。  相似文献   

8.
湖南省某冶炼厂周边农田土壤重金属污染及生态风险评价   总被引:6,自引:3,他引:3  
利用野外采样与实验室分析相结合的方法,以湖南省某冶炼厂周边农田土壤(0~20 cm)为研究对象,监测了Cd、As、Pb、Cr、Cu、Zn、Hg等7种重金属的含量,并对重金属污染程度与潜在生态风险进行了评价。结果表明,7种重金属都存在不同程度的超标或污染,其中Cd、As、Pb等的污染较为严重。统计学分析结果表明,Pb、As、Hg、Zn、Cd等来源相同,可能主要都来自于人为污染,即冶炼作业造成的污染。7种重金属化学形态不尽相同:在重金属有效态中,Cd的水溶态和可提取态较高;Pb、Cu、Zn可还原态、可氧化态这两部分含量较高。而Hg、As、Cr的残渣态含量较高。风险评价代码评价结果表明,Cd的生态风险较高,4.5%的样点Cd为极高生态风险,52.8%的样点Cd为高生态风险,42.7%的样点Cd为中度生态风险;100%的样点Zn为中度生态风险;Cu有60.1%的样点属于低生态风险,39.9%的样点属于中度生态风险;As、Pb主要以低生态风险为主(所占比例分别为77.2%、80%);Hg主要以无生态风险为主(所占94.3%)。Hakanson潜在生态风险指数法计算的综合潜在生态风险指数(RI)的范围为46.4~1 627.5,表明研究区域农田土壤存在很高的生态风险。上述各项结果综合表明,研究区农田土壤受到了严重的重金属污染,由此引起的重金属生态风险应引起高度关注。  相似文献   

9.
分析和评价典型涉污企业周边土壤环境质量,对于加强企业用地环境风险管控,实施土壤重金属污染精准防控,进一步保障农产品质量安全具有重要意义。以18类典型涉污企业周边土壤为研究对象,对475家企业周边的2 017个监测样点进行土壤重金属Cd、As、Pb、Hg、Cr、Cu、Zn和Ni元素含量测定,并采用主成分分析法、Hakanson 潜在生态风险指数法进行分析及评价。结果表明:典型涉污企业周边土壤重金属污染以Cd、Pb和As元素为主,各元素含量超过土壤污染风险筛选值的样品比例为9.82%~31.0%,超过土壤污染风险管控值的样品比例为4.46%~13.1%,其次是Zn、Cu、Hg和Ni,Cr无明显污染;主要污染元素Cd、Pb、As、Zn和Cu来自相同污染源且主要分布在有色金属矿采选业(B9)、黑色金属冶炼和压延加工业(C31)、有色金属冶炼和压延加工业(C32)、生态保护和环境治理业(N77)等行业企业周边;黑色金属冶炼和压延加工业(C31)、有色金属矿采选业(B9)、有色金属冶炼和压延加工业(C32)等行业企业周边土壤重金属潜在生态风险等级较高,中等风险及以上比例分别为76.0%、53.0%和54.1%。可见,典型涉污企业周边土壤重金属存在一定程度的污染,尤其是有色金属矿采选业(B9)等采矿业以及黑色金属冶炼和压延加工(C31)等制造业等,污染程度高,潜在生态风险大,需要加强监测和管控。  相似文献   

10.
以长沙某河库兼用型饮用水水源地一、二级保护区土壤为研究对象,于2018年8月采用网格布点法在一级和二级保护区分别布设3个和7个采样点,在水源地历史采样区布设5个采样点,探究土壤中Cd、Pb、Cr、Cu、Zn、Ni、Hg、As的含量分布及污染水平。结果表明:土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的含量均值分别为46.56、4.90、81.87、46.64、0.19、30.11、75.11、237.93 mg/kg。重金属元素含量均值超过农用地污染风险筛选值的样品占比排序为Cd (86.7%)>Zn (60%)>As (53.3%)>Cu (6.7%)=Pb (6.7%)。土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的单因子污染指数分别为1.55、16.34、0.41、0.47、0.08、0.30、0.63、0.95,主要为Cd、As污染。研究区土壤重金属综合污染指数为11.71,属重污染等级。水源地一级保护区、二级保护区、历史采样区2018年、历史采样区2014年土壤重金属综合污染指数分别为20.41、14.94、1.98、1.17。后期应加强对该饮用水水源地土壤中Cd、Pb、Cu、Zn、As的污染控制和治理。  相似文献   

