首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentrations and composition of airborne fungal spores in homes fitted with portable HEPA filtration units were examined to provide information to evaluate the importance of varying levels of fungal spores in residential environments in Perth, Australia. A novel method for simulating activity/impaction on carpeted environments was also investigated. Reductions in fungal (35%) and particulate (38%) levels were achieved in the air filter homes. Penicillium, Cladosporium and yeasts were the most common and widespread fungi recovered indoors and outdoors. Fungal range decreased over the study period but this could be due to an overall reduced dissemination of spores (less spores in the air).  相似文献   

2.
Bioaerosol concentrations were investigated in a totally indoor composting facility processing fermentable household and green wastes to assess their variability. Stationary samples were collected by filtration close to specific composting operations and then were analysed for cultivable mesophilic bacteria, thermophilic bacteria, mesophilic fungi, thermophilic fungi, endotoxins and total airborne bacteria (DAPI-staining). Indoor concentrations exceeded the background levels, between 500 and 5400 EU m(-3) for endotoxins, 10(4) and 10(6) CFU m(-3) for cultivable bacteria and generally below 10(5) CFU m(-3) for airborne cultivable fungi. No significant (p > 0.05) differences were observed between the indoor composting operations. Successive 30 minute bioaerosol samples were collected to investigate the variation of cultivable mesophilic microorganisms over the work shift. Concentrations of mesophilic bacteria and fungi varied up to 1 log unit depending on the time at which they were collected in the day. Total airborne particles, counted using an optical particle counter, were present at up to 10(8) particles m(-3) and several concentration peaks were noted. Values for total airborne bacteria were roughly 70-fold higher than cultivable bacteria. These results raise the question of the sampling strategy (duration of sampling; number of samples to be collected) used in similar studies. They provide new bioaerosol concentration data in a composting facility and suggest that the filtration sampling method might be a useful tool for exposure measurements in that occupational environment.  相似文献   

3.
Air quality in the vicinity of airports is examined with particular reference to a detailed study of Gatwick Airport (UK). Ambient air concentrations of carbon monoxide, hydrocarbons (total and non-methane), oxides of nitrogen, smoke and airborne particulate lead have been measured at seven locations around the airport. The results obtained have been compared with ambient air quality guidelines, where available, and with results from other monitoring sites in the UK. It is concluded that the airport cannot be considered to be a significantly more important contributor to average pollutant ground-level concentrations than other sources in the area.  相似文献   

4.
In this study, the integration of a high volume, portable aerosol-to-hydrosol sampling technique and quantitative polymerase chain reaction (qPCR) was investigated for bioaerosol monitoring by adapting the RCS High Flow to sample air with mineral-oil-strips. Bacillus subtilis var niger and Pseudomonas fluorescens were aerosolized and collected by the RCS High Flow loaded with mineral-oil-strips for 1, 2 and 5 min. In addition, the adapted aerosol-to-hydrosol sampler was also tested for sampling environmental bacterial aerosols in four different environments (a back yard, a student dorm, a dining hall, and a play ground). The performances of the RCS High Flow with mineral-oil-strips were compared with the use of agar strips under similar conditions in all experiments. Air samples collected by the RCS High Flow were cultured, and in addition those collected with mineral-oil-strips were also quantified using qPCR. When sampling B. subtilis var niger aerosols, the use of mineral-oil-strips was shown to report significantly higher culturable concentrations than those obtained by agar strips regardless of the sampling time tested (p-value = 0.04). In contrast, the differences between the two methods when sampling P. fluorescens aerosols were not statistically significant (p-value = 0.5). When coupled with qPCR, the RCS High Flow loaded with mineral-oil-strips obtained significantly higher bacterial aerosol concentrations than those detected by the culturing method. The sampling time was observed to have negligible effects on the efficiency of the technology developed here. When sampling in different environments, the use of mineral-oil-strip was observed to yield significantly higher, about 4-12 times, culturable bacterial aerosol concentration levels compared to the use of agar. This study demonstrated a high volume (100 L min?1) portable aerosol-to-hydrosol sampling technique, holding broad promise in monitoring airborne biological threats when coupled with qPCR technology. Yet, caution should be taken in relating the bioaerosol concentrations to health risks as qPCR detects both culturable and non-culturable cells including inactivated ones.  相似文献   

