首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study was conducted to evaluate the heavy metal contamination status of groundwater in Brahmaputra flood plain Barpeta District, Assam, India. The Brahmaputra River flows from the southern part of the district and its many tributaries flow from north to south. Cd, Fe, Mn, Pb, and Zn are estimated by using atomic absorption spectrometer, Perkin Elmer AA 200. The quantity of heavy metals in drinking water should be checked time to time; as heavy metal accumulation will cause numerous problems to living being. Forty groundwater samples were collected mainly from tube wells from the flood plain area. As there is very little information available about the heavy metal contamination status in the heavily populated study area, the present work will help to be acquainted with the suitability of groundwater for drinking applications as well as it will enhance the database. The concentration of iron exceeds the WHO recommended levels of 0.3 mg/L in about 80% of the samples, manganese values exceed 0.4 mg/L in about 22.5% of the samples, and lead values also exceed limit in 22.5% of the samples. Cd is reported in only four sampling locations and three of them exceed the WHO permissible limit (0.003 mg/L). Zinc concentrations were found to be within the prescribed WHO limits. Therefore, pressing awareness is needed for the betterment of water quality; for the sake of safe drinking water. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).  相似文献   

2.
A detailed study has been presented on heavy metal content of the Iture Estuary. Waters of the Sorowie and Kakum rivers that supply water into the Estuary were investigated to ascertain heavy metal pollution levels due to anthropogenic activities. Concentration s of Cd, Zn, Se and Pb were measured. The study shows pre-occupying pollution levels that constitute a threat to both terrestrial and aquatic ecosystems. The abundance of metals in the Estuary is in the order Zn > Pb > Cd > Se. The level of Cd in the Iture Estuary ranged between 0.011 mg/l and 0.041 mg/l while Se was in the range 0.018 mg/l to 0.029 mg/l, Pb 0.020 mg/l to 0.075 mg/l and Zn 0.040 to 2.45 mg/l. The impact of contaminated water from the Sorowie River on the Iture Estuary was outstanding and the study points out the importance of the Sorowie River as a primary pollution source to the Iture Estuary. The pollution of the Iture Estuary was found to be connected to human activities in its catchments.  相似文献   

3.
Waste water pollution in industrial areas is one of the most important environmental problems. Heavy metal pollution, especially chromium species in waste water sources from tannery affects our lives. Kocabas Stream is located in south-west Marmara region and Biga town is positioned in the sub basin on the stream. This water source functions as the water for irrigation in agriculture, drinking water for animals and for human use. Thus, this study is of great importance. Waste water pollution can affect all ecosystems and human health by directly or indirectly as in food chain. The concentration of heavy metals (Pb, Cd, Cu, Zn and Cr) were pre-analysed by ICP-AES method in water samples taken from sub-basin of Kocabas stream. In the results of these analyses, concentrations of the metals except chromium were founded at the limit value. But the total concentration of the Cr was found at high levels of between 0.0082 +/- 0.0001 and 5.7231 +/- 0.0921 mg l(-1) over the limit value (0.05 mg l(-1); WHO, EPA, TSE 266 and inland water quality classification) at sampling points very close to tannery factories. Also physicochemical and microbiological parameters of Kocabas Stream were determined. The effects of the experimental results on environment were investigated.  相似文献   

4.
K?z?l?rmak River has been used as Ankara??s drinking water source for approximately 1.5?years. Therefore, this region??s water, sediment, and fish samples are measured for detecting the heavy metals. This is important for the current situation as well as the future in terms of potential impact. The amount of heavy metals in drinking water should be within the limited values; otherwise, the accumulation of heavy metals will cause many problems to living organisms. Especially high levels of arsenic, cadmium, nickel, mercury, etc. are very dangerous to freshwater ecosystems as for human if the water is being use as drinking water. In this study, water, sediment samples, muscle, and gills of three fish species (Capoeta tinca, Capoeta capoeta, Leuciscus cephalus) were analyzed for the presence of heavy metals such as (Al, Fe, As, Cd, Ni, Mn, Se, Si) to determine present accumulation levels and possible toxic effect. The accumulation pattern of heavy metals in the water, sediment, and fish tissue follows the sequence: Si > Fe > Al > Mn > As > Ni > Se > Cd, Fe > Al > Mn > Ni > As > Se > Cd, and Fe > Al > Mn > As > Ni > Si > Cd. In addition, the detected concentrations of heavy metals in the K?z?l?rmak and Delice Rivers are compared with other heavy metal studies in the other main rivers and lakes in Turkey.  相似文献   

