首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2015年8月22日至9月26日利用在线GC-MS/FID和离线Canister-GCMS/FID采样并分析了重庆城区7个监测点位的96种VOCs,结果表明,城区总挥发性有机化合物平均体积分数为42.43×10-9,且空间分布特征为"中心城区高,周边低"。重庆本地高乙烷、高乙烯和高乙炔浓度呈区域污染现象,且城市监测点位主要受交通源、工业排放和溶剂挥发的影响,缙云山站则主要以生物源排放为主。重庆市城区气团的OH自由基反应速率平均值为8.86×10-12cm3/(mol·s),最大反应增量活性平均值为4.08 mol/mol,与乙烯相当,说明本地大气化学反应活性较强。重庆城区对OH自由基损耗速率贡献最大的组分是烯/炔烃(35%),对臭氧生成潜势贡献最大的组分是芳香烃(39%)。乙醛、乙烯和甲苯等物质是VOCs的关键活性组分。  相似文献   

2.
选取武夷山、庞泉沟和长岛3个具有代表性的空气背景站点及其周边城市站点,分析研究夏季环境空气中挥发性有机污染物(VOCs)的特征。结果表明,庞泉沟、武夷山、长岛背景站点的总挥发性有机物(TVOCs)平均浓度分别为(24.71±7.89)×10-9、(7.94±5.82)×10-9、(11.98±5.34)×10-9,分别比对应的城市站点低42%、43%、11%。背景站点TVOCs中的烷烃占比为67%~72%,明显高于城市站点;背景站点与城市站点TVOCs中的烯烃和芳香烃占比无显著差异;但背景站点炔烃占比(2%~3%)明显低于城市地区(10%~24%)。背景站点异戊二烯浓度在09:00—15:00出现峰值,且TVOCs浓度变化趋势与异戊二烯浓度变化趋势关联性较强,说明背景站点受自然源影响较大。臭氧生成潜势(OFP)分析结果表明,烯烃及芳香烃对背景地区与城市地区臭氧生成有较大影响,城市地区总OFP远大于背景地区,乙烯、甲苯等对城市地区OFP的贡献较大,异戊二烯对背景地区OFP的贡献较大。  相似文献   

3.
2017年9月1日至11月30日采用Syntech Spectras GC955在线气相色谱仪对杭州市不同功能区大气环境中的挥发性有机化合物(VOCs)进行了在线连续监测,分析了不同功能区VOCs及各组分的体积分数、日变化规律及大气化学反应活性。结果显示,下沙周边工业区总VOCs浓度整体高于朝晖周边居民区,其中夜间更为显著。烷烃和芳香烃浓度在夜间时段工业区较居民区高得更为明显,其中芳香烃组分表现尤为突出,2个功能区烯烃体积分数相差不大。杭州市主要VOCs体积分数总体上在国内处于中间水平。不同功能区烷烃和芳香烃均呈现夜间浓度高于白天的日变化特征,居民区各VOCs组分日变化基本呈现双峰结构,工业区烷烃和芳香烃体积分数日变化呈现单峰结构,烯烃体积分数没有明显的日变化特征。不同功能区中芳香烃对臭氧生成潜势贡献最大,烯烃次之,烷烃贡献最小。下沙周边工业区大气化学活性(尤其是芳香烃组分)较朝晖周边居民区强。同种VOCs物质在不同功能区对臭氧生成潜势的贡献大小不同,但关键贡献物质均为低碳烷烃、低碳烯烃及苯系物。  相似文献   

4.
对大连市2015年秋冬季环境空气中VOCs进行采样分析,获得其组成、含量、昼夜和季节变化规律,分析不同类别VOCs的来源,并计算不同VOCs物种的臭氧生成潜势(OFP)。结果表明:大连市环境空气中秋季VOCs平均体积浓度(55.81×10-9)略高于冬季(42.66×10-9);秋季VOCs以羰基化合物和烷烃为主,而冬季VOCs以烷烃和烯炔烃为主。大连环境空气中光化学反应的主要VOCs类别为羰基化合物、烯炔烃和芳香烃,主要物种为丙烷、乙烷、正丁烷和乙烯。羰基化合物含量高与机动车尾气及医院大量试剂的使用有关,烷烃主要来源于汽油车与液化石油气(LPG)燃烧排放,芳香烃主要由机动车排放贡献。各类别VOCs的组分含量与其OFP并不一致,大连市环境空气中各类VOCs的OFP由高到低依次为羰基化合物>芳香烃>烯炔烃>烷烃。  相似文献   