5.
The interrelationships between ventilation rate, indoor air quality, and energy consumption in operation rooms at rest are yet to be understood. We investigate the effect of ventilation rate on indoor air quality indices and energy consumption in ORs at rest. The study investigates the air temperature, relative humidity, concentrations of carbon dioxide, particulate matter (PM), and airborne bacteria at different ventilation rates in operation rooms at rest of a medical center. The energy consumption and cost analysis of the heating, ventilating, and air conditioning (HVAC) system in the operation rooms at rest were also evaluated for all ventilation rates. No air-conditioned operation rooms had very highest PM and airborne bacterial concentrations in the operation areas. The bacterial concentration in the operation areas with 6–30 air changes per hour (ACH) was below the suggested level set by the United Kingdom (UK) for an empty operation room. A 70% of reduction in annual energy cost by reducing the ventilation rate from 30 to 6 ACH was found in the operation rooms at rest. Maintenance of operation rooms at ventilation rate of 6 ACH could save considerable amounts of energy and achieve the goal of air cleanliness.  相似文献   

6.
生物气溶胶监测仪是利用激光或紫外光诱导生物粒子发射荧光,从而实现对空气中的生物气溶胶进行监测的仪器。目前,国内尚无生物气溶胶监测仪校准用标准物质和评价方法。以聚苯乙烯微球为核,通过Friedel-Crafts酰基化反应,研制出能够自身受激发产生荧光的聚苯乙烯(PS-PB)微球。PS-PB微球粒径分布的相对标准偏差为1.3%,严格单分散。通过雾化法发尘,将PS-PB微球应用于生物气溶胶监测仪的校准,计数误差在±10%以内。用校准后的仪器检测白色念珠菌(Candida albicans)发生的生物气溶胶和商品化的荧光微球发生的气溶胶,计数误差均与PS-PB微球计数误差接近。研究结果表明,PS-PB微球可作为标准物质用于生物气溶胶监测仪器的校准,基于雾化发尘的静态箱法校准装置可用于生物气溶胶监测仪的评价。  相似文献   

7.
Many metropolitan transit authorities are considering upgrading transit bus fleets to decrease ambient criteria pollutant levels. Advancements in engine and fuel technology have lead to a generation of lower-emission buses in a variety of fuel types. Dynamometer tests show substantial reductions in particulate mass emissions for younger buses (<10 years) over older models, but particle number reduction has not been verified in the research. Recent studies suggest that particle number is a more important factor than particle mass in determining health effects. In-vehicle particle number concentration measurements on conventional diesel, oxidation-catalyst diesel and compressed natural gas transit buses are compared to estimate relative in-vehicle particulate exposures. Two primary consistencies are observed from the data: the CNG buses have average particle count concentrations near the average concentrations for the oxidation-catalyst diesel buses, and the conventional diesel buses have average particle count concentrations approximately three to four times greater than the CNG buses. Particle number concentrations are also noticeably affected by bus idling behavior and ventilation options, such as, window position and air conditioning.  相似文献   

8.
Air samples were collected from 4 field sites in Europe: 2 sites from the UK, Hazelrigg (semi-rural) and Manchester (urban); 1 site from Ireland: Mace Head (rural); and 1 site from Norway: Kjeller (rural). Additionally, air samples were taken from indoor locations in Troms?, Norway. Air samples were collected using high-volume air samplers employing sampling modules containing glass-fibre filters (GFFs, particle phase), and glass columns with a polyurethane foam (PUF)-XAD-2-PUF sandwich (gaseous phase). Typical outdoor air volumes required for the determination of per- and polyfluorinated alkyl substances (PFAS) ranged from 500-1800 m3. GFFs and PUF-XAD columns were analysed separately to obtain information on phase partitioning. All air samples were analysed for volatile, neutral PFAS, with selected GFF samples halved for analysis of both neutral and airborne particle-bound ionic PFAS. Volatile PFAS were extracted from air samples by cold-column immersion with ethyl acetate, and were analysed by gas chromatography-mass spectrometry in the positive chemical ionisation mode (GC-PCI-MS). Ionic PFAS were extracted from GFFs by sonication in methanol, and were analysed by liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) using electrospray ionisation in the negative ion mode (ESI-). Perfluorooctanoate (PFOA) was often the predominant analyte found in the particulate phase at concentrations ranging from 1-818 pg m(-3), and 8:2 fluorotelomer alcohol (FTOH) and 6:2 FTOH were the prevailing analytes found in the gas phase, at 5-243 pg m(-3) and 5-189 pg m(-3), respectively. These three PFAS were ubiquitous in air samples. Many other PFAS, both neutral and ionic, were also present, and levels of individual analytes were in the 1-125 pg m(-3) range. Levels of some PFAS exceeded those of traditional persistent organic pollutants (POPs). In this study, the presence of 12:2 FTOH and fluorotelomer olefins (FTolefins), and ionic PFAS other than perfluorooctane sulfonate (PFOS) and PFOA, are reported in air samples for the first time. Concentrations of neutral PFAS were several orders of magnitude higher in indoor air than outdoor air, making homes a likely important diffuse source of PFAS to the atmosphere. Our repeated findings of non-volatile ionic PFAS in air samples raises the possibility that they might directly undergo significant atmospheric transport on particles away from source regions, and more atmospheric measurements of ionic PFAS are strongly recommended.  相似文献   