5.
The levels of heavy metals were determined in the water of Bendimahi River Basin, statistically analysed and compared to natural gross radioactivity concentration. Fifteen samples of water were collected from Bendimahi River and Van Lake for two seasons in 2005. Water samples were analyzed for eight trace elements and concluded together with gross-alpha and gross-beta radioactivity concentrations. Atomic absorption spectrometry (AAS) was used to determine the concentrations of heavy metals in water samples collected from Bendimahi River basin. Correlation analysis was made for radioactivity and heavy metal concentrations and the Pearson correlation coefficients between gross-alpha and gross-beta radioactivity and heavy metal were determined. The concentrations of all metals were found to be higher than WHO, EC, EPA and TSE-266 guidelines for drinking water, except for Zn and Cu. Generally, the heavy metal concentrations in water samples obtained in May and in August were found to be in sequence of Fe>Zn>Pb>Cr>Cu>Mn>Co>Cd and Fe>Zn>Cu>Pb>Cr>Mn>Co>Cd, respectively. The gross-alpha and gross-beta activity concentration varies between 0.063 and 0.782, 0.021 and 0.816 Bq l(-1) in samples collected in May, and 0.009 and 0.037, 0.081 and 3.116 Bq l(-1) in samples collected in August.  相似文献   

6.
Multivariate analysis of heavy metals concentrations in river estuary   总被引:1,自引:0,他引:1  
Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data obtained from two rivers in the Penang State of Malaysia for the concentration of heavy metal ions (As, Cr, Cd, Zn, Cu, Pb, and Hg) using a flame atomic absorption spectrometry (F-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometry (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). MANOVA showed a strong significant difference between the two rivers in terms of heavy metal concentrations in water samples. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used four parameters (Zn, Pb, Cd and Cr) affording 100% correct assignations. Results indicated that the two rivers were different in terms of heavy metals concentrations in water, and the major difference was due to the contribution of Zn. A negative correlation was found between discriminate functions (DF) and Cr and As, whereas positive correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metal concentrations. Correlation matrix between the parameters exhibited a strong evidence of mutual dependence of these metals.  相似文献   

7.
8.
The present study was conducted to investigate the contamination of water, sediments, and fish tissues with heavy metals in river Panjkora at Lower Dir, Khyber Pakhtunkhwa, Pakistan. Water, sediments, and fish (Shizothorax plagiostomus) samples were collected from September 2012 to January 2013 at three different sites (upstream site at Sharigut, sewage site at Timergara, and downstream site at Sadoo) of river Panjkora. The concentrations of heavy metals in water were in the order Zn?>?Cu?≈?Pb?>?Ni?≈?Cd with mean values of 0.30, 0.01, 0.01, 0.0 and 0.0 mg/l, respectively, which were below the maximum permissible limits of WHO for drinking water. In sediments, heavy metals were found in the order Cu?>?Zn?>?Ni?>?Pb?>?Cd with mean concentrations of 50.6, 38.7, 9.3, 8, and 0.4 mg/kg, respectively. Ni and Cd were not found in any fish tissues, but Zn, Cu, and Pb were detected with the mean concentration ranges of 0.04–1.19, 0.03–0.12, and 0.01–0.09 μg/g, respectively. The present study demonstrates that disposal of waste effluents causes a slight increase in the concentration of heavy metals in river Panjkora as revealed by variation in metal concentrations from upstream to downstream site. Sewage disposal was also found to change physicochemical characteristics of Panjkora water. At present, water and fish of river Panjkora are safe for human consumption, but the continuous sewage disposal may create problems in the future.  相似文献   