5.
运用大气挥发性有机物(VOCs)快速在线连续自动监测系统,于2018年7月对南通市区环境空气中VOCs进行观测,分析VOCs的浓度状况、组成特征、对臭氧生成潜势的贡献及主要来源。结果表明:观测期间共检出100种VOCs,总挥发性有机物(TVOCs)的平均体积分数为(38. 18±23. 63)×10^-9,各物种体积分数从大到小顺序依次为烷烃>含氧有机物>芳香烃>卤代烃>烯、炔烃;芳烃和烯烃是最主要的活性物种,间/对二甲苯、甲苯、邻二甲苯等是VOCs的关键活性组分;利用PMF模型解析得到VOCs的主要污染来源是工业排放与溶剂使用、机动车尾气排放、燃料挥发排放和生物源排放。  相似文献   

6.
基于2019年沈阳市4个不同功能区挥发性有机物(VOCs)小时分辨率的在线监测数据,分析了环境空气中VOCs的污染特征及来源。结果表明,观测期间沈阳市环境空气中VOCs日平均体积分数为(31.5±13.3)×10~(-9),4个功能区VOCs体积分数均呈现出冬季明显大于夏季的特征;工业区环境空气中VOCs体积分数明显高于其他功能区。商业交通居民混合区、文化居民混合区、郊区VOCs体积分数呈现明显双峰结构,工业区双峰结构不明显。工业区VOCs以新鲜排放为主,而其他3个区域为老化气团的传输。工业区春、夏季环境空气中VOCs来源包括燃料挥发源(26.90%)、溶剂与涂料源(17.69%)、燃烧源(16.40%)、化工源(15.69%)、交通源(7.57%)和炼油炼焦源(4.15%)。秋、冬季VOCs的来源包括燃烧源(30.77%)、溶剂与涂料源(20.26%)、燃料挥发源(18.79%)、化工源(11.54%)、炼油炼焦源(9.34%)和交通源(5.51%)。  相似文献   

7.
嘉善夏季典型时段大气VOCs的臭氧生成潜势及来源解析   总被引:2,自引:0,他引:2  
2016年8—9月对长三角南部区域嘉善的大气中挥发性有机化合物(VOCs)变化特征、臭氧生成潜势、臭氧生成控制敏感性和来源进行了研究。结果表明,观测期间VOCs总平均值为27.3×10-9,表现为烷烃卤代烃含氧有机物芳香烃烯烃炔烃;VOCs浓度变化较大,早晚出现峰值,与风速呈负相关的关系,与温度没有明显相关性。VOCs的臭氧生成潜势表现为芳香烃烯烃烷烃含氧有机物卤代烃炔烃。甲苯等10种物质对臭氧生成潜势的贡献达到63%。夏季典型时段臭氧生成对VOCs较敏感,属于VOCs控制区。观测期间测得对VOCs浓度贡献较大的物种来源于溶剂涂料和工业排放。  相似文献   

8.
生活垃圾填埋场空气中VOCs组成及年际变化   总被引:3,自引:0,他引:3  
宋钊 《中国环境监测》2013,29(2):98-103
采用SUMMA罐采样-气相色谱-质谱法采集并分析了2006—2010年4、10月上海某生活垃圾填埋场及周边环境空气中挥发性有机物(VOCs)的种类和含量变化情况。结果表明,共检测出34种VOCs化合物,以单环芳烃、甲基乙基酮、卤代脂肪烃为主,其中19种化合物属于美国环保局重点控制的空气中有害污染物;填埋区作业面是填埋堆体内部VOCs释放的重要途径之一,其中甲基乙基酮、甲苯、乙苯、间/对-二甲苯对TVOCs质量浓度贡献率超过60%;生活垃圾填埋场及周边环境空气中TVOCs质量浓度年季变化较稳定,但同年度内秋季浓度高于春季。  相似文献   