9.
The aim of this study was to compare the personal exposure to particles and bioaerosols with that measured by stationary samplers in the main microenvironments, i.e., the home and the workplace. A random sample of 81 elementary school teachers was selected from the 823 teachers working for two councils in eastern Finland for the winter time measurement period. Bioaerosol and other particles were collected on filters by button samplers using personal sampling and microenvironmental measurements in homes and workplaces. The 24-hour sampling period was repeated twice for each teacher. Particle mass, absorption coefficient of the filter and the concentration of viable and total microorganisms were analyzed from each filter. In this paper, the study design, quality assurance principles and results of particle and bioaerosol exposure are described. The results show that particle mass concentrations, absorption coefficient and fungi were higher in personal exposure samples than in home and workplace samples. Furthermore, these concentrations were usually lower in the home than in the workplace. Bacterial concentrations were highest in heavily populated workplaces, while the viable fungi concentrations were lowest in workplaces. The fungi and bacteria results showed high variation, which emphasises the importance of quality assurance (duplicates and field blanks) in the microbial field measurements. Our results indicate that personal exposure measurements of bioaerosols in indoor environments are feasible and supplement the information obtained by stationary samplers.  相似文献   

10.
The aim of the work presented here is to study the effectiveness of building air handling units (AHUs) in serving as high volume sampling devices for airborne bacteria and viruses. An HVAC test facility constructed according to ASHRAE Standard 52.2-1999 was used for the controlled loading of HVAC filter media with aerosolized bacteria and virus. Nonpathogenic Bacillus subtilis var. niger was chosen as a surrogate for Bacillus anthracis. Three animal viruses; transmissible gastroenteritis virus (TGEV), avian pneumovirus (APV), and fowlpox virus were chosen as surrogates for three human viruses; SARS coronavirus, respiratory syncytial virus, and smallpox virus; respectively. These bacteria and viruses were nebulized in separate tests and injected into the test duct of the test facility upstream of a MERV 14 filter. SKC Biosamplers upstream and downstream of the test filter served as reference samplers. The collection efficiency of the filter media was calculated to be 96.5 +/- 1.5% for B. subtilis, however no collection efficiency was measured for the viruses as no live virus was ever recovered from the downstream samplers. Filter samples were cut from the test filter and eluted by hand-shaking. An extraction efficiency of 105 +/- 19% was calculated for B. subtilis. The viruses were extracted at much lower efficiencies (0.7-20%). Our results indicate that the airborne concentration of spore-forming bacteria in building AHUs may be determined by analyzing the material collected on HVAC filter media, however culture-based analytical techniques are impractical for virus recovery. Molecular-based identification techniques such as PCR could be used.  相似文献   

11.
Aerosols of water contaminated with Legionella bacteria constitute the only mode of exposure for humans. However, the prevention strategy against this pathogenic bacteria risk is managed through the survey of water contamination. No relationship linked the Legionella bacteria water concentration and their airborne abundance. Therefore, new approaches in the field of the metrological aspects of Legionella bioaerosols are required. This study was aimed at testing the main principles for bioaerosol collection (solid impaction, liquid impingement and filtration) and the in situ hybridization (FISH) method, both in laboratory and field assays, with the intention of applying such methodologies for airborne Legionella bacteria detection while showering. An aerosolization chamber was developed to generate controlled and reproducible L. pneumophila aerosols. This tool allowed the identification of the liquid impingement method as the most appropriate one for collecting airborne Legionella bacteria. The culturable fraction of airborne L. pneumophila recovered with the liquid impingement principle was 4 and 700 times higher compared to the impaction and filtration techniques, respectively. Moreover, the concentrations of airborne L. pneumophila in the impinger fluid were on average 7.0 x 10(5) FISH-cells m(-3) air with the fluorescent in situ hybridization (FISH) method versus 9.0 x 10(4) CFU m(-3) air with the culture method. These results, recorded under well-controlled conditions, were confirmed during the field experiments performed on aerosols generated by hot water showers in health institutions. This new approach may provide a more accurate characterization of aerobiocontamination by Legionella bacteria.  相似文献   