11.
This study was conducted to investigate the pollution load index, fraction distributions, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils collected from a Pb/Zn mine in Chenzhou City, China. The samples were analyzed using Leleyter and Probst’s sequential extraction procedures. Total metal concentrations including Pb, Cd, Cu, and Zn exceeded the maximum permissible limits for soils set by the Ministry of Environmental Protection of China, and the order of the pollution index was Cd > Zn > Pb > Cu, indicating that the soils from both sites seriously suffered from heavy metal pollution, especially Cd. The sums of metal fractions were in agreement with the total contents of heavy metals. However, there were significant differences in fraction distributions of heavy metals in garden and paddy soils. The residual fractions of heavy metals were the predominant form with 43.0% for Pb, 32.3% for Cd, 33.5% for Cu, and 44.2% for Zn in garden soil, while 51.6% for Pb, 40.4% for Cd, 40.3% for Cu, and 40.9% for Zn in paddy soil. Furthermore, the proportions of water-soluble and exchangeable fractions extracted by the selected analytical methods were the lowest among all fractions. On the basis of the speciation of heavy metals, the mobility factor values of heavy metals have the following order: Cd (25.2–19.8%) > Cu (22.6–6.3%) > Zn (9.6–6.0%) > Pb (6.7–2.5%) in both contaminated soils.  相似文献   

12.
There is a growing concern about environmental contamination in the three gorges area. The objectives of this study were to investigate the spatial variability and the possible influence factors of seven heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the center of this area based on multivariate and geostatistical approaches. All analyzed heavy metals were below their background levels, except Cd. The average concentrations of the analyzed elements in topsoil (0-20 cm) were 5.83 mg As kg(-1), 0.21 mg Cd kg(-1), 78.79 mg Cr kg(-1), 21.53 mg Cu kg (-1), 0.049 mg Hg kg(-1), 24.12 mg Pb kg(-1), and 68.5 mg Zn kg(-1). The concentration of As was mostly due to parent materials, whereas the source of Pb was mainly due to vehicle exhaust. The high concentration of Cd was resulted from agricultural practices and parent materials. The concentrations of Cr, Cu, Hg, and Zn were associated with parent materials and human activities.  相似文献   

13.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

14.
为研究广东省某矿区开展生态修复多年后下游农田土壤的金属污染状况,选取该矿区下游某村周边农田土壤及灌溉水渠作为研究对象,对该区域采集了40个土壤表层样本和8个水体样本,利用Arcgis软件对农田土壤样品中As、Cu、Cd、Pb、Zn、Mn和Fe2O3的质量分数进行克里金空间插值,解析该区域农田土壤金属的空间分布特征;采用综合污染指数法和潜在生态风险指数法对该区域耕作层土壤中As、Cu、Cd、Pb、Zn和Mn进行风险评价。结果表明,40个土壤样品中As、Cd、Cu、Zn和Pb的超标率分别为77.5%、70%、87.5%、27.5%和67.5%,说明调查区域农田土壤污染属于多金属复合污染,且对农作物的生产和安全产生巨大的威胁。部分土壤样品中As、Pb和Cd含量超过了中国农用地土壤污染风险管制值,需采取严格管控措施。通过分析土壤金属的空间分布,发现土壤金属含量超标点位主要位于灌溉口与受污染河流周边,且含量与离灌溉口距离成反比。结合目前灌溉水样中的金属均未超标的情况,得出该区域农田土壤污染是由该矿区生态环境修复前所产生的含金属灌溉水导致土壤中金属的积累...  相似文献   