9.
2013—2015年,天津市臭氧(O_3)浓度整体呈下降趋势,污染状况略低于京津冀区域的其他城市。O_3浓度春、夏季高,冬季低,高值主要集中在5—9月,浓度从早上06:00开始升高,至中午14:00达到峰值。污染主要集中在中心城区、西部和北部地区,东部、南部和西南部地区污染相对较轻。O_3浓度在温度303 K以上、相对湿度70%以下或西南风为主导时较高。VOCs/NOx比值低于8,O_3的生成处于VOCs控制区。芳香烃类和烯烃类对天津市O_3生成贡献最大,其中,乙烯和甲苯为O_3生成潜势贡献最大的物种,其次为间/对二甲苯、丙烯、邻二甲苯、异戊二烯、反-2-丁烯、乙苯等,通过控制汽车尾气、化工行业及溶剂使用等对O_3生成潜势贡献大的VOCs排放源可有效控制天津市O_3污染。  相似文献   

10.
Air samples were collected in Izmir, Turkey at two (suburban and urban) sites during three sampling programs in 2002 and 2004 to determine the ambient concentrations of several monoaromatic, chlorinated and oxygenated volatile organic compounds (VOCs). Samples were analyzed for 60 VOCs using gas chromatography/mass spectrometry and 28 compounds were detected in most samples. On the average, urban air VOC concentrations were about four times higher than those measured at the suburban site. Toluene (40.6%) was the most abundant compound in suburban site and was followed by benzene (7.4%), o,m-xylene (6.5%), and 1,2-dichloroethane (5.1%). In urban site, toluene (30.5%), p-xylene (14.9%), o,m-xylene (11.4%), and ethyl benzene (7.2%) were the dominating compounds in summer. In winter, toluene (31.1%), benzene (23.9%), 1,2-dichloroethane (9.5%), and o,m-xylene (8.2%) were the most abundant compounds. Receptor modeling (positive matrix factorization) has been performed to estimate the contribution of specific source types to ambient concentrations. Six source factors (gasoline vehicle exhaust, diesel vehicle exhaust+residential heating, paint production/application, degreasing, dry cleaning, and an undefined source) were extracted from the samples collected in the urban site. Three source factors (gasoline vehicle exhaust, diesel vehicle exhaust, and paint production/application) were identified for the suburban site.  相似文献   

11.
2019年8—9月,在常州市洛阳小学、市监测站和武澄工业园3个监测站点开展了为期49 d的环境空气57种挥发性有机物(VOCs)离线加密监测,分析其浓度水平及组成特征。结果表明,3个站点VOCs的体积分数分别为29.8×10-9,20.8×10-9和25.3×10-9。3个站点中烷烃的值均值最大,其值占比依次为59.1%,57.2%和51.4%,烷烃中均以乙烷、丙烷和正丁烷值最大。应用臭氧生成潜势(OFP)、OH自由基消耗速率和二次有机气溶胶生成潜势(SOAP)分别对3个站点进行计算,结果显示,各站点芳香烃的数值均最大,OFP占比为67.1%~68.0%,OH自由基消耗速率占比为45.4%~52.0%,SOAP占比为93.3%~94.7%,芳香烃中关键活性组分是甲苯、乙苯和二甲苯等。上风向的洛阳小学与武澄工业园VOCs浓度比市区的市监测站更高,OFP和SOAP也均高于市监测站,表明上风方向的VOCs排放对市区影响较大。  相似文献   