9.
With rapid economic development, the Pearl River Delta (PRD) of China has experienced a series of serious heavy metal pollution events. Considering complex hydrodynamic and pollutants transport process, one-dimensional hydrodynamic model and heavy metal transport model were developed for tidal river network of the PRD. Then, several pollution emergency scenarios were designed by combining with the upper inflow, water quality and the lower tide level boundary conditions. Using this set of models, the temporal and spatial change process of cadmium (Cd) concentration was simulated. The influence of change in hydrodynamic conditions on Cd transport in tidal river network was assessed, and its transport laws were summarized. The result showed the following: Flow changes in the tidal river network were influenced remarkably by tidal backwater action, which further influenced the transport process of heavy metals; Cd concentrations in most sections while encountering high tide were far greater than those while encountering middle or low tides; and increased inflows from upper reaches could intensify water pollution in the West River (while encountering high tide) or the North River (while encountering middle or low tides).  相似文献   

10.
The concentrations of metals (Ca, Cd, Fe, Mn, Pb and Zn) were determined by flame atomic absorption spectrophotometry in water, sediments and fish samples in the Ogun river catchments, Ketu, Lagos, which is an important bird nesting, fishing and drinking water source. The results show that the southern tip bothering the Lagos lagoon is where the highest metal concentrations are found in the fish species (Tilapia sp. and Chrysichthys sp.), whereas the Agboyi creek segment near the lagoon with higher surrounding human population density recorded higher levels of metals in sediments and water samples. The two fish species accumulated different amounts of metals. However, the differences were not statistically different at p < 0.05. There is a significant correlation (p < 0.05) for Cd concentration in water. The concentrations of Pb in sampling points 3 and 4 as well as Cd, Mn and Fe in all six sampling points exceeds the World Health Organization (WHO) limits for drinking water. Levels of metals obtained for sediments are within the range reported for Nigeria’s river sediments. Based on this study, the human risks for heavy metals in the harvested fish species from the Ogun river catchments, Ketu, are low for now as the concentrations were below the recommended Food and Agriculture Organization (FAO) maximum limits for Pb (0.5 mg/Kg), Cd (0.5 mg/Kg), and Zn (30 mg/Kg) in fish.  相似文献   

11.
Four small river systems in Hesse, Germany, were investigated with respect to seasonal and spatial concentrations of the herbicide terbutryn [2-(t-butylamino)-4-(ethylamino)-6-(methylthio)-s-triazine]. Despite introduction of a ban on its use as a herbicide in July 2003, terbutryn was still present in the rivers during the whole sampling period from September 2003 to September 2006, and there was no trend of decreasing concentration during this time. In the Weschnitz and Modau river systems the mean terbutryn concentration exceeded the German drinking water ordinance threshold value for single biocides. Maximum concentrations of up to 5.6 microg l(-1) were determined in the Weschnitz River. Higher terbutryn concentrations in summer are suggested to originate from agricultural sources, as well as from sediment redissolution. Effluents of two sewage treatment plants had high terbutryn concentrations, indicating that terbutryn enters the rivers from this source. Sources other than agriculture must explain terbutryn occurrence in the rivers during winter, when farm pesticide application typically ceases. The potential for mobilization of terbutryn from sediments and leaching from soils are discussed.  相似文献   

12.
Surface sediments collected from nine urban rivers located in Zhongshan City, Pearl River Delta, were analyzed for total concentration of metals with digestion and chemical fractionation adopting the modified European Community Bureau of Reference (BCR) sequential extraction procedure. The results showed that concentration and fractionation of metals varied significantly among the rivers. The total concentration of eight metals in most rivers did not exceed the China Environmental Quality Standard for Soil, Grade III. The potential ecological risk of metals to rivers were related to the land use patterns, in the order of manufacturing areas > residential areas > agriculture areas. The concentration of Pb in the reducible fraction was relatively high (60.0-84.3%). The dominant proportions of Cd, Zn and Cu were primary in the non-residual fraction (67.0%, 71.8% and 81.4% on average respectively), while the percentages of the residual fractions of Cr and Ni varied over a wide range (43-85% and 24-71% respectively). The approaches of the H?kanson ecological risk index and Secondary Phase Enrichment Factor were applied for ecological risk assessment and metal enrichment calculation. The results indicated Hg and Cd had posed high potential ecological risk to urban rivers in this region. Meanwhile, there was widespread pollution and high enrichment of Cu in river sediments in this region. Multiple regression analysis showed that five water quality parameters (pH, DO, COD(Mn), NH(4)(+)-N, TP) had little influence on the distribution of metal fractionation. This result revealed that the ecological risk of metals was not eliminated along with the improvement in water quality. Correlation studies showed that among the metals, Group A (Cd, As, Pb, Zn Hg, r = 0.730-0.924) and Group B (Cr, Cu, Ni, r = 0.815-0.948) were obtained, and the metal contaminations were from industrial activities rather than residential.  相似文献   

