首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An understanding of the behavior of the groundwater body and its long-term trends are essential for making any management decision in a given watershed. Geostatistical methods can effectively be used to derive the long-term trends of the groundwater body. Here an attempt has been made to find out the long-term trends of the water table fluctuations of a river basin through a time series approach. The method was found to be useful for demarcating the zones of discharge and of recharge of an aquifer. The recharge of the aquifer is attributed to the return flow from applied irrigation. In the study area, farmers mainly depend on borewells for water and water is pumped from the deep aquifer indiscriminately. The recharge of the shallow aquifer implies excessive pumping of the deep aquifer. Necessary steps have to be taken immediately at appropriate levels to control the irrational pumping of deep aquifer groundwater, which is needed as a future water source. The study emphasizes the use of geostatistics for the better management of water resources and sustainable development of the area.  相似文献   

2.
Saudi Arabia is an arid country. It has limited water supplies. About 80?C90% of water supplies come from groundwater, which is depleting day by day. It needs appropriate management. This paper has investigated groundwater modeling of Saq Aquifer in Buraydah Al Qassim to estimate the impact of its excessive use on depletion of Saq Aquifer. MODFLOW model has been used in this study. Data regarding the aquifer parameters was measured by pumping tests. Groundwater levels and discharge of wells in the area for the year 2008 and previous record of year 1999 have been collected from Municipal Authority of Buraydah. Location of wells was determined by Garmin. The model has been run for different sets of pumping rates to recommend an optimal use of groundwater resources and get prolonged life of aquifer. Simulations have been made for a long future period of 27?years (2008?C2035). Model results concluded that pumping from the Saq Aquifer in Buraydah area will result into significant cones of depression if the existing excessive pumping rates prevail. A drawdown up to 28?m was encountered for model run for 27?years for existing rates of pumping. Aquifer withdrawals and drawdowns will be optimal with the conservation alternative. The management scheme has been recommended to be adopted for the future protection of groundwater resources in Kingdom of Saudi Arabia.  相似文献   

3.
This paper presents the development of a regional flow simulation model of the stream–aquifer system of Ismarida plain, northeastern Greece. It quantifies the water budget for this aquifer system and describes the components of groundwater and the characteristics of this system on the basis of results of a 3-year field study. The semiconfined aquifer system of Ismarida Lake plain consists of unconsolidated deltaic clastic sediments, is hydraulically connected with Vosvozis River, and covers an area of 46.75 km2. The annual precipitation ranges in the study area from 270 to 876 mm. Eighty-seven irrigation wells are densely located and have been widely used for agricultural development. Groundwater flow in this aquifer was simulated with MODFLOW. Model calibration was done with observed water levels, and match was excellent. To evaluate the impacts of the current pumping schedule and propose solutions, four management scenarios were formulated and tested with the model. Based on model results, the simulated groundwater budget indicates that there must be approximately 33% decrease of withdrawals to stop the dramatic decline of groundwater levels. The application of these scenarios shows that aquifer discharge to the nearby river would be very low after a 20-year period.  相似文献   

4.
Hydrostratigraphy and hydrogeology of the Maira vicinity is important for the characterization of aquifer system and developing numerical groundwater flow models to predict the future availability of the water resource. Conventionally, the aquifer parameters are obtained by the analysis of pumping tests data which provide limited spatial information and turn out to be costly and time consuming. Vertical electrical soundings and pump testing of boreholes were conducted to delineate the aquifer system at the western part of the Maira area, Khyber Pakhtun Khwa, Pakistan. Aquifer lithology in the eastern part of the study area is dominated by coarse sand and gravel whereas the western part is characterized by fine sand. An attempt has been made to estimate the hydraulic conductivity of the aquifer system by establishing a relationship between the pumping test results and vertical electrical soundings by using regression technique. The relationship is applied to the area along the resistivity profiles where boreholes are not drilled. Our findings show a good match between pumped hydraulic conductivity and estimated hydraulic conductivity. In case of sparse borehole data, regression technique is useful in estimating hydraulic properties for aquifers with varying lithology.  相似文献   