12.
Indoor and outdoor measurements of nitrous acid and nitrogen dioxide were conducted at four homes and two offices in residential areas in Greater Cairo during winter (2000-2001) and summer (2001) seasons. Indoor nitrogen dioxide concentrations were higher than outdoor levels at the four homes, whereas indoor concentrations of nitrogen dioxide were lower than outdoor levels at the two offices, during both seasons. Indoor nitrous acid concentrations were higher than outdoor levels at all homes and offices during the period of study. The mean indoor nitrous acid concentrations were 6.8 ppb and 3.67 ppb in the four homes, whereas they were 1.42 ppb and 1.24 ppb in the two offices, during the winter and summer seasons, respectively. Indoor/outdoor ratios of nitrous acid concentration were 6.94 in the winter and 5.03 in the summer for all of the homes. However, the ratios were 1.31 and 1.61 during the winter and summer seasons, respectively, for the two offices. Insignificant positive correlation coefficients were found between indoor and outdoor concentrations of nitrous acid at homes and offices. The maximum outdoor nitrous acid concentrations were recorded during the winter season. Significant positive correlation coefficients were found between nitrous acid and nitrogen dioxide and relative humidity in homes and offices. The ratios of nitrous acid to nitrogen dioxide concentrations ranged from 0.045 to 0.16, with a mean of 0.1, in the four homes, whereas the ratios ranged from 0.026 to 0.09, with a mean of 0.059, in the two offices.  相似文献   

13.
典型化工园区大气中挥发性有机物污染调查   总被引:1,自引:0,他引:1       下载免费PDF全文
对常州市某典型化工园区大气中挥发性有机物(VOCs)污染状况进行了调查。结果表明,该化工园区大气中检出挥发性有机物共有58种,组分有芳香烃、饱和烷烃、卤代烃、烯烃、醛酯类化合物及其他类;苯、甲苯、乙苯、二甲苯为主要挥发性有机污染物,质量浓度为1.0~194μg/m~3;均未超出参考标准的限值。背景点位和园区点位大气中主要ρ总(VOCs)在秋冬季最高,敏感点大气VOCs随季节变化也较为明显;园区T1和T2ρ总(VOCs)年均值高于敏感点位,背景点位年均值最低;园区点位除了汽车尾气排放之外,溶剂的挥发和生产工艺中污染物的排放也增加了大气中苯系物的浓度,同时也对敏感点位和对照点位的大气质量产生了一定的影响。  相似文献   

14.
This study measures the effect of emissions from an airport on the air quality of surrounding neighborhoods. The ambient concentrations of benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) were measured using passive samplers at 15 households located close to the airport (indoor, outdoor, and personal), at the end of airport runways and an out-of-neighborhood location. Measurements occurred over a 48-h period during summer 2006 and winter 2006?C2007. The average concentrations were 0.84, 3.21, 0.30, 0.99, and 0.34 ??g/m3 at the airport runways and 0.84, 3.76, 0.39, 1.22, and 0.39 ??g/m3 in the neighborhood for benzene, toluene, ethylbenzene, m-, p-, and o-xylene. The average neighborhood concentrations were not significantly different to those measured at the airport runways and were higher than the out-of-neighborhood location (0.48, 1.09, 0.15, 0.78, and 0.43 ??g/m3, each BTEX). B/T ratios were used as a tracer for emission sources and the average B/T ratio at the airport and outdoors were 0.20 and 0.23 for the summer and 0.40 and 0.42 for the winter, suggesting that both areas are affected by the same emission source. Personal exposure was closely related to levels in the indoor environment where subjects spent most of their time. Indoor/outdoor (I/O) ratios for BTEX ranged from 1.13 to 2.60 and 1.41 to 3.02 for summer and winter. The seasonal differences in I/O ratios reflected residential ventilation patterns, resulting in increased indoor concentrations of volatile organic compounds during winter.  相似文献   