13.
Concentrations of heavy metals (Ag, Cd, Cr, Cu, Fe, Ni, Pb ve Zn) were measured in running water and in tissues (muscle, liver, gill, skin and gonads) of one commercially valuable fish species (Carasobarbus luteus) from the Orontes (Asi) River (Güzelburç region) in Hatay (Southeastern Turkey). Results for levels in water compared with national and international water quality guidelines were found at the highest concentrations in international criteria’s WHO, EC and EPA, but Cd, Cu, Ni and Pb were found to exceed permissible level of drinking water in national criteria TSE-266 whereas Fe, Zn and Cr concentrations were within the permissible levels for drinking. The present study showed a significant seasonal variation (p?p?>?0.05), which showed seasonal variation of only Zn (p?C. luteus were below the permissible limit for human consumption, level of Cu being very close to the permissible limit. Consequently, continuous monitoring of heavy metal concentration in edible freshwater fish will be needed in Orontes River.  相似文献   

14.
The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0–20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg?1, respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0–20- and 20–40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0–20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by ‘natural’ factors and As originated from natural sources, deposition and irrigation water.  相似文献   

15.
Concentrations of Cu, Zn, Pb, Cr, Cd, Fe, and Ni have been estimated in soils and vegetables grown in and around an industrial area of Bangladesh. The order of metal contents was found to be Fe > Cu > Zn > Cr > Pb > Ni > Cd in contaminated irrigation water, and a similar pattern Fe > Zn > Ni > Cr > Pb > Cu > Cd was also observed in arable soils. Metal levels observed in different sources were compared with WHO, SEPA, and established permissible levels reported by different authors. Mean concentration of Cu, Fe, and Cd in irrigation water and Cd content in soil were much above the recommended level. Accumulation of the heavy metals in vegetables studied was lower than the recommended maximum tolerable levels proposed by the Joint FAO/WHO Expert Committee on Food Additives (1999), with the exception of Cd which exhibited elevated content. Uptake and translocation pattern of metal from soil to edible parts of vegetables were quite distinguished for almost all the elements examined.  相似文献   

16.
Unfiltered and filtered (0.45 and 0.2 microm) water samples and sediment samples (sieved to <180 microm and 180-1000 microm) were collected along an approximately 15 km transect of the River Fal, Cornwall, UK, to examine the impact of the disused South Terras uranium mine on the uranium concentrations of the river water and underlying sediments. The uranium concentration of the water samples fluctuated along the river, with the 0.45 microm filtered water showing the largest, seven-fold, difference between minimum (0.19 microg L(-1)) and maximum (1.34 microg L(-1)) concentrations. The historical uranium mine and spoil heaps were not a significant source of uranium to the river water, as water concentrations were low next to the site, but a highly elevated uranium concentration (1000 mg kg(-1)) was found in sediment below an outflow pipe from this mine. Operationally defined "colloidal" (0.2-0.45 microm) and "dissolved" (<0.2 microm) uranium were the predominant forms of the element in the river water (35 and 45% respectively). The uranium concentration in the dissolved phase showed a correlation coefficient of 0.83 (n= 9) with the total cation concentration, suggesting that the uranium concentration in this fraction is directly linked to weathering of rocks and minerals. The observation that weathering is the dominant mechanism delivering uranium to the river water explains the low uranium concentrations in the river water close to South Terras mine, despite the proximity of the spoil heaps, and the maximum uranium concentrations close to a china clay mining area.  相似文献   

17.
闽江流域福州过境段水体病毒污染调查分析   总被引:6,自引:0,他引:6  
自1998年11月至2000年4月,监测了闽江福州段病毒污染与水质状况。肠道病毒阳性率71 1%,平均病毒浓度5 33pfu L,植物病毒检出率32 2%,阳性率水样平均浓度0 3006枯斑 升,其中三个污染控制断面肠道内病毒阳性检出率及病毒浓度显著高于对照和消减断面,揭示闽江福州段水环境病毒污染水平同福州市内河生活污水排放有直接关系,而引水内河冲污工程的实施显然又加剧了闽江水病毒污染的程度,增加了饮用水的卫生微生物学危险性。而水体环境中的植物病毒对农业生产存在着潜在的威胁。  相似文献   