5.
Steady- and transient-state simulations of groundwater flow and particle movement in the sub-watershed of the river Labe in Dě?ín town was carried out using Visual MODFLOW software. The simulations were performed for calibration and for the scenarios that the change in the water level of the river Labe was undergoing. Steady-state simulation was carried out for the sake of calibration of model outputs. For transient simulation, two different scenarios were considered in order to investigate the response of the aquifer system to the stresses applied on surface water of the river. The simulation results have shown that the surface water and groundwater interactions, and the subsequent particle movement were affected by the stresses applied on the surface water in the river Labe. The first scenario involved the rapid recharge of surface water to the aquifer in the vicinity of the river while particles still move towards the river at the places far away from the river. At the end of the second scenario, particles still tend to move towards the river slowly and finally tend to stay within the aquifer as equilibrium of hydraulic gradient is reached between the surface and groundwater levels. The time series graphs of hydraulic heads at all observation wells show that the groundwater level in the surrounding aquifer rises significantly as a result of recharges from the river. The local water balance of the study area was calculated and expressed as the rates of water entering and leaving the system. At the end of the second scenario, the difference between the rate of flow into and out of the model area was 0.73 m3 day?1.  相似文献   

6.
Cross-shore interactions between the ocean and a coastal aquifer have been studied extensively, whereas the corresponding along-shore case has seldom been examined. This paper presents a numerical model that simulates two-dimensional groundwater flow averaged over the thickness of a coastal aquifer. The model is used to examine the essential features of tide-induced, along-shore effects on an aquifer adjacent to a cross-shore river. The results show that the tide, which fluctuates the water level in the river, induces groundwater table fluctuations and oscillating flows in the along-shore direction. This occurs even at locations much further inland than tidal cross-shore fluctuations can propagate. However, the magnitude of along-shore water table fluctuations and flow velocity at a given cross-shore distance decreases with the distance from the river in the same manner as cross-shore tidal fluctuations. The along-shore groundwater flow, together with the cross-shore flow, forms horizontal circulation and increases mixing of solute in the aquifer. Over a tidal period, a large amount of water exchange occurs at the river-aquifer and ocean-aquifer interfaces, leading to increased transfer of chemicals between the three water bodies. These results have implications for the management of waste discharge in estuaries and coastal aquifers.  相似文献   

7.
Different scenarios of recharge and discharge were assessed for sustainable management of groundwater in Quaternary aquifer east of Nile Delta. MODFLOW was utilized to investigate the effect of land use change and damming construction in the upstream of the Nile River on the current and short-term groundwater management strategies. The interpretive transient simulation was performed between 2004 and 2016 after steady-state calibration in 2004, and transient state from 2004 to 2013 with different irrigation recharges associated with land use change in this period. Sensitivity analysis was performed for hydraulic conductivities, recharge, and conductance parameters. The predictive transient simulation was run till 2023 under three scenarios of increasing pumping rates by 15, 30, and 50% for agriculture expansion and specified head reduction of Port Said Canal by 0.2, 0.4, and 0.6 m associated with the reduction of Nile water levels after Grand Ethiopian Residence Dam, GERD operation in 2017. Results from the in- and out-flow budgets showed that groundwater aquifer is stable at the current rate of pumping till 2023. Groundwater heads decreased by 0.2 and 0.42 m in the southern section, and a slight increase in the northern part was noticed for the first and second scenarios, respectively. When additional pumping stress is applied (50% increase), groundwater head dropped by 0.66 m, and the storage is no longer able to maintain the aquifer capacity after 2020 (worst-case scenario).  相似文献   