15.
From March 2008 to February 2009, PM(10) samples were collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) at eight sampling sites in Great Xiamen Bay, China. Analyses of the seasonal and spatial variations of these compounds revealed the following results. Significantly high levels of PAHs were found in the winter compared to the summer, sometimes exceeding 100 ng m(-3), and the spatial variations were influenced most by the sampling site surroundings. Composition profiles of PAHs of an urban and a rural site were shown to be very similar with a positive correlation coefficient larger than 0.9 at the 0.01 level of significance for the same season. Diagnostic ratios, together with principal component and multiple linear regression analysis, showed that more PAHs were from grass/wood/coal combustion in winter than in other seasons. The ratios of benzo[a]pyrene to benzo[e]pyrene (BaP-BeP) in winter and fall were 0.6-1.7 times higher than those in spring and summer, suggesting the importance of local emissions of PAHs. The BaP-BeP ratios in Kinmen were generally lower than those in Xiamen, indicating that the aging degree of PAHs was higher in Kinmen than in Xiamen. The external input of PAHs from upwind urban and industrial areas was one of the key factors causing high levels of PAHs in PM(10) in Great Xiamen Bay in winter.  相似文献   

16.
This study is an analysis of the concentrations and components of heavy metals in PM2.5 and the total suspended particulate (TSP) collected at a mechanical industrial complex (IC) site in Changwon and at a residential site in Masan, Korea. Particulate was collected during two sampling periods, from the late summer to the early fall and from the middle to late fall, at the IC site and one sampling period, from the middle fall to the early winter, at the residential site. PM2.5 and TSP samples were taken by an annular denuder system and a hi-volume air sampler, respectively. The authors also identified the concentrations and components of heavy metals extracted from the PM2.5 and TSP filters, the acidic components extracted from the PM2.5 filters, and the polycyclic aromatic hydrocarbons (PAHs) extracted from polyurethane foam (PUF) plug. The average concentrations of the PM2.5 collected at the IC and residential sites were very similar. Major sources of PM2.5 at the study sites, however, were air emissions from vehicles and industry as well as emissions from residential heating and soil origins, respectively. The higher concentrations of the TSP at the IC site, as compared to those at the residential site, were due to either increased suspended dust from vehicle emissions or re-suspended road dust because of increased vehicle speeds near the IC site. Heavy metal concentrations in the TSPs were higher than those in the PM2.5. The heavy metal concentrations in the PM2.5 and TSP at the IC site with heavy traffic were substantially greater than those at the residential site. The concentrations of TSP and heavy metals and PAHs in PM during the period of the middle to late fall was much higher than those during the period of the late summer to early fall at the IC site. This is because of the difference in meteorological characteristics and energy uses between two periods. The residential site also showed higher concentrations of acidic anions while the IC site showed higher concentrations of acidic cation. Secondary aerosols or particulates, such as ammonium nitrate or ammonium nitrite, might have been important constituents of the PM2.5 at the residential site. The PAHs in the TSP collected at the IC site was greatly affected by traffic and industry emissions consisting mostly of high molecular weight PAHs with two to four rings. PAHs in the TSP at the site, however, were affected by residential heating and air emissions from small chemical plants having higher concentrations of low molecular weight PAHs with five to six rings.  相似文献   

17.
为评估上海市挥发性有机物(VOCs)对二次有机气溶胶(SOA)和臭氧生成潜势的贡献,采用SUMMA罐采样实验室GC-FID/MS分析方法开展了环境空气104种臭氧前体物和TO-15组分分析,采用DNPH吸附管采样实验室HPLC高效液相色谱法开展了环境空气13种醛酮类组分分析。结果表明:2018年8-11月上海市代表点位VOCs摩尔分数均值范围为20. 61~50. 38 nmol/mol,臭氧生成潜势(OFP)均值范围为60. 55~184. 12μg/m^3,二次有机气溶胶生成潜势(AFP)为21. 63~61. 72μg/m^3。醛酮类和芳香烃类是OFP的主要贡献因子,贡献占比分别为31. 5%~55. 2%和21. 6%~37. 8%。芳香烃类对AFP贡献超过90%。从主要组分构成来看,城区人口密集区点位乙烷、丙烷浓度最高,其他点位甲醛浓度最高;甲醛对OFP贡献最大;间/对二甲苯在浦东书院点位AFP贡献最大,其他点位为甲苯。OFP和AFP双控物种各点位均有4~5个主要物种,以芳香烃类为主。  相似文献   