12.
Bioaerosol sampling by a personal rotating cup sampler CIP 10-M   总被引:1,自引:0,他引:1  
High concentrations of bioaerosols containing bacterial, fungal and biotoxinic matter are encountered in many workplaces, e.g. solid waste treatment plants, waste water treatment plants and sewage networks. A personal bioaerosol sampler, the CIP 10-M (M-microbiologic), has been developed to measure worker exposure to airborne biological agents. This sampler is battery operated; it is light and easy to wear and offers full work shift autonomy. It can sample much higher concentrations than biological impactors and limits the mechanical stress on the microorganisms. Biological particles are collected in 2 ml of liquid medium inside a rotating cup fitted with radial vanes to maintain an air flow rate of 10 l min(-1) at a rotational speed of approximately 7,000 rpm. The rotating cup is made of sterilisable material. The sampled particles follow a helicoidal trajectory as they are pushed to the surface of the liquid by centrifugal force, which creates a thin vertical liquid layer. Sterile water or another collecting liquid can be used. Three particle size selectors allow health-related aerosol fractions to be sampled according to international conventions. The sampled microbiological particles can be easily recovered for counting, incubation or further biochemical analysis, e.g., for airborne endotoxins. Its physical sampling efficiency was laboratory tested and field trials were carried out in industrial waste management conditions. The results indicate satisfactory collection efficiency, whilst experimental application has demonstrated the usefulness of the CIP 10-M personal sampler for individual bioaerosol exposure monitoring.  相似文献   

13.
Fugitive emissions from a slagging fixed-bed coal-gasification pilot plant were analyzed by flameless atomic absorption spectrophotometry, gas chromatography, and mass spectrometry for trace metal and trace organic species. Analysis of the size distributions of airborne particulate matter inside the plant showed an abundance of large metal-containing particles; outdoor distributions in the vicinity of the plant resembled the indoor distributions, suggesting the importance of the gasifier in influencing ambient air quality. This conclusion was further supported by identification of similar organic compounds inside and outside the plant. Trace element enrichment factors based on the earth's crustal composition were greater than those based on the composition of the lignite used in the gasifier, showing the importance of characterizing the proper source material when inverstigating chemical fraction during aerosol formation. Enrichments in the present study were much greater than those found in previous sampling during aborted start-up and cleaning procedures, where normal operating temperatures had not yet been reached. Both studies showed evidence of enrichment factors which decreased with increasing particle size. Although much of the airborne mass was associated with large particles having low respirability, the high concentrations of some metals indoors suggests that further assessment of potential occupational exposures is warranted.  相似文献   

14.
In order to characterize the status of indoor air pollution in some important facilities, a list of key criteria pollutants [particulate matter (PM(10)), carbon dioxide (CO(2)), carbon monoxide (CO), formaldehyde (HCHO), and bioaerosol] was measured from a total of 91 randomly selected sites in 18 different cities, Korea (February 2006 to December 2009). The target facilities include 43 child care facilities, 38 medical facilities, 6 elementary schools, and 4 postnatal care centers. The results showed that some air pollutants (e.g., CO and HCHO) did not exceed the recommended guideline [e.g., the Korean indoor air standard (KIAS) values of 10 ppm and 100 ppb, respectively]. However, concentration of PM(10), CO(2), and bioaerosol occasionally exceeded their respective guidelines (e.g., seven, three, and two cases). Discrete seasonalities were observed from indoor pollutants because of varying ventilation practice (e.g., summer time dominance of PM(10), HCHO, and bioaerosol or winter dominance of CO(2) and CO). However, as the concentrations of the indoor pollutants were scarcely above the recommended guideline level, more diversified approaches are desirable to diagnose the status of indoor pollution and to provide a realistic strategy for the improvement of IAQ.  相似文献   