8.
Semiarid northwestern Mexico presents a growing water demand produced by agricultural and domestic requirements during the last two decades. The community of Guadalupe Valley and the city of Ensenada rely on groundwater pumping from the local aquifer as its sole source of water supply. This dependency has resulted in an imbalance between groundwater pumpage and natural recharge. A two-dimensional groundwater flow model was applied to the Guadalupe Valley Aquifer, which was calibrated and validated for the period 1984–2005. The model analysis verified that groundwater levels in the region are subject to steep declines due to decades of intensive groundwater exploitation for agricultural and domestic purposes. The calibrated model was used to assess the effects of different water management scenarios for the period 2007–2025. If the base case (status quo) scenario continues, groundwater levels are in a continuous drawdown trend. Some wells would run dry by August 2017, and water demand may not be met without incurring in an overdraft. The optimistic scenario implies the achievement of the mean groundwater recharge and discharge. Groundwater level depletion could be stopped and restored. The sustainable scenario implies the reduction of current extraction (up to about 50 %), when groundwater level depletion could be stopped. A reduction in current extraction mitigates water stress in the aquifer but cannot solely reverse declining water tables across the region. The combination of reduced current extraction and an implemented alternative solution (such as groundwater artificial recharge), provides the most effective measure to stabilize and reverse declining groundwater levels while meeting water demands in the region.  相似文献   

9.
Excess intake of fluoride through drinking water causes fluorosis on human beings in many States of the country (India), including Andhra Pradesh. Groundwater quality in the Varaha River Basin located in the Visakhapatnam District of Andhra Pradesh has been studied, with reference to fluoride content, for its possible sources for implementing appropriate management measures, according to the controlling mechanism of fluoride concentration in the groundwater. The area occupied by the river basin is underlain by the Precambrian Eastern Ghats, over which the Recent sediments occur. Results of the chemical data of the groundwater suggest that the considerable number of groundwater samples show fluoride content greater than that of the safe limit prescribed for drinking purpose. Statistical analysis shows that the fluoride has a good positive relation, with pH and bicarbonate. This indicates an alkaline environment, as a dominant controlling mechanism for leaching of fluoride from the source material. Other supplementary factors responsible for the occurrence of fluoride in the groundwater are evapotranspiration, long contact time of water with the aquifer material, and agricultural fertilizers. A lack of correlation between fluoride and chloride, and a high positive correlation between fluoride and bicarbonate indicate recharge of the aquifer by the river water. However, the higher concentration of fluoride observed in the groundwater in some locations indicates insufficient dilution by the river water. That means the natural dilution did not perform more effectively. Hence, the study emphasizes the need for surface water management structures, with people's participation, for getting more effective results.  相似文献   

10.
受构造、地层等复杂地质情况综合影响的岩溶地区地下水,其溶质运移及流场模拟向来是水文地质、环境地质研究中的难点。以贵州省松桃县某锰矿尾矿库为例,在充分分析研究区周边水文地质、环境地质条件的基础上,建立地质模型,概化边界条件,利用有限元软件FEFLOW进行流场拟合。在此基础上,模拟特征污染物锰及氨氮的弥散情况。模拟结果表明,在不做任何防渗处理的情况下,特征污染物将在F201断层、地层产状等边界条件的影响下汇入地下暗河,最终流入地表水系及地下水系,流向东部的松江河。因此,必须对锰矿尾矿库采取防渗措施,从而降低其对地下水、地表水的污染风险。  相似文献   

11.
A quantity-quality problem in which pollution generates production externalities is analyzed empirically. Water is pumped by farmers from a common access aquifer, and deep percolation resulting from the irrigation causes accumulation of pollutants in the aquifer. Pollution negatively affects the production of the agricultural output through the deterioration of the groundwater quality. By comparing the cooperative with the noncooperative solution, an optimal policy scheme in the form of water taxes is determined. The scheme induces farmers acting noncooperatively to follow policies that correspond to the regulator's optimum. The model is applied to the case of groundwater management in the Iraklio prefecture of Crete. Agricultural production functions are estimated using an externality variable as explanatory variable. An optimal control model that corresponds to the cooperative solution is solved using multiple shooting methods. Paths for water stock, salinity stock, and water use at the regulator's optimum are derived. The optimal water tax is calculated in the final stage.  相似文献   