18.
为推进城市空气质量精细化管理工作的实施,实现VOCs污染源精准排查,2019年3-4月,利用单光子电离飞行时间质谱对青岛市重点区域进行了VOCs走航观测。在排查到的污染源中,工业区的VOCs浓度较生活区整体偏高,且生活区、工业区夜间的VOCs浓度均较白天高。VOCs各类组分中,生活区白天苯系物、卤代烃、烯烃、烷烃的占比均在20%左右,夜间苯系物占比明显升高;工业区苯系物在白天和夜间的占比均最高,其他组分相对较小。浓度较高的前10位VOCs物种中,生活区白天烯烃物种占主导,夜间烷烃物种的比重明显增加;工业区苯系物、烯烃物种在白天和夜间的比重均较大,烷烃物种较小。生活区VOCs的污染源主要为机动车尾气排放和油品挥发,工业区主要为企业排放。烯烃和苯系物臭氧生成贡献较烷烃高,特别是丁烯、戊烯、己烯、甲苯、二甲苯/乙苯、三甲苯贡献显著,建议作为优控物种重点管控。  相似文献   

19.
The concentrations of 56 volatile organic hydrocarbons (VOCs) were measured simultaneously in the southbound bore, the northbound bore and the exhaust air shafts of the Hsuehshan tunnel near Yilan, Taiwan during 2007 and 2008. A total of 60 integrated air samples were collected using stainless steel canisters and analyzed using GC/FID and GC/MS. The highest temperature and lowest relative humidity were observed at the exit of the tunnel owing to the accumulation in the tunnel of waste heat that was exhausted from vehicles. The five most abundant species in all samples were ethylene, acetylene, isopentane, propylene, and toluene. The exit/entrance ratios of total non-methane hydrocarbon (NMHC) concentration were 7.8 and 4.8 for the southbound and northbound bores, respectively. Furthermore, the most abundant species of emission rate (ER) is toluene (21.93-42.89 mg s(-1)), followed by isopentane, ethylene, propylene and 1-butene, with ER ranging from 2.50 to 9.31 mg s(-1) for the three shafts. The ozone formation potential (OFP)/total NMHC ratios in three exhaust air shafts show that the reactivities of these emissions are similar to those of vehicle emissions.  相似文献   

20.
Ambient gas and particle phase samples were collected during two sampling periods from a residential area of an industrialized city, Kocaeli, Turkey. The sampling occurred during winter months when structures were being heated, and summer months when structures were not being heated. Σ(13)PAH (gas + particle) concentrations ranged between 6.2 ng m(-3) (DahA) and 98.6 ng m(-3) (Phe) in the heating (winter) period and 3.0 ng m(-3) (BaA) and 35.1 ng m(-3) (Phe) in the non-heating (summer) period. Phe, Flt and Pyr were found to be at high concentrations in both sampling periods. Winter time to summer time concentration ratios for individual ambient PAH concentration ratios ranged between 1.2 (DahA) and 17.5 (Flu), indicating the effect of the emissions from residential heating on measured concentrations of PAHs, but great industrial plants and the only incinerator facility of Turkey are other important pollution sources around the city. Temperature dependence of gas phase PAHs was investigated using the Clausius-Clapeyron equation. A high slope obtained (5069.7) indicated the effect of the local sources on measured gas phase PAHs. Correlation of the supercooled vapor pressure (P) with the gas particle partitioning coefficient (K(p)) and particle phase fraction was also evaluated. The relationship between the meteorological parameters and individual PAH (gas + particle) concentrations was investigated further by multiple linear regression analysis. It was found that the temperature had a significant effect on all of the measured PAH concentrations, while the effects of the wind speed and direction were not significant on the individual PAHs. On the other hand, PAH concentrations showed a strong linear relationship with the ventilation coefficient (VC) which showed the influence of local sources on measured PAHs. Benzo[a]pyrene toxic equivalent (BaP(eq.)) concentrations were used for health risk assessment purposes. The winter period risk level (2.92 × 10(-3)) due to the respiratory exposure to PAHs was found to be almost 3 times higher than in the summer period (1.15 × 10(-3)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号