18.
The adsorption behavior of natural Jordanian zeolites with respect to Cd(2 + ), Cu(2 + ), Pb(2 + ), and Zn(2 + ) was studied in order to consider its application to purity metal finishing drinking and waste water samples under different conditions such as zeolite particle size, ionic strength and initial metal ion concentration. In the present work, a new method was developed to remove the heavy metal by using a glass column as the one that used in column chromatography and to make a comparative between the batch experiment and column experiment by using natural Jordanian zeolite as adsorbent and some heavy metals as adsorbate. The column method was used using different metal ions concentrations ranged from 5 to 20 mg/L with average particle size of zeolite ranged between 90 and 350 mum, and ionic strength ranged from 0.01 to 0.05. Atomic absorption spectrometry was used for analysis of these heavy metal ions, the results obtained in this study indicated that zeolitic tuff is an efficient ion exchanger for removing heavy metals, in particular the fine particle sizes of zeolite at pH 6, whereas, no clear effect of low ionic strength values is noticed on the removal process. Equilibrium modeling of the removal showed that the adsorption of Cd(2 + ), Cu(2 + ), Pb(2 + ), and Zn(2 + ) were fitted to Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR). The sorption energy E determined in the DKR equation (9.129, 10.000, 10.541, and 11.180 kJ/mol for Zn(2 + ), Cu(2 + ), Cd(2 + ) and Pb(2 + ) respectively) which revealed the nature of the ion-exchange mechanism.  相似文献   

19.
Fission track technique has been used for uranium estimation in drinking water samples collected from some areas of Amritsar District, Punjab, India. The uranium concentration in water samples is found to vary from 3.19 to 45.59 microg l(-1). Some of the physico-chemical properties such as pH, conductance and hardness and the content of calcium, magnesium, total dissolved solids (TDS), sodium, potassium, chloride, nitrate and heavy metals viz. zinc, cadmium, lead and copper have been determined in water samples. An attempt has been made to correlate uranium concentration with these water quality parameters. A positive correlation of conductance, nitrate, chloride, sodium, potassium, magnesium, TDS, calcium and hardness with uranium concentration has been observed. However, no correlation has been observed between the concentration of uranium and the heavy metals analysed.  相似文献   

20.
This article presents the geochemical characteristics and physicochemical properties of water and sediment from twelve semi-permanent, dryland pools in the upper Leichhardt River catchment, north-west Queensland, Australia. The pools were examined to better understand the quality of sediments and temporary waters in a dryland system with a well-established metal contamination problem. Water and sediment sampling was conducted at the beginning of the hydroperiod in May and September 2007. Water samples were analyzed for major solute compositions (Ca, Na, K, Mg, Cl, SO(4), HCO(3)) and water-soluble (operationally defined as the <0.45 μm fraction) metals (Cd, Cu, Pb, Zn). Sediment samples were analyzed for total extractable and bioaccessible metals (As, Cd, Cu, Pb, Zn), elemental composition and grain morphology. At the time of sampling a number of pools contained water and sediment with elevated concentrations, compared to Australian regulatory guidelines, of Cu (maximum: water 28 μg L(-1); sediment 770 mg kg(-1)), Pb (maximum: water 3.4 μg L(-1); sediment 630 mg kg(-1)) and Zn (maximum: water 150 μg L(-1); sediment 780 mg kg(-1)). Concentrations of Cd and As in pools were relatively low and generally within Australian regulatory guideline values. Localized factors, such as the interaction of waters with anthropogenic contaminants from modern and historic mine wastes (i.e. residual smelter and slag materials), exert influence on the quality of pool waters. Although the pools of the upper Leichhardt River catchment are contaminated, they do not appear to be the primary repository of water and sediment associated metals when compared to materials in the remainder channel and floodplain. Nevertheless, a precautionary approach should be adopted to mitigating human exposure to contaminated environments, which might include the installation of appropriate warning signs by local health and environmental authorities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号