15.
Increasing evidences show that inhalation of indoor bioaerosols has caused numerous adverse health effects and diseases. However, the bioaerosol size distribution, composition, and concentration level, representing different inhalation risks, could vary with different living environments. The six-stage Andersen sampler is designed to simulate the sampling of different human lung regions. Here, the sampler was used in investigating the bioaerosol exposure in six different environments (student dorm, hospital, laboratory, hotel room, dining hall, and outdoor environment) in Beijing. During the sampling, the Andersen sampler was operated for 30 min for each sample, and three independent experiments were performed for each of the environments. The air samples collected onto each of the six stages of the sampler were incubated on agar plates directly at 26 °C, and the colony forming units (CFU) were manually counted and statistically corrected. In addition, the developed CFUs were washed off the agar plates and subjected to polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Results revealed that for most environments investigated, the culturable bacterial aerosol concentrations were higher than those of culturable fungal aerosols. The culturable bacterial and fungal aerosol fractions, concentration, size distribution, and diversity were shown to vary significantly with the sampling environments. PCR-DGGE analysis indicated that different environments had different culturable bacterial aerosol compositions as revealed by distinct gel band patterns. For most environments tested, larger (>3 μm) culturable bacterial aerosols with a skewed size distribution were shown to prevail, accounting for more than 60 %, while for culturable fungal aerosols with a normal size distribution, those 2.1–4.7 μm dominated, accounting for 20–40 %. Alternaria, Cladosporium, Chaetomium, and Aspergillus were found abundant in most environments studied here. Viable microbial load per unit of particulate matter was also shown to vary significantly with the sampling environments. The results from this study suggested that different environments even with similar levels of total microbial cuturable aerosol concentrations could present different inhalation risks due to different bioaerosol particle size distribution and composition. This work fills literature gaps regarding bioaerosol size and composition-based exposure risks in different human dwellings in contrast to a vast body of total bioaerosol levels.  相似文献   

16.
The aim of this study was to estimate mite antigen exposure in farming environments by passive sampling of airborne dust. Antigen concentrations were measured with enzyme immunoassays specific for three storage mites (SM): Acarus siro, Lepidoglyphus destructor, Tyrophagus putrescentiae and the house dust mite (HDM) Dermatophagoides pteronyssinus. Dust samples were collected with electrostatic dust fall collectors (EDCs) in three different areas of cattle farms. EDCs were placed in cow stables (working area), in changing rooms (transit area) and in different rooms of farmer dwellings (living area). Mite concentrations in the living area of farm homes were compared to those of urban homes. In dust samples from stables, antigens of all four mite species could be detected. The highest exposure level was to L. destructor (median 56.7 μg/m(2)), the lowest to A. siro (median 14.4 μg/m(2)). Mite concentrations of different species showed no correlation within the cow stables. In comparison to stables, the median mite concentrations in farm homes were significantly lower, ranging from below the detection limit to 1.5 μg/m(2). Antigens of SM were predominantly found in changing rooms and kitchens, and HDM antigens were mainly detected in bedrooms. Antigens of all mites were measured the least often in living rooms. T. putrescentiae was the most prevalent mite in all room types, and the exposure levels correlated strongly between different rooms. The number of SM positive samples in farm homes was considerably higher than in urban homes, while the percentage of HDM positive samples did not differ significantly.  相似文献   

17.
A unique two-stage cyclone bioaerosol sampler has been developed at NIOSH that can separate aerosols into three size fractions. The ability of this sampler to collect infectious airborne viruses from a calm-air chamber loaded with influenza A virus was tested. The sampler's efficiency at collecting aerosolized viral particles from a calm-air chamber is essentially the same as that from the high performance SKC BioSampler that collects un-fractionated particles directly into a liquid media (2.4 × 10(4) total viral particles per liter of sampled air (TVP/L) versus 2.6 × 10(4) TVP/L, respectively, after 15 min) and the efficiency is relatively constant over collection times of 15, 30 and 60 min. Approximately 34% of the aerosolized infectious virus collected after 15 min with the NIOSH bioaerosol sampler remained infectious, and infectious virus was found in all three size fractions. After 60 min of sampling, the infectious virus/liter air found in the NIOSH bioaerosol sampler was 15% of that found in the SKC BioSampler. This preservation of infectivity by the NIOSH bioaerosol sampler was maintained even when the initial infectivity prior to aerosolization was as low as 0.06%. The utility of the NIOSH bioaerosol sampler was further extended by incorporating an enhanced infectivity detection methodology developed in our laboratory, the viral replication assay, which amplified the infectious virus making it more readily detectable.  相似文献   

