首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
上海市臭氧污染时空分布及影响因素   总被引:1,自引:0,他引:1  
分析2006—2016年上海市的监测数据发现,臭氧(O_3)浓度存在逐年上升趋势,污染持续时间有所增加,但除水平风速有下降趋势外,其他相关气象因素的年际变化趋势并不显著。空间分析结果表明,上海市O_3超标主要集中在西南部郊区,但市区O_3超标潜势不容忽视。O_3污染高发季节的污染玫瑰图分析发现,上海市南部地区是影响上海市O_3污染的关键区域;对于NO_2减排的影响分析发现,尽管上海市O_3平均浓度总体处于上升趋势,但在NO_2下降幅度最为明显的内环市区和北部郊区,O_3上升幅度低于NO_2下降幅度较小的内外环区域和西部郊区,表明上海市的O_3污染控制仍需持续推进NOx的减排,并同步推进VOCs的减排。  相似文献   

2.
成都市O3浓度的时间变化特征及相关因子分析   总被引:8,自引:7,他引:1  
为深入认知成都市O_3浓度的时间变化规律及其影响因子,基于2013年1月1日—12月31日市区站点O_3、NO、NO_2、NO_x的逐时监测资料以及成都市气象站的气象数据逐时观测资料,据此对O3的季变化、日变化、"周末效应"、"节假日效应"进行了讨论,并对其浓度影响因子进行分析。结果表明:成都市O_3浓度季变化呈现明显夏高冬低的特征,浓度最大值出现在8月。O_3浓度日变化为单峰型,夏季峰值出现在15:00,冬季峰值出现在16:00。市区存在"周末效应",即周末O_3浓度总体比工作日高;"节假日效应"则表现出复杂多变性,受气象条件以及人为活动等多种随机因素的影响。O_3日平均浓度与NO、NO_2、NO_x、相对湿度呈明显负相关,与温度、风速呈明显正相关。  相似文献   

3.
灰霾期间武汉城市区域大气污染物的理化特征   总被引:2,自引:2,他引:0  
利用湖北省大气复合污染自动监测站2013年的全年监测数据,分析了灰霾期间武汉城市区域大气污染物的理化特征。霾日主要出现在春季、秋季和冬季。霾日与非霾日大气污染物质量浓度和气象参数的对比分析结果显示:高湿度、静风是武汉城市区域霾日的重要气象特征;PM1、PM_(2.5)、PM_(10)、NO_2、CO、NH3的质量浓度,SOR、NOR值以及PM_(2.5)中的二次无机离子(SO2-4、NO-3、NH+4)和部分元素(Pb、Se、Cd、Zn、K)的质量浓度均在霾日明显高于非霾日,而霾日SO2质量浓度仅在冬季略高于非霾日。选取2013年1月的连续灰霾日进行相关性分析,结果表明:污染组分主要来自当地排放(包括直接排放和二次形成),并受当地气象条件影响。此次灰霾过程中PM_(2.5)中的硫酸盐和硝酸盐主要来自气相反应,气态NO_2主要生成了气态HNO_3,而不是HNO_2。  相似文献   

4.
青藏高原典型城市拉萨市近地面臭氧污染特征   总被引:2,自引:1,他引:1  
拉萨市作为青藏高原典型城市,环境空气质量相对较好,但臭氧污染近年来有所凸显。对拉萨市臭氧的现状与污染特征进行分析基础上,探讨臭氧污染的影响因素。结果表明:拉萨市臭氧污染表现出"来得早,去得快"的特征,与内地城市相比,拉萨市臭氧质量浓度在3月即可达到全年平均值(2015年为105μg/m~3),而9月以后将低于全年平均值,并在春末夏初达到峰值;由于青藏高原海拔高,紫外线强,相对内陆地区臭氧均值偏高,2015年拉萨市臭氧年均值比北京市和成都市分别高出7.7%、29.0%,其小时浓度变化呈中午高、早晚低的特征;拉萨市臭氧的浓度变化受空气湿度、日照时间和日均气温的影响;生物质燃料的跨界传输可能也对青藏高原地区臭氧的来源产生一定影响。  相似文献   