12.
Groundwater vulnerability assessments provide a measure of the sensitivity of groundwater quality to an imposed contaminant load and are globally recognized as an essential element of all aquifer management and protection plans. In this paper, the vulnerability of groundwaters underlying the Yinchuan Plain of Northwest China is determined using OREADIC, a GIS-based assessment tool that incorporates the key characteristics of the universally popular DRASTIC approach to vulnerability assessment but has been modified to consider important additional hydrogeological factors that are specific to the region. The results show that areas of high vulnerability are distributed mainly around Qingtongxia City, Wuzhong City, Lingwu City, and Yongning County and are associated with high rates of aquifer recharge, shallow depths to the water table, and highly permeable aquifer materials. The presence of elevated NO3 in the high vulnerability areas endorses the OREADIC approach. The vulnerability maps developed in this study have become valuable tools for environmental planning in the region and will be used for predictive management of the groundwater resource.  相似文献   

13.
This paper gives an account of the implementation of a decision support system for assessing aquifer pollution hazard and prioritizing subwatersheds for groundwater resources management in the southeastern Pampa plain of Argentina. The use of this system is demonstrated with an example from Dulce Stream Basin (1,000 km2 encompassing 27 subwatersheds), which has high level of agricultural activities and extensive available data regarding aquifer geology. In the logic model, aquifer pollution hazard is assessed as a function of two primary topics: groundwater and soil conditions. This logic model shows the state of each evaluated landscape with respect to aquifer pollution hazard based mainly on the parameters of the DRASTIC and GOD models. The decision model allows prioritizing subwatersheds for groundwater resources management according to three main criteria including farming activities, agrochemical application, and irrigation use. Stakeholder participation, through interviews, in combination with expert judgment was used to select and weight each criterion. The resulting subwatershed priority map, by combining the logic and decision models, allowed identifying five subwatersheds in the upper and middle basin as the main aquifer protection areas. The results reasonably fit the natural conditions of the basin, identifying those subwatersheds with shallow water depth, loam–loam silt texture soil media and pasture land cover in the middle basin, and others with intensive agricultural activity, coinciding with the natural recharge area to the aquifer system. Major difficulties and some recommendations of applying this methodology in real-world situations are discussed.  相似文献   

14.
This study deals with the implications of depletion of groundwater levels in three layered aquifers and its management to optimize the supply demand in the urban settlement near Kahota Industrial Triangle area, located adjacent to the Soan River, Islamabad Pakistan. Initially, a groundwater 3-D steady-state flow model has been developed, calibrated to the known observed heads of 24 water wells, verified, and confirmed that convergence has actually arrived and hydraulic heads are no more changing. Later, the transient simulation was carried out with the constant discharge rates of groundwater by means of pumping wells, storage factor, porosity, and observed drawdown matched with the simulated drawdown that appears to fall in close agreement with a difference of 0.25 m. As such, the developed groundwater model has facilitated to understand, evaluate, and to predict regional trends of groundwater flow regimes and their ultimate utilization at a maximum rate of 4.5 million gallons/day for the growing urban settlement. The calibrated and verified model was then used to simulate the depletion of groundwater level, annual water balance, discharge versus time drawdown, and a temporal behavior of the system over an extended period of pumping. The modeling results indicate that, due to the pumping, the direction of flow has changed: first from groundwater regimes to the Soan River and then it is entirely reversed from the Soan River to the groundwater regimes as the drawdown started to deepen.  相似文献   