18.
The aim of this study was to assess the associations between airborne and dustborne microbial contaminants (endotoxin and β-D-glucan) and estimate the effects of home characteristics on exposure levels of these microbial contaminants. Endotoxin and β-D-glucan concentrations in airborne inhalable particles, airborne PM1 (<1 μm) and vacuumed dust from 184 residential homes were determined using specific Limulus amebocyte assays. Home characteristics were recorded by visual inspection and questionnaires. Linear regression and correlation analyses were performed. Inhalable endotoxin correlated with dust endotoxin (r = 0.34, p < 0.001) and PM1 endotoxin (r = 0.33, p < 0.001). Inhalable β-D-glucan correlated with dust β-D-glucan (r = 0.18, p < 0.01), but not with PM1 β-D-glucan. Significant correlation was also found between PM1 and dust concentrations for endotoxin (r = 0.26, p < 0.001), but not for β-D-glucan. Multivariate regression analyses showed only one significant association between airborne contaminants and environmental characteristics: inhalable β-D-glucan was positively associated with relative humidity with an effect size (change in the dependent variable corresponding to a unit increase in the independent variable) of 2.32 and p < 0.05. In contrast, several associations were found between dust concentrations and environmental characteristics. Dust endotoxin was positively associated with temperature (2.87, p < 0.01) and number of inhabitants (2.76, p < 0.01), whereas dust β-D-glucan was inversely associated with the presence of dogs (-2.24, p < 0.05) and carpet (-3.05, p < 0.01) in the home. In conclusion, dustborne contaminants were more strongly affected by home characteristics than airborne contaminants. Furthermore, even though statistically significant, the correlations between airborne and dustborne contaminants were weak. This indicates that airborne concentrations cannot be reliably predicted based on dustborne concentrations.  相似文献   

19.
Louis Pasteur described the first measurements of airborne microorganisms in 1861. A century later, the inhalation of spores from thermophilic microorganisms was shown to induce attacks of farmers' lung in patients with this disease, while endotoxins originating from Gram-negative bacteria were identified as causal agents for byssinosis in cotton workers. Further epidemiological and toxicological studies have demonstrated inflammatory, respiratory, and pathogenic effects following exposure to bioaerosols. Exposure assessment is often confounded by the diversity of bioaerosol agents in the environment. Microorganisms represent a highly diverse group that may vary in toxicity. Fungi and bacteria are mainly quantified as broad groups using a variety of viable and nonviable assessment methods. Endotoxins and β(1 → 3)-glucans are mainly measured by their activity in the Limulus amebocyte lysate assay, enzymes by immuno-chemical methods and mycotoxins by liquid chromatography-mass spectrometry. Few health-based occupational exposure limits (OELs) are available for risk assessment. For endotoxins, a health-based OEL of 90 endotoxin units m(-3) has been proposed in the Netherlands. A criteria document for fungal spores recently proposed a lowest observed effect level of 100,000 spores m(-3) for non-pathogenic and non-mycotoxin producing species based on inflammatory respiratory effects. Recent developments in bioaerosol assessment were presented at the Organic Dust Troms? Symposium including molecular biological methods for infectious agents and organisms that are difficult to cultivate; studies of submicronic and hyphal fragments from fungi; the effect of biodiversity of microorganisms in asthma studies; and new/improved measurement methods for fungal antigens, enzymes and allergens. Although exposure assessment of bioaerosol agents is complex and limited by the availability of methods and criteria, the field is rapidly evolving.  相似文献   

20.
This on-site survey study was performed to determine the concentrations and emissions of aerial contaminants in the different types of swine houses in Korea and then to present beneficial information available for Korean pig producers to manage optimal air quality in swine house. The swine houses investigated in this research were selected based on three criteria; manure removal system, ventilation mode and growth stage of swine. Mean concentrations of aerial pollutants in swine houses were 8 ppm for ammonia, 300 ppb for hydrogen sulfide, 2 mg m−3 for total dust, 0.6 mg m−3 for respirable dust, 4 log(cfu m−3) for total airborne bacteria and 3 log(cfu m−3) for total airborne fungi, respectively. Mean emissions based on pig (liveweight; 75 kg) and area (m2) were 250 and 340 mg h−1 for ammonia, 40 and 50 mg h−1 for hydrogen sulfide, 40 and 50 mg h−1 for total dust, 10 and 15 mg h−1 for respirable dust, 1.0 and 1.3 log(cfu) h−1 for total airborne bacteria and 0.7 and 1.0 log(cfu) h−1 for total airborne fungi, respectively. In general concentrations and emissions of gases were relatively higher in the swine houses managed with deep-pit manure system with slats and mechanical ventilation mode than the different swine housing types whereas those of particulates and bioaerosol were highest in the naturally ventilated swine houses with deep-litter bed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号