5.
本文利用洛阳市老城区豫西宾馆空气质量自动监测点的监测数据,对2012-01~12该区域大气中臭氧污染浓度的连续监测结果及同步气象资料进行了分析。结果表明,洛阳市老城区环境空气中臭氧污染主要表现为臭氧日最大8小时平均浓度污染,全年超过GB3095-2012《环境空气质量标准》中二级标准(0.160mg/m3)的频率为21%。臭氧浓度具有明显的日变化及季节变化特征;由于臭氧污染的季节特点,导致全年污染天数显著增加。通过分析发现气温、风速、降水、太阳紫外线辐射等气象因素对臭氧浓度变化均具有一定影响,臭氧污染气象特征表现为晴朗、高温、低风速的午后时段会出现臭氧的高浓度污染。  相似文献   

6.
为探究衡阳冬季PM_(2.5)和水溶性离子污染特征及其来源,于2019年1月在衡阳市城区采集大气PM_(2.5)样品,使用重量法和离子色谱法测得PM_(2.5)和水溶性离子组分质量浓度,并分析其浓度特征、酸碱度和来源等问题。结果表明:采样期间衡阳大气PM_(2.5)平均质量浓度为94.25μg/m~3,总水溶性离子质量浓度为52.94μg/m~3,占PM_(2.5)总质量浓度的56.43%;阴阳离子当量之比为1.12,PM_(2.5)呈酸性,其中SNA(SO_4~(2-)、NO_3~-和NH_4~+)占总水溶性离子质量浓度的95.06%。污染期间二次转化明显,SNA主要以(NH_4)_2SO_4和NH_4NO_3形式存在。源解析发现大气PM_(2.5)受化石燃料和生物质燃烧、垃圾焚烧、建筑扬尘、气态前体物二次转化、外来输送等多重因素影响,其中机动车尾气排放的NO_x在大气中二次转化形成的硝酸盐是衡阳重污染的最主要原因。  相似文献   

7.
成都市大气能见度变化特征及影响因子研究   总被引:5,自引:4,他引:1       下载免费PDF全文
利用MICAPS 2008—2011年地面观测资料,分析了成都市区大气能见度的变化特征。以2009年成都地区一次低能见度天气过程为例,分析大气能见度与各气象要素的变化关系,讨论影响成都市大气能见度变化的主要因素。结果表明:近年来伴随着霾天数的逐年下降,成都市区年平均大气能见度呈上升趋势,夏季平均值最高,春季次之,冬季最低。高湿和低风速是造成成都市低能见度现象的主要气象条件。PM2.5的浓度与成都市大气能见度呈显著负相关,PM2.5浓度的快速增长是造成大气能见度急剧降低的重要原因。有效降低PM2.5浓度,减少大气污染物排放,是改善成都市区大气能见度的有效途径。  相似文献   

8.
利用2016-2020年陕西省环境空气质量自动站的臭氧监测数据,分析西安市大气环境中臭氧污染的时间变化趋势及空间分布特征。从时间分布来看,西安市臭氧年均质量浓度呈先上升后下降的波动变化趋势,且浓度值略高于全国平均水平;臭氧月均浓度具有明显的季节变化特征,月超标天数和月均质量浓度均在6月达到峰值;臭氧质量浓度日变化规律在全年和四季完全一致,均呈单峰型,日内小时平均质量浓度超标最多时段集中在15:00-16:00;臭氧与NO2、CO均呈"此消彼长"的负相关关系。从空间分布来看,西安市12个国控评价点位的O3-8 h浓度分布变化大致分为单峰型和持续递减型,浓度主要集中在40~80 μg/m3;国控点和省控点的臭氧浓度时间分布趋势一致,空间分布存在区域性差异;全市20个区县(开发区)的臭氧污染呈现南北中心城区高、东西远郊区低的空间分布特征。总之,西安市臭氧污染的时空分布主要受到气象条件、污染物排放和城市布局差异的综合性影响。  相似文献   

9.
中纬度平流层臭氧深度侵入是造成对流层至近地面臭氧浓度突增的原因之一。筛选春夏季臭氧浓度升高时段的高分辨率大气再分析数据ERA5,以位涡值的下沉趋势分析了对流层顶折叠位置及变化过程;以AIRS数据反演了臭氧浓度、一氧化碳浓度和相对湿度的垂直廓线,并估计了其分布及相关性;以近地表污染物浓度变化、HYSPLIT模型后向轨迹分析结果证实了臭氧侵入气团的运移轨迹和局地效应;通过激光雷达监测结果观测臭氧垂直浓度分布,确定了臭氧浓度最大值所处高度,判定了受影响近地点的浓度升高时刻;以边界层高度变化、气象条件分析结果及当地与周边城市地面监测数据的逐小时变化情况等综合信息,进行了区域确认和近地面影响判定。通过以上数值综合分析,对城市地区受平流层臭氧深度侵入影响的过程和具体时间进行了详细再现,可为排除非人为排放因素导致的近地表臭氧浓度增加提供回溯分析,为臭氧污染防控决策提供依据。  相似文献   