15.
The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.  相似文献   

16.
Migration pattern of organochloro pesticide lindane has been studied in groundwater of metropolitan city Vadodara. Groundwater flow was simulated using the groundwater flow model constructed up to a depth of 60 m considering a three-layer structure with grid size of 40?×?40?×?40 m3. The general groundwater flow direction is from northeast to south and southwest. The river Vishwamitri and river Jambua form natural hydrologic boundary. The constant head in the north and south end of the study area is taken as another boundary condition in the model. The hydraulic head distribution in the multilayer aquifer has been computed from the visual MODFLOW groundwater flow model. TDS has been computed though MT3D mass transport model starting with a background concentration of 500 mg/l and using a porosity value of 0.3. Simulated TDS values from the model matches well with the observed data. Model MT3D was run for lindane pesticide with a background concentration of 0.5?μg/l. The predictions of the mass transport model for next 50 years indicate that advancement of containment of plume size in the aquifer system both spatially and depth wise as a result of increasing level of pesticide in river Vishwamitri. The restoration of the aquifer system may take a very long time as seen from slow improvement in the groundwater quality from the predicted scenarios, thereby, indicating alarming situation of groundwater quality deterioration in different layers. It is recommended that all the industries operating in the region should install efficient effluent treatment plants to abate the pollution problem.  相似文献   

17.
In the present work, a simulation-optimization method is employed in order to manage saltwater intrusion in two unconfined coastal aquifers in Crete, Greece. The optimization formulation seeks to maximize groundwater withdrawal rates while maintaining the saltwater intrusion front at the current location or inhibiting it at locations closer to the coast. A combination of a groundwater flow model (MODFLOW) with the Ghyben-Herzberg saltwater front approximation and a sequential implementation of the Simplex algorithm (GWM) are employed. The results show that under the current pumping strategies, the saltwater intrusion front will continue to move inland, posing a serious threat to the groundwater quality of these regions. Optimal groundwater withdrawal scenarios that take into consideration the water needs of the local communities and environmental concerns are presented and discussed. In both case studies, significant reductions in pumping are required in order for the saltwater intrusion front to retract closer to the shoreline.  相似文献   

18.
The aim of this study was to investigate the response of groundwater level and well yields in the Halacli aquifer to climate variations in Central Anatolia, Turkey. The Halacli aquifer is a typical aquifer due to its vulnerability to the climate variations. The aquifer is shallow and its recharge area is small. The waters from rains and snow melts can rapidly infiltrate down to the groundwater body because the vadose zone is thin and formed from coarse material. Therefore, the groundwater system responds to the short-term recharges by raising its level. Although any exploitation did not occur, the groundwater levels have declined from 1989 to 1997. However, the groundwater levels began rising when the exploitation started in the summer of 1998. After the year 2000, although the amount and duration of yearly exploitation was constant, fluctuations of water level continued. Fluctuation of groundwater levels and well yields bewilders the water users and imperils the sustainable water management in the study area and also in arid and semi-arid regions of Turkey. In order to overcome this problem, behavior of groundwater level and discharges of the wells must be recorded and the water users must be informed about the current conditions and the possible trend in the future of the system.  相似文献   

19.
The development of groundwater resources for water supply is a favored way in Turkey. The Berdan alluvial aquifer in Mersin is particularly productive, but little is known about the natural phenomena that govern the groundwater quality and the contamination sources in this region. During 2001 and 2002, water samples for chemical analysis were obtained from 27 wells and from two points of Berdan River and analyzed by ICP. Main chemical characteristics of sampled groundwater define two aquifers, which were also determined by hydrogeological investigations. The groundwater produced from some of the wells was affected by anthropogenic activities temporally and spatially by seawater intrusion. Berdan River is polluted with the wastewater discharges and river water also influences the groundwater quality.  相似文献   

20.
For groundwater conservation and management, it is important to accurately assess groundwater pollution vulnerability. This study proposed an integrated model using ridge regression and a genetic algorithm (GA) to effectively select the major hydro-geological parameters influencing groundwater pollution vulnerability in an aquifer. The GA-Ridge regression method determined that depth to water, net recharge, topography, and the impact of vadose zone media were the hydro-geological parameters that influenced trichloroethene pollution vulnerability in a Korean aquifer. When using these selected hydro-geological parameters, the accuracy was improved for various statistical nonlinear and artificial intelligence (AI) techniques, such as multinomial logistic regression, decision trees, artificial neural networks, and case-based reasoning. These results provide a proof of concept that the GA-Ridge regression is effective at determining influential hydro-geological parameters for the pollution vulnerability of an aquifer, and in turn, improves the AI performance in assessing groundwater pollution vulnerability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号