15.
从新疆某地典型城-郊-乡梯度带采集了77个表层(0~20 cm)土壤样品,基于GIS技术与多元统计分析方法,研究各梯度带表层土壤中Hg、As、V、Co、Ni、Cu、Zn、Cd、Pb和Sb等10种微量元素的空间分布特征与主要来源。结果表明:Hg元素在城区、郊区和乡村表层土壤中的平均含量均超出研究区土壤背景值,As元素在城区和郊区表层土壤中的平均含量超出背景值,Zn和Pb元素在城区表层土壤中的平均含量超出背景值,其余元素在3个梯度带表层土壤中的平均含量均低于相应的背景值。研究区表层土壤中,V、Co、Ni、Zn、Cd、Pb和Sb等7种元素的空间分布格局基本相似,均呈现沿城市化梯度带分布的地带性格局;As、Cu和Hg等3种元素的空间分布呈现岛状格局。来源分析结果表明,各梯度带表层土壤中的微量元素的来源各不相同。  相似文献   

16.
Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.  相似文献   

17.
通过在丰水期对贵州省某流域城市河段悬浮物和沉积物中的重金属含量进行测定,运用单因子指数法、生态风险评价法、因子分析法,初步探讨了该河段Cu、Zn、Pb、Hg、Cd、Cr、Ni及As等8种重金属元素的含量分布、污染特征、潜在生态风险及主要来源。检测结果显示,沉积物和悬浮物中Hg、Cd、Zn、Pb、As的平均含量较高,是贵州省土壤背景值的1.02~16.97倍。单因子指数评价结果表明:在沉积物中,Zn、Pb、As为轻度污染,Hg和Cd为重度污染;在悬浮物中,Cu、Pb、As为轻度污染,Zn为中度污染,Hg和Cd为重度污染。潜在生态风险指数评价结果显示,Hg和Cd的生态风险最大,为主要污染元素。研究区沉积物样品综合生态风险指数(RI)介于183.27~1 393.96,平均值为912.06,总体处于严重生态风险等级;悬浮物样品RI值介于341.53~612.38,平均值为436.85,总体处于重度生态风险等级。其中,沉积物样品重金属平均生态风险等级高于悬浮物样品,支流样品重金属生态风险等级总体上低于干流下游样品。根据因子分析法分析结果,初步推测沉积物及悬浮物Hg、Cd、Cr、Ni含量主要受工...  相似文献   

18.
根据1990—2006年监测资料,对海河干流(市区段)沉积物中重金属的现状和变化趋势进行了分析,采用地积累指数和Hakanson危害指数对海河干流(市区段)沉积物重金属富集现状和对水生生物危害进行评估。结果显示:海河干流(市区段)表层沉积物除Zn外,均呈现污染下降趋势。海河干流(市区段)沉积物中重金属对生物潜在危害顺序为Cd〉Hg〉As〉Cu〉Pb〉Cr〉Zn,各项指标对生物潜在危害性上游大于下游。  相似文献   

19.
基于GIS的南京市典型蔬菜基地土壤重金属污染现状与评价   总被引:16,自引:3,他引:13  
对南京市八卦洲蔬菜基地土壤中的铅、铬、铜和镉进行测定分析,利用不同的评价标准来评价其环境质量状况,同时借助GIS软件研究了污染指数的空间分布状况,并解析了其重金属污染的来源.结果表明,以自然背景值为评价标准,则蔬菜地土壤中的重金属都超过污染指标,其中镉为首要污染因子;以国标二级为评价标准,则除镉以外的三种重金属的单项污染指数值全都小于1,但其综合污染指数迭1.50,总体上属轻污染状况.南京化工因区、南京长江二桥和各种农业生产活动等可能是主要污染源.  相似文献   

20.
天津近郊农田土壤重金属污染特征及潜在生态风险评价   总被引:9,自引:5,他引:4  
以天津近郊西青区主要农产品生产基地农田表层土壤(0~20cm)作为调查对象,分析了土壤中重金属As、Hg、Zn、Pb、Cu、Cr和Cd的含量,通过数据统计分析,各项重金属平均含量均低于《土壤环境质量标准》(GB 15618—1995)二级标准,但高于天津土壤背景值和全国土壤背景值,Cd、Cu、Hg在个别点位出现超标现象。多数点位土壤内梅罗综合污染指数处于清洁水平。潜在生态风险评价表明,各点位土壤重金属潜在生态风险指数(RI)为12.96~104.49,均处于轻微生态风险水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号