10.
重庆市主城区大气水溶性离子在线观测分析   总被引:3,自引:0,他引:3  
2015年12月—2016年3月期间,利用在线气体与气溶胶成分监测仪(IGAC)在重庆市大气超级站开展连续观测分析,并捕捉到2次持续时间较长的空气重污染过程。对PM_(2.5)中9种水溶性离子及5种气态前体物的观测结果分析表明:NO_3~-、NH_4~+和SO_4~(2-)是重庆市主城区PM_(2.5)中主要的水溶性离子成分,其浓度均表现出明显的日变化特征,主要以(NH4)_2SO_4和NH_4NO_3的形式存在。NH_3和SO_2是最主要的气态污染物。2次重污染过程的水溶性离子组分有明显差异,细颗粒物累积型污染的NH_4~+、SO_4~(2-)、NO_3~-浓度高,二次转化十分明显;春节期间烟花爆竹集中燃放,Cl~-、K~+浓度高,主要属于一次排放;污染期间主要离子组分的同源性特征显著。  相似文献   

11.
为研究宁波市大气污染状况及其影响因素,利用2013—2018年宁波市国控站点实时监测污染物数据以及气象数据,探讨分析了宁波市大气污染特征以及所受气象因素的影响概况。结果表明:宁波市颗粒物污染和O3污染呈现典型的季节性特征,颗粒物浓度冬季最高,O3最大滑动8 h平均质量浓度春、秋季最高。宁波市O3污染问题越来越突出,且呈现出春、秋季O3超标天数最多的季节变化特征。O3小时质量浓度与气温和太阳辐射成正相关关系,NO2和颗粒物浓度与气温成负相关关系。NO2与O3浓度成负相关关系,与颗粒物浓度成正相关关系。  相似文献   

12.
我国典型南方城市臭氧污染特征   总被引:3,自引:3,他引:0  
分析了我国典型南方城市的臭氧污染特征,选取我国4个有代表性的南方重点城市武汉、宁波、中山和南宁的2013—2015年监测数据,使用EXCEL、ORIGIN和MATLAB等统计软件开展研究,结果表明:我国南方典型城市的臭氧质量浓度分布有明显时间变化特征,超标时间跨度大,部分南方城市与氮氧化物存在较明显负相关性,相关系数高于-0.6;受城市所在不同地理位置、气象因素、大气扩散条件及可能的不同本地排放污染源构成等因素影响,4个城市的近3年臭氧浓度月均值、超标情况和年内峰值均存在一定差异和分组相似性;与部分气象因素也表现出显著相关性。  相似文献   

13.
近年来,臭氧已成为许多城市环境空气的主要污染物之一。笔者分析了2020年海口市5个不同方位代表性监测站点逐小时空气质量监测数据及对应站点的气象要素监测数据。研究结果表明:海口市2020年环境空气污染程度为三级以上的天数有11d,其首要污染物均为臭氧。臭氧浓度高值时段主要出现在10-12月。浓度最大值主要出现在每日14:00-17:00,最小值出现在每日05:00-08:00。气象要素日均值与臭氧浓度相关性大小依次为最高温度>平均温度>相对湿度>降水量>日照时数>风速。台风外围下沉气流和东北气流的共同影响是导致海口市臭氧浓度超标的主要因素,下沉气流更有利于低层大气中臭氧的堆积,同时在东北气流影响下,上游区域污染物的传输也会导致海口市臭氧浓度增加。  相似文献   

14.
选取臭氧(O3)污染高发的7月为夏季典型月,采用自动观测设备,从前体物VOCs的浓度水平及O3生成潜势(OFP),前体物、气象因素与O3相关性等多方面研究了衡水市O3污染影响因素,并剖析了一次典型的O3污染过程,以期为衡水市夏季O3污染防治提供科学参考。研究结果表明:衡水市VOCs主要组分浓度占比为烷烃 > 烯烃 > 芳香烃 > 乙炔,主要组分对总OFP的贡献为烯烃 > 芳香烃 > 烷烃 > 乙炔;O3与前体物VOCs、NO2存在负相关性,与温度存在正相关性;相对湿度低于48%时,O3和相对湿度呈负相关性,相对湿度高于48%时,O3和相对湿度呈正相关性;气团中VOCs化学组成稳定性较低,平均VOCs最大增量反应活性(MIR)较低,为4.855gO3/gVOCs;衡水市7月2—4日重度污染过程受本地生成和区域传输叠加影响。  相似文献   

15.
利用2017年嘉善善西超级站臭氧(O3)及其前体物(NOx和VOCs)以及气象因子(温度、湿度、风速)逐小时数据,分析了2017年全年NOx和O3的变化特征以及春季(4—5月)、夏季(7—8月)NOx和气象因子对O3生成的影响,利用O3生成潜势(OFP)评估了VOCs大气化学反应活性,并通过潜在源区贡献(PSCF)和浓度权重轨迹(CWT)方法分析了嘉善春、夏季O3潜在源区贡献特征。研究发现:O3日变化特征为单峰结构,NOx为弱双峰结构。O3浓度在3—9月较高,春、夏季O3浓度峰值分别出现在15:00和14:00,春、夏季的NOx、O3日变化与2017年全年日变化趋势基本一致。NOx对O3存在滴定作用,且低湿高温有利于O3浓度的升高。春、夏季O3生成潜势贡献均表现为烯烃 > 芳香烃 > 烷烃,由于烯烃光化学活性较高,夏季烯烃浓度升高导致其贡献较春季增长约18.1个百分点,且夏季VOCs平均最大O3增量反应活性高于春季。PSCF和CWT分析结果表明,嘉善春季的潜在源区主要为本地、西南方向和东南方向,夏季的潜在源区主要为本地、西北方向、西南方向以及东南方向。  相似文献   

16.
中国城市臭氧的形成机理及污染影响因素研究进展   总被引:1,自引:0,他引:1  
中国城市臭氧(O_3)污染问题日趋严重。O_3主要来源于汽车尾气及工业排放氮氧化合物(NO_x)和挥发性有机物(VOCs)光化学反应生成,少部分来自于平流层的向下传输。文章介绍了城市O3形成机理研究情况,概述了中国城市臭氧污染浓度特征及气象因子、气候变化、前体物等影响因素研究进展情况,并对未来研究方向进行了展望。  相似文献   

17.
为了解宜都市PM2.5与O3的污染特征及潜在来源,利用宜都市2020年3月至2022年2月在线监测数据及气象数据,对宜都市PM2.5与O3质量浓度变化特征、气象影响因素及潜在源区进行了分析,结果表明:宜都市PM2.5质量浓度冬高夏低,日变化呈双峰特征,O3质量浓度夏高冬低,日变化呈单峰特征。高湿、静稳的气象条件以及较强偏北风作用下的区域污染传输对PM2.5污染有重要影响,高温以及中湿度对O3污染过程有重要作用。春、夏、秋季偏南方向气流轨迹占主导,且携带较高的污染物浓度,冬季来自湖北东北及西南方向的气流占比较高且携带的PM2.5浓度较高;宜都市PM2.5、O3的潜在源区具有季节性差异,总体来看,主要分布在河南南部、湖北东部及湖南的北部区域。  相似文献   

18.
对南通市区2022年4月初因疫情防控采取全区域静态管理期间的空气质量进行分析,以气象参数、臭氧前体物VOCs和NOx作为分析对象。结果表明:此次污染过程的主导因素是高温、强辐射、低湿和偏南风的气象条件。南通市区处于VOCs控制区,高温、强辐射使得VOCs挥发性增强,浓度升高。偏南方向的苏通园区和能达公园VOCs浓度较高且升幅较大,源解析结果表明这2个点位涂料溶剂使用占比升幅更高,既容易受附近石化和储油库影响,也容易受偏南风向的污染输送影响。据初步统计,静态管理期间南通市区停工数量为80%左右,污染期间NO2浓度高值区主要分布在沿江一带,长江南岸的张家港和常熟地区存在多家高排放企业,在偏南风下,张家港和常熟的污染物极易输送至南通市区。基于空气质量模型WRF-CAMx的O3和PM2.5来源解析结果显示,静态管理期间外来输送明显,占比为68.7%~84.7%。污染期间的船舶排放和二次转化贡献也不容忽视。建议南通市应重点加强工业、油气挥发和涂料溶剂源减排,同时加强区域联防联控,以便进一步改善